The **Taylor series** for \(f(x) \) at \(x = c \) is

\[
f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + \cdots = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x - c)^n.
\]

(By convention, \(f^{(0)} = f \).) When \(c = 0 \), the series is called a **Maclaurin series**.

You can construct the series on the right provided that \(f \) is infinitely differentiable on an interval containing \(c \). You already know how to determine the interval of convergence of the series. However, the fact that the series converges at \(x \) does not imply that the series converges to \(f(x) \).

As an example, consider the function

\[
f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}
\]

It is infinitely differentiable everywhere. In particular, all the derivatives of \(f \) at 0 vanish, and the Maclaurin series for \(f \) is identically 0.

Hence, the Maclaurin series for \(f \) converges for all \(x \), but only converges to \(f(x) \) at \(x = 0 \).

The following result ([1], page 418) gives a sufficient condition for the Taylor series of a function to converge to the function:

Theorem. Let \(f(x) \) be infinitely differentiable on \(a \leq x \leq b \), and let \(a \leq c \leq b \). Suppose there is a constant \(M \) such that \(|f^{(n)}(x)| \leq M \) for all \(n \geq 1 \), and for all \(x \) in \(N \cap [a, b] \), where \(N \) is a neighborhood of \(c \). Then for all \(x \in N \cap [a, b] \),

\[
f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x - c)^n.
\]

In other words, under reasonable conditions:

1. You can construct a Taylor series by computing the derivatives of \(f \).
2. The series will converge to \(f \) on an interval around the expansion point. (You can find the interval of convergence as usual.)

It’s tedious to have to compute lots of derivatives, and in many cases you can derive a series from another known series. Here are the series expansions for several important functions:

\[
\begin{align*}
\frac{1}{1 - u} &= \sum_{n=0}^{\infty} u^n = 1 + u + u^2 + \cdots + u^n + \cdots & -1 < u < 1 \\
e^u &= \sum_{n=0}^{\infty} \frac{u^n}{n!} = 1 + u + \frac{u^2}{2!} + \cdots + \frac{u^n}{n!} + \cdots & -\infty < u < +\infty \\
\cos u &= \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n}}{(2n)!} = 1 - \frac{u^2}{2!} + \frac{u^4}{4!} - \cdots + (-1)^n \frac{u^{2n}}{(2n)!} + \cdots & -\infty < u < +\infty \\
\sin u &= \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n+1}}{(2n+1)!} = u - \frac{u^3}{3!} + \frac{u^5}{5!} - \cdots + (-1)^n \frac{u^{2n+1}}{(2n+1)!} + \cdots & -\infty < u < +\infty \\
\ln(1 + u) &= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{u^n}{n} = u - \frac{u^2}{2} + \frac{u^3}{3} - \cdots + (-1)^{n+1} \frac{u^n}{n} + \cdots & -1 < u \leq 1 \\
(1 + u)^a &= 1 + \sum_{n=1}^{\infty} \frac{a(a - 1)\cdots(a - n + 1)}{n!} u^n & -1 < u < 1
\end{align*}
\]
Example. Find the Taylor series for \(\frac{1}{x+3} \) at \(a = 2 \). What is its interval of convergence?

I want things to come out in powers of \(x - 2 \), so I’ll write the function in terms of \(x - 2 \):

\[
\frac{1}{x + 3} = \frac{1}{5 + (x - 2)} \quad \text{(Make the \(x - 2 \) first)}
\]

\[
= \frac{1}{5} \cdot \frac{1}{1 + (x - 2)/5} \quad \text{(I need 5, because 5 - 2 = 3)}
\]

I’ll use the series for \(\frac{1}{1-u} \). To do this, I need \(1 - u \) on the bottom. I make a “1” by factoring 5 out of the terms on the bottom, then I make a “−” by writing the “+” as “−”:

\[
\frac{1}{5 + (x - 2)} = \frac{1}{5} \cdot \frac{1}{1 + \frac{x - 2}{5}} = \frac{1}{5} \cdot \frac{1}{1 - \left(-\frac{x - 2}{5}\right)}
\]

Let \(u = -\frac{x - 2}{5} \) in the series for \(\frac{1}{1 - u} \). Then

\[
\frac{1}{1 - \left(-\frac{x - 2}{5}\right)} = 1 - \frac{x - 2}{5} + \left(\frac{x - 2}{5}\right)^2 - \left(\frac{x - 2}{5}\right)^3 + \cdots.
\]

