The Fundamental Theorem of Calculus - Mathematica Demonstration

The Fundamental Theorem of Calculus says, roughly, that the following processes undo each other:

\{ \text{finding slopes of tangent lines} \} \quad \text{undo} \quad \{ \text{finding areas by rectangle sums} \}

The first process is differentiation, and the second process is (definite) integration. To say that the two undo each other means that if you start with a function, do one, then do the other, you get the function you started with.

In equation form, you can say

\[\int_a^b f(x) \, dx = F(b) - F(a) \quad \text{where} \quad F(x) \quad \text{is an antiderivative of} \quad f(x). \]

I’ll use the symbolic mathematics program Mathematica to give empirical evidence that it works.

Here is a Mathematica function which takes a function \(f : \mathbb{R} \to \mathbb{R} \) and an increment \(dx \) and returns the function \(x \mapsto \frac{f(x + dx) - f(x)}{dx} \):

\[\text{DifferenceQuotient}[f, dx] := \text{Function}[\frac{f[# + dx] - f[#]}{dx}] \]

In ordinary math notation, this is \(\frac{f(x + dx) - f(x)}{dx} \). There’s no limit here; I’m working with a specific number \(dx \) and finding the slope of the secant line. It will be close to the slope of the tangent if \(dx \) is small.

For example, suppose I take \(f(x) = \sin(x^2) \):

\[f[x_] := \text{Sin}[x^2] \]

I’ll let \(dqf \) denote the difference quotient function with an increment of \(dx = 0.01 \):

\[dqf = \text{DifferenceQuotient}[f, 0.01] \]

In ordinary math notation, this is

\[dqf(x) = \frac{\sin(x + 0.01)^2 - \sin x^2}{0.01}. \]

Here is \(dqf \) evaluated at \(x = 1.3 \):

\[dqf[1.3] \]

\[-0.344167 \]

Since \(f'(1.3) \approx -0.309196 \), this is not a bad approximation.

On the other hand, here is a function which approximates the area under a curve:

\[\text{RiemannSum}[f, start, dx] := \text{Function}[\text{Sum}[f[\text{start} + i dx], \{i, 0, \text{Floor}[(\# - \text{start})/dx]\}], dx] \]

This function returns a function whose value is a rectangle sum approximation to

\[\int_{\text{start}}^{x} f(x) \, dx. \]

(Each rectangle has width \(dx \).)
For example, using \(f(x) = \sin(x^2) \),

\[
\text{sumf} = \text{RiemannSum}[f, 0, 0.01]
\]

produces a function which gives a rectangle sum approximation to \(\int_0^x \sin(x^2) \, dx \).

In this case, the rectangles have width 0.01.

Now I can use \(\text{sumf} \) to approximate the area under the curve from 0 to \(\sqrt{\pi} \):

\[
\text{sumf}[\text{Sqrt}[\pi]]
\]

0.894835

This is pretty close to the “actual” answer, as found by a numerical integration routine:

\[
\text{NIntegrate}[f[x], \{x, 0, \text{Sqrt}[\pi]\}]
\]

0.894831

Here comes the punch line. I'll feed \(f(x) = \sin(x^2) \) into the difference quotient function, and then feed the output into the rectangle sum function:

\[
\text{stepone} = \text{DifferenceQuotient}[f, 0.1]
\]

\[
\text{steptwo} = \text{RiemannSum}[\text{stepone}, 0.01]
\]

Finally, I'll graph the function \(\text{steptwo} \). For comparison, I've plotted the graph of \(f(x) = \sin(x^2) \) on the right:

\[
\text{Plot}[\text{steptwo}[x], \{x, 0, 2\text{Sqrt}[\pi]\}]
\]

\[
\text{Plot}[\sin[x^2], \{x, 0, 2\text{Sqrt}[\pi]\}]
\]

You can see that the two graphs are essentially the same, except for the “steps” on the graph. These result from the fact that I didn’t take limits in defining my tangent line approximation or my rectangle sum approximation. But you could make the “steps” smaller by making \(dx \) smaller in the \text{DifferenceQuotient} and \text{RiemannSum} functions.

The results which I’ve demonstrated empirically are summarized in the **The Fundamental Theorem of Calculus.**

Theorem. (The Fundamental Theorem of Calculus (first version)) Suppose \(f \) is integrable on \(a \leq x \leq b \), and that \(F'(x) = f(x) \) for some differentiable function \(F \) defined on \(a \leq x \leq b \). Then

\[
\int_a^b f(x) \, dx = F(b) - F(a).
\]

The Fundamental Theorem of Calculus says that I can compute the definite integral of a function \(f \) by finding an antiderivative \(F \) of \(f \).