The Column Space of a Matrix

Definition. Let A be an $m \times n$ matrix. The column vectors of A are the vectors in F^{n} corresponding to the columns of A. The column space of A is the subspace of F^{n} spanned by the column vectors of A.

For example, consider the real matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

The column vectors are $(1,0,0)$ and $(0,1,0)$. The column space is the subspace of \mathbb{R}^{3} spanned by these vectors. Thus, the column space consists of all vectors of the form

$$
a \cdot(1,0,0)+b \cdot(0,1,0)=(a, b, 0)
$$

We've seen how to find a basis for the row space of a matrix. We'll now give an algorithm for finding a basis for the column space.

First, here's a reminder about matrix multiplication. If A is an $m \times n$ matrix and $v \in F^{n}$, then you can think of the multiplication $A v$ as multiplying the columns of A by the components of v :

$$
\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{n} \\
{\left[\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
c_{1} & c_{2} & \cdots & c_{n} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right]}
\end{array} \begin{gathered}
\\
\end{gathered}
$$

This means that if c_{i} is the i-th column of A and $v=\left(a_{1}, \ldots, a_{n}\right)$, the product $A v$ is a linear combination of the columns of A :

$$
\left[\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
c_{1} & c_{2} & \cdots & c_{n} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=a_{1} c_{1}+a_{2} c_{2}+\cdots+a_{n} c_{n}
$$

Proposition. Let A be a matrix, and let R be the row reduced echelon matrix which is row equivalent to A. Suppose the leading entries of R occur in columns j_{1}, \ldots, j_{p}, where $j_{1}<\cdots<j_{p}$, and let c_{i} denote the i-th column of A. Then $\left\{c_{j_{1}}, \ldots, c_{j_{p}}\right\}$ is independent.

Proof. Suppose that

$$
a_{j_{1}} c_{j_{1}}+\cdots+a_{j_{p}} c_{j_{p}}=0, \quad \text { for } \quad a_{i} \in F
$$

Form the vector $v=\left(v_{i}\right)$, where

$$
v_{i}= \begin{cases}0 & \text { if } i \notin\left\{j_{1}, \ldots, j_{p}\right\} \\ a_{i} & \text { if } i \in\left\{j_{1}, \ldots, j_{p}\right\}\end{cases}
$$

The equation above implies that $A v=0$.
It follows that v is in the solution space of the system $A x=0$. Since $R x=0$ has the same solution space, $R v=0$. Let c_{i}^{\prime} denote the i-th column of R. Then

$$
0=R v=a_{j_{1}} c_{j_{1}}^{\prime}+\cdots+a_{j_{p}} c_{j_{p}}
$$

However, since R is in row reduced echelon form, $c_{j_{k}}^{\prime}$ is a vector with 1 in the k-th row and 0 's elsewhere. Hence, $\left\{c_{j_{1}}, \ldots, c_{j_{p}}\right\}$ is independent, and $a_{j_{1}}=\cdots=a_{j_{p}}=0$.

The proof provides an algorithm for finding a basis for the column space of a matrix. Specifically, row reduce the matrix A to a row reduced echelon matrix R. If the leading entries of R occur in columns j_{1}, \ldots, j_{p}, then consider the columns $c_{j_{1}}, \ldots, c_{j_{p}}$ of A. These columns form a basis for the column space of A.

Example. Find a basis for the column space of the real matrix

$$
\left[\begin{array}{ccccc}
1 & -2 & 3 & 1 & 1 \\
2 & 1 & 0 & 3 & 1 \\
0 & -5 & 6 & -1 & 1 \\
7 & 1 & 3 & 10 & 4
\end{array}\right]
$$

Row reduce the matrix:

$$
\left[\begin{array}{ccccc}
1 & -2 & 3 & 1 & 1 \\
2 & 1 & 0 & 3 & 1 \\
0 & -5 & 6 & -1 & 1 \\
7 & 1 & 3 & 10 & 4
\end{array}\right] \rightarrow\left[\begin{array}{ccccc}
1 & 0 & 0.6 & 1.4 & 0.6 \\
0 & 1 & -1.2 & 0.2 & -0.2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The leading entries occur in columns 1 and 2 . Therefore, $(1,2,0,7)$ and $(-2,1,-5,1)$ form a basis for the column space of A.