Hence,

\[
\frac{1}{x + 3} = \frac{1}{5} \cdot \left[1 - \frac{x - 2}{5} + \left(\frac{x - 2}{5}\right)^2 - \left(\frac{x - 2}{5}\right)^3 + \cdots \right].
\]

The \(u \)-series converges for \(-1 < u < 1\), so the \(x \)-series converges for \(-1 < -\frac{x - 2}{5} < 1\), or \(-3 < x < 7\).

\[\square\]

Example. Find the Taylor series for \(\frac{1}{7 - x} \) at \(a = -3 \). What is its interval of convergence?

Since I’m expanding at \(a = -3 \), I need powers of \(x + 3 \):

\[
\frac{1}{7 - x} = \frac{1}{10 - (x + 3)}
\]

\[
= \frac{1}{10} \cdot \frac{1}{1 - \frac{x + 3}{10}}
\]

I let \(u = \frac{1}{10}(x + 3) \) in the series for \(\frac{1}{1 - u} \):

\[
\frac{1}{1 - \frac{1}{10}(x + 3)} = \frac{1}{10} \left(1 + \frac{1}{10}(x + 3) + \frac{1}{10^2}(x + 3)^2 + \frac{1}{10^3}(x + 3)^3 + \cdots \right).
\]

In summation form, this is \(\frac{1}{10} \sum_{n=0}^{\infty} \frac{1}{10^n}(x + 3)^n \).
Find the interval of convergence:

\[-1 < u < 1\]

\[-1 < \frac{1}{10}(x + 3) < 1\]
\[-10 < x + 3 < 10\]
\[-13 < x < 7\]

Example. Find the Taylor series at \(c = 1 \) for \(e^{5x} \).

I need powers of \(x - 1 \).

\[e^{5x} = e^{5(x-1)+5} = e^{5(x-1)} \cdot e^{5} = e^{5} \left(1 + 5(x-1) + \frac{5^2(x-1)^2}{2!} + \frac{5^3(x-1)^3}{3!} + \cdots \right) . \]

To get this, I let \(u = 5(x-1) \) in the series for \(e^u \).

For the interval of convergence:

\[-\infty < u < \infty\]
\[-\infty < 5(x-1) < \infty\]
\[-\infty < x - 1 < \infty\]
\[-\infty < x < \infty\]

Example. Find the Taylor series for \(\sin x \) at \(c = \frac{\pi}{2} \).

I need powers of \(x - \frac{\pi}{2} \), so

\[\sin x = \sin \left[\left(x - \frac{\pi}{2} \right) + \frac{\pi}{2} \right] . \]

Next, I’ll use the angle addition formula for sine:

\[\sin(a + b) = \sin a \cos b + \sin b \cos a . \]

I set \(a = x - \frac{\pi}{2} \) and \(b = \frac{\pi}{2} \). Since \(\cos \frac{\pi}{2} = 0 \) and \(\sin \frac{\pi}{2} = 1 \), I get

\[\sin \left[\left(x - \frac{\pi}{2} \right) + \frac{\pi}{2} \right] = \cos \left(x - \frac{\pi}{2} \right) = 1 - \frac{1}{2!} \left(x - \frac{\pi}{2} \right)^2 + \frac{1}{4!} \left(x - \frac{\pi}{2} \right)^4 - \frac{1}{6!} \left(x - \frac{\pi}{2} \right)^6 + \cdots . \]

Example. Find the Taylor series for \(\ln x \) at \(a = 1 \). What is its interval of convergence?

Use

\[\ln(1 + u) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{u^n}{n} = u - \frac{u^2}{2} + \frac{u^3}{3} - \cdots + (-1)^{n+1} \frac{u^n}{n} + \cdots . \]

I’m expanding at \(a = 1 \), so I want the result to come out in powers of \(x - 1 \). This is easy — just set \(u = x - 1 \):

\[\ln x = (x - 1) - \frac{1}{2} (x - 1)^2 + \frac{1}{3} (x - 1)^3 + \cdots + (-1)^{n+1} \frac{1}{n} (x - 1)^n + \cdots . \]

The \(u \)-series converges for \(-1 < u \leq 1\), so the \(x \)-series converges for \(-1 < x - 1 \leq 1\), or \(0 < x \leq 2 \).
Example. The quantity \((1 - \frac{v^2}{c^2})^{-1/2}\) occurs in special relativity. (\(v\) is the velocity of an object, and \(c\) is the speed of light.) Approximate \((1 - \frac{v^2}{c^2})^{-1/2}\) using the first two nonzero terms of the binomial series.

\[
(1 + u)^a = 1 + au + \frac{a(a - 1)}{2!}u^2 + \cdots,
\]

So for \(a = -\frac{1}{2}\),

\[
(1 + u)^{-1/2} = 1 - \frac{1}{2}u + \frac{3}{8}u^2 - \cdots.
\]

Take \(u = -\frac{v^2}{c^2}\):

\[
\left(1 - \frac{v^2}{c^2}\right)^{-1/2} = 1 + \frac{1}{2} \frac{v^2}{c^2} + \frac{3}{8} \frac{v^4}{c^4} + \cdots \approx 1 + \frac{1}{2} \frac{v^2}{c^2}.
\]

The approximation is good as long as \(v\) is small compared to \(c\). \(\Box\)

Example. Find the Taylor series for \(\frac{x}{2 + x}\) at \(a = -1\).

Since I’m expanding at \(a = -1\), the answer must come out in terms of powers of \(x + 1\).

Start with the function you’re trying to expand. To get \(x + 1\)'s in the answer, write the given function in terms of \(x + 1\):

\[
\frac{x}{2 + x} = \frac{(x + 1) - 1}{1 + (x + 1)}.
\]

(Notice that the work has to be legal algebra.)

I’ll break up the fraction and do the pieces separately.

\[
\frac{(x + 1) - 1}{1 + (x + 1)} = \frac{x + 1}{1 + (x + 1)} - \frac{1}{1 + (x + 1)}.
\]

I want to “match” each piece against the standard series \(\frac{1}{1 - u}\). Here’s the first piece:

\[
\frac{x + 1}{1 + (x + 1)} = (x + 1) \frac{1}{1 - [-(x + 1)]}.
\]

Expand \(\frac{1}{1 - [-(x + 1)]}\) by setting \(u = -(x + 1)\) in \(\frac{1}{1 - u}\):

\[
(x + 1) \frac{1}{1 - [-(x + 1)]]} = (x + 1) \cdot (1 - (x + 1) + (x + 1)^2 - (x + 1)^3 + \cdots) = (x + 1) - (x + 1)^2 + (x + 1)^3 - \cdots.
\]

Here’s the second piece:

\[
\frac{1}{1 + (x + 1)} = \frac{1}{1 - [-(x + 1)]} = 1 - (x + 1) + (x + 1)^2 - (x + 1)^3 + \cdots.
\]

Put the two pieces together:

\[
[(x + 1) - (x + 1)^2 + (x + 1)^3 - \cdots] - [1 - (x + 1) + (x + 1)^2 - (x + 1)^3 + \cdots] =
\]

4
\[
\frac{(x+1)}{2} - (x+1)^2 + (x+1)^3 - \cdots = 1 + 2(x+1) - 2(x+1)^2 + 2(x+1)^3 - \cdots.
\]

That is,
\[
\frac{x}{2} = 1 + 2(x+1) - 2(x+1)^2 + 2(x+1)^3 - \cdots. \quad \square
\]

Example. What is the Maclaurin series for \(f(x) = 7x^2 - 3x + 13 \)? What is the Taylor series for \(f(x) = 7x^2 - 3x + 13 \) at \(a = -1 \)?

The Maclaurin series for a polynomial is the polynomial:
\[
f(x) = 7x^2 - 3x + 13.
\]

To obtain the Taylor expansion at \(a = -1 \), write the function in terms of \(x+1 \):
\[
7x^2 - 3x + 13 = 7(x+1)^2 - 17x + 6 = 7(x+1)^2 - 17(x+1) + 23.
\]

Example. Find \(f^{(100)}(0) \) for \(f(x) = \frac{1}{3-x} \).