Note that if A and B are row equivalent, they don't necessarily have the same column space. For example,

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 2 & 1
\end{array}\right] \underset{r_{2} \rightarrow r_{2}-r_{1}}{ }\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 0 & 0
\end{array}\right] .
$$

However, all the elements of the column space of the second matrix have their second component equal to 0 ; this is obviously not true of elements of the column space of the first matrix.

Example. Find a basis for the column space of the following matrix over \mathbb{Z}_{3} :

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 2 & 1 & 0 \\
2 & 1 & 2 & 1
\end{array}\right]
$$

Row reduce the matrix:

$$
\begin{gathered}
{\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 2 & 1 & 0 \\
2 & 1 & 2 & 1
\end{array}\right] \underset{r_{1} \leftrightarrow r_{2}}{\rightarrow}\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
0 & 1 & 1 & 0 \\
2 & 1 & 2 & 1
\end{array}\right] \underset{r_{3} \rightarrow r_{3}+r_{1}}{\rightarrow}} \\
{\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{r_{1} \rightarrow r_{1}+r_{2}}\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

The leading entries occur in columns 1,2 , and 4 . Hence, columns 1, 2, and 4 of A are independent and form a basis for the column space of A :

$$
\left\{\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

I showed earlier that you can add vectors to an independent set to get a basis. The column space basis algorithm shows how to remove vectors from a spanning set to get a basis.

spanning set

independent and spanning set

Example. Find a subset of the following set of vectors which forms a basis for \mathbb{R}^{3}.

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right]\right\}
$$

Make a matrix with the vectors as columns and row reduce:

$$
\left[\begin{array}{cccc}
1 & -1 & 1 & 4 \\
2 & 1 & 1 & -1 \\
1 & -1 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & \frac{2}{3} & 0 \\
0 & 1 & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The leading entries occur in columns 1, 2, and 4. Therefore, the corresponding columns of the original matrix are independent, and form a basis for \mathbb{R}^{3} :

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right]\right\} . \quad \square
$$

Definition. Let A be a matrix. The column rank of A is the dimension of the column space of A.
This is really just a temporary definition, since we'll show that the column rank is the same as the rank we define earlier (the dimension of the row space).

Proposition. Let A be a matrix. Then

$$
\operatorname{rank}(A)=\operatorname{column} \operatorname{rank}(A)
$$

Proof. Let R be the row reduced echelon matrix which is row equivalent to A. Suppose the leading entries of R occur in columns j_{1}, \ldots, j_{p}, where $j_{1}<\cdots<j_{p}$, and let c_{i} denote the i-th column of A. By the preceding lemma, $\left\{c_{j_{1}}, \ldots, c_{j_{p}}\right\}$ is independent. There is one vector in this set for each leading entry, and the number of leading entries equals the row rank. Therefore,

$$
\operatorname{rank}(A) \leq \operatorname{column} \operatorname{rank}(A)
$$

Now consider A^{T}. This is A with the rows and columns swapped, so

$$
\begin{aligned}
& \operatorname{rank}\left(A^{T}\right)=\operatorname{column} \operatorname{rank}(A) \\
& \operatorname{column} \operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)
\end{aligned}
$$

Applying the first part of the proof to A^{T},

$$
\operatorname{column} \operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right) \leq \operatorname{column} \operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)
$$

Therefore,

$$
\operatorname{column} \operatorname{rank}(A)=\operatorname{rank}(A)
$$

Proposition. Let A, B, P and Q be matrices, where P and Q are invertible. Suppose $A=P B Q$. Then $\operatorname{rank} A=\operatorname{rank} B$.

Proof. I showed earlier that $\operatorname{rank} M N \leq \operatorname{rank} N$. This was row rank; a similar proof shows that column $\operatorname{rank}(M N) \leq$ column $\operatorname{rank}(M)$.

Since row rank and column rank are the same, $\operatorname{rank} M N \leq \operatorname{rank} M$. Now
$\operatorname{rank} A=\operatorname{rank} P B Q \leq \operatorname{rank} B Q=\operatorname{column} \operatorname{rank}(B Q) \leq \operatorname{column} \operatorname{rank}(B)=\operatorname{rank} B$.
But $B=P^{-1} A Q^{-1}$, so repeating the computation gives $\operatorname{rank} B \leq \operatorname{rank} A$. Therefore, $\operatorname{rank} A=\operatorname{rank} B$.