The series for \(\frac{1}{3-x} \) at \(c = 0 \) is
\[
\frac{1}{3-x} = \frac{1}{3} \cdot \frac{1}{1 - \frac{x}{3}} = \frac{1}{3} \left(1 + \frac{x}{3} + \frac{x^2}{3^2} + \cdots + \frac{x^n}{3^n} + \cdots \right) = \\
\frac{1}{3} + \frac{x}{3^2} + \frac{x^2}{3^3} + \cdots + \frac{x^n}{3^{n+1}} + \cdots.
\]

The 100th degree term is \(x^{100} \cdot \frac{1}{3^{101}} \). On the other hand, Taylor’s formula says that the 100th degree term is
\[
f^{(100)}(0) \cdot \frac{1}{100!} \cdot x^{100}. \quad \text{Equating the coefficients, I get}
\]
\[
\frac{1}{3^{101}} = \frac{f^{(100)}(0)}{100!} \quad \square
\]
\[
f^{(100)}(0) = \frac{100!}{3^{101}}
\]

While you can often use known series to find Taylor series, it’s sometimes necessary to find a series using Taylor’s formula. (In fact, that’s where the “known series” come from.)

Example. Find the first four nonzero terms and the general term of the Taylor series for \(f(x) = e^x \) at \(a = 0 \) and at \(a = 1 \) by computing the derivatives of \(f \).

\[
f(x) = e^x, \quad f'(x) = e^x, \quad \text{and in general} \quad f^{(n)}(x) = e^x.
\]

For \(a = 0 \), \(f^{(n)}(0) = e^0 = 1 \) for all \(n \). The Taylor series at \(a = 0 \) is
\[
f(x) = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots + \frac{1}{n!}x^n + \cdots.
\]

\[
\frac{1}{2} + (x+1)^2 + (x+1)^3 - \cdots = 1 + 2(x+1) - 2(x+1)^2 + 2(x+1)^3 - \cdots.
\]
For \(a = 1 \), \(f^{(n)}(1) = e \) for all \(n \). The Taylor series at \(a = 1 \) is

\[
f(x) = e + e(x - 1) + \frac{e}{2!}(x - 1)^2 + \frac{3}{3!}(x - 1)^3 + \cdots + \frac{1}{n!}(x - 1)^n + \cdots.
\]

If you truncate the series expanded at \(c \) after the \(n^{\text{th}} \)-degree term, what’s left is the \(n^{\text{th}} \)-degree Taylor polynomial \(p_n(x; c) \). For example, the third degree polynomial of \(e^x \) at \(a = 0 \) is

\[
p_3(x; 0) = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3.
\]

Note that the “\(n \)” here refers to the largest power of \(x \), not the number of terms. For example, the Taylor series for \(\frac{1}{1 - x^2} \) at \(a = 0 \) is

\[
\frac{1}{1 - x^2} = 1 + x^2 + x^4 + \cdots + x^{2n} + \cdots.
\]

The 2\(^{\text{nd}} \) degree Taylor polynomial and the 3\(^{\text{rd}} \) degree Taylor polynomial are equal:

\[
p_2(x; 0) = p_3(x; 0) = 1 + x^2.
\]

Example. Find the 3\(^{\text{rd}} \) degree Taylor polynomial for \(f(x) = \tan x \) at \(x = \frac{\pi}{4} \).

\[
f(x) = \tan x, \quad f'(x) = (\sec x)^2, \quad f''(x) = 2(\sec x)^2 \tan x, \quad f'''(x) = 2(\sec x)^4 + 4(\sec x)^2(\tan x)^2.
\]

Thus,

\[
f\left(\frac{\pi}{4}\right) = 1, \quad f'\left(\frac{\pi}{4}\right) = 2, \quad f''\left(\frac{\pi}{4}\right) = 4, \quad f'''\left(\frac{\pi}{4}\right) = 16.
\]

The 3\(^{\text{rd}} \) degree Taylor polynomial is

\[
p_3\left(x; \frac{\pi}{4}\right) = 1 + 2\left(x - \frac{\pi}{4}\right) + 2\left(x - \frac{\pi}{4}\right)^2 + \frac{8}{3}\left(x - \frac{\pi}{4}\right)^3.
\]

Example. Suppose

\[
f(4) = 7, \quad f'(4) = -3, \quad f''(4) = 4, \quad f'''(4) = 12.
\]

Use the 3\(^{\text{rd}} \) degree Taylor polynomial for \(f \) at \(c = 4 \) to approximate \(f(4.2) \).

I have

\[
p_3(x; 4) = 7 - 3(x - 4) + \frac{4}{2!}(x - 4)^2 + \frac{12}{3!}(x - 4)^3 = 7 - 3(x - 4) + 2(x - 4)^2 + 2(x - 4)^3.
\]

Plug \(x = 4.2 \) in:

\[
f(4.2) \approx 7 - 3(4.2 - 4) + 2(4.2 - 4)^2 + 2(4.2 - 4)^3 = 6.496.
\]
It's also possible to construct power series by integrating or differentiating other power series. A *power series may be integrated or differentiated term-by-term in the interior of its interval of convergence.* (You will need to check convergence at the endpoints separately.)

Example. (a) Find the Taylor series at \(c = 0 \) for \(\frac{1}{8 + x} \).

(b) Find the Taylor series at \(c = 0 \) for \(\frac{1}{(8 + x)^2} \).

(a)

\[
\frac{1}{8 + x} = \frac{1}{8} \frac{1}{1 + \frac{x}{8}} = \frac{1}{8} \frac{1}{1 - \left(-\frac{x}{8}\right)} = \frac{1}{8} \left(1 + \frac{x}{8} + \frac{x^2}{64} + \frac{x^3}{512} + \frac{x^4}{4096} + \cdots\right).
\]

\[\square\]

(b) Notice that

\[
\frac{d}{dx} \frac{1}{8 + x} = -\frac{1}{(8 + x)^2}.
\]

Hence,

\[
\frac{1}{(8 + x)^2} = -\frac{d}{dx} \frac{1}{8 + x} = -\frac{d}{dx} \frac{1}{8} \left(1 + \frac{x}{8} + \frac{x^2}{64} + \frac{x^3}{512} + \frac{x^4}{4096} + \cdots\right) = -\frac{1}{8} \left(-\frac{1}{8} + \frac{x}{32} - \frac{3x^2}{512} + \frac{x^3}{1024} + \cdots\right).
\]

\[\square\]

Example. (a) Find the Taylor series at \(c = 0 \) for \(\frac{1}{1 + x} \).

(b) Use the series in (a) to find the series for \(\ln(1 + u) \) expanded at \(c = 0 \).

(a) Put \(u = -x \) in the series for \(\frac{1}{1 - u} \) to obtain

\[
\frac{1}{1 + x} = 1 - x + x^2 - x^3 + \cdots.
\]

It converges for \(-1 < x < 1\). \[\square\]

(b) Integrate the series in (a) from 0 to \(u \):

\[
\ln(1 + u) = \int_0^u (1 - x + x^2 - x^3 + \cdots) \, dx = u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + \cdots.
\]

This series will converge for \(-1 < u < 1\). The left side blows up at \(u = -1 \). On the other hand, if \(u = 1 \),

\[
\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots.
\]

The right side *does* converge (by the Alternating Series Test), so the \(\ln(1 + u) \) series converges for \(-1 < u \leq 1\). \[\square\]

Example. Find the Taylor series for \(\ln(5 - x) \) at \(a = 2 \).
First, note that
\[
\int_2^x \frac{1}{5-t} dt = -\ln(5-t)_2^x = -\ln(5-x) + \ln 3, \quad \text{so} \quad \ln(5-x) = \ln 3 - \int_2^x \frac{1}{5-t} dt.
\]
I integrated from 2 to \(x\) because I want the expansion at \(a = 2\).

Now find the series at \(a = 2\) for \(\frac{1}{5-t}\):
\[
\frac{1}{5-t} = \frac{1}{3-(t-2)} = \frac{1}{3} \cdot \frac{1}{1 - \frac{t-2}{3}} = \frac{1}{3} \sum_{n=0}^\infty \frac{(t-2)^n}{3^n}.
\]

Plug this series back into the integral and integrate term-by-term:
\[
\ln(5-x) = \ln 3 - \int_2^x \frac{1}{5-t} dt = \ln 3 - \frac{1}{3} \int_2^x \sum_{n=0}^\infty \frac{(t-2)^n}{3^n} dt = \ln 3 - \frac{1}{3} \sum_{n=0}^\infty \left[\frac{(t-2)^{n+1}}{3^n(n+1)}\right]_2^x =
\]
\[
\ln 3 - \frac{1}{3} \sum_{n=0}^\infty \frac{(x-2)^{n+1}}{3^n(n+1)} = \ln 3 - \sum_{n=0}^\infty \frac{(x-2)^{n+1}}{3^{n+1}(n+1)}. \quad \square
\]

Example. (a) Construct the Taylor series at \(c = 0\) for \(\frac{1}{1+t^2}\).

(b) Use the series in (a) to construct the Taylor series at \(c = 0\) for \(\tan^{-1} x\).

(c) Use the series in (b) to obtain a series for \(\pi\).

(a) I need powers of \(t\), so
\[
\frac{1}{1+t^2} = \frac{1}{1-(-t^2)} = 1 - t^2 + t^4 - t^6 + \cdots + (-1)^n t^{2n} + \cdots. \quad \square
\]

(b) Note that
\[
\int_0^x \frac{1}{1+t^2} dt = [\tan^{-1} t]_0^x = \tan^{-1} x.
\]

Therefore,
\[
\tan^{-1} x = \int_0^x \frac{1}{1+t^2} dt = \int_0^x (1-t^2 + t^4 - t^6 + \cdots) dt =
\]
\[
\left[t - \frac{1}{3} t^3 + \frac{1}{5} t^5 - \frac{1}{7} t^7 + \cdots \right]_0^x = x - \frac{1}{3} x^3 + \frac{1}{5} x^5 - \frac{1}{7} x^7 + \cdots. \quad \square
\]

(c) Plug \(x = 1\) into the series in (b), using the fact that \(\tan^{-1} 1 = \frac{\pi}{4}\):
\[
\tan^{-1} 1 = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots
\]
\[
\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots \quad \square
\]
\[
\pi = 4 \left(1 - \frac{1}{3} + \frac{4}{5} - \frac{4}{7} + \cdots \right)
\]

8
Think of a Taylor series as a “replacement” for its function. For example, you can often use a Taylor series to compute a limit or an integral by replacing a function with its series.

Example. (a) Find the first 4 nonzero terms of the Taylor series at $c = 0$ for $\ln(1 + x^3)$.

(b) Use the series in (a) to guess the value of $\lim_{x \to 0} \frac{\ln(1 + x^3)}{x^3}$.

(a) Let $u = x^3$ in the series for $\ln(1 + u)$:

$$\ln(1 + x^3) = x^3 - \frac{1}{2}x^6 + \frac{1}{3}x^9 + \frac{1}{4}x^{12} - \cdots.$$

(b) Plug the series from (a) into the limit:

$$\lim_{x \to 0} \frac{\ln(1 + x^3)}{x^3} = \lim_{x \to 0} \frac{1}{x^3} \left(x^3 - \frac{1}{2}x^6 + \frac{1}{3}x^9 + \frac{1}{4}x^{12} - \cdots \right) = \lim_{x \to 0} \left(1 - \frac{1}{2}x^3 + \frac{1}{3}x^6 + \frac{1}{4}x^9 - \cdots \right) = 1.$$

Example. (a) Construct the Taylor series at $c = 0$ for $x^2e^{-x^2}$. (Write out at least the first 4 nonzero terms.)

(b) Use the first 3 terms of the series in (a) to approximate $\int_0^1 x^2e^{-x^2} \, dx$.

(c) Use the Alternating Series error estimate to estimate the error in (b).

(a) I set $u = -x^2$ in the series for e^u:

$$e^{-x^2} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} - \cdots.$$

Multiply by x^2:

$$x^2e^{-x^2} = x^2 - x^4 + \frac{1}{2}x^6 - \frac{1}{6}x^8 + \frac{1}{24}x^{10} - \cdots.$$

(b) $\int_0^1 x^2e^{-x^2} \, dx \approx \int_0^1 \left(x^2 - x^4 + \frac{1}{2}x^6\right) \, dx = \left[\frac{1}{3}x^3 - \frac{1}{5}x^5 + \frac{1}{14}x^7\right]_0^1 = \frac{43}{210} = 0.20476 \ldots$

(c) The Alternating Series error estimate says that the error is less than the next term. So I take the next term in the series in (a) and integrate:

$$\int_0^1 \frac{1}{6}x^8 \, dx = \left[\frac{1}{54}x^9\right]_0^1 = \frac{1}{54}.$$

The error in the estimate in (b) is no greater than $\frac{1}{54} \approx 0.01851 \ldots$