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The Column Space of a Matrix

Definition. Let A be an m× n matrix. The column vectors of A are the vectors in Fn corresponding to
the columns of A. The column space of A is the subspace of Fn spanned by the column vectors of A.

For example, consider the real matrix

A =





1 0
0 1
0 0



 .

The column vectors are (1, 0, 0) and (0, 1, 0). The column space is the subspace of R3 spanned by these
vectors. Thus, the column space consists of all vectors of the form

a · (1, 0, 0) + b · (0, 1, 0) = (a, b, 0).

We’ve seen how to find a basis for the row space of a matrix. We’ll now give an algorithm for finding a
basis for the column space.

First, here’s a reminder about matrix multiplication. If A is an m×n matrix and v ∈ Fn, then you can
think of the multiplication Av as multiplying the columns of A by the components of v:

This means that if ci is the i-th column of A and v = (a1, . . . , an), the product Av is a linear combination
of the columns of A:





↑ ↑ ↑
c1 c2 · · · cn
↓ ↓ ↓













a1
a2
...
an









= a1c1 + a2c2 + · · ·+ ancn.

Proposition. Let A be a matrix, and let R be the row reduced echelon matrix which is row equivalent to
A. Suppose the leading entries of R occur in columns j1, . . . , jp, where j1 < · · · < jp, and let ci denote the
i-th column of A. Then {cj1 , . . . , cjp} is independent.

Proof. Suppose that
aj1cj1 + · · ·+ ajpcjp = 0, for ai ∈ F.

Form the vector v = (vi), where

vi =

{

0 if i /∈ {j1, . . . , jp}
ai if i ∈ {j1, . . . , jp}

The equation above implies that Av = 0.
It follows that v is in the solution space of the system Ax = 0. Since Rx = 0 has the same solution

space, Rv = 0. Let c′i denote the i-th column of R. Then

0 = Rv = aj1c
′

j1
+ · · ·+ ajpcjp .
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However, since R is in row reduced echelon form, c′jk is a vector with 1 in the k-th row and 0’s elsewhere.
Hence, {cj1 , . . . , cjp} is independent, and aj1 = · · · = ajp = 0.

The proof provides an algorithm for finding a basis for the column space of a matrix. Specifically,
row reduce the matrix A to a row reduced echelon matrix R. If the leading entries of R occur in columns
j1, . . . , jp, then consider the columns cj1 , . . . , cjp of A. These columns form a basis for the column space of
A.

Example. Find a basis for the column space of the real matrix







1 −2 3 1 1
2 1 0 3 1
0 −5 6 −1 1
7 1 3 10 4






.

Row reduce the matrix:







1 −2 3 1 1
2 1 0 3 1
0 −5 6 −1 1
7 1 3 10 4






→







1 0 0.6 1.4 0.6
0 1 −1.2 0.2 −0.2
0 0 0 0 0
0 0 0 0 0







The leading entries occur in columns 1 and 2. Therefore, (1, 2, 0, 7) and (−2, 1,−5, 1) form a basis for
the column space of A.

Note that if A and B are row equivalent, they don’t necessarily have the same column space. For
example,

[

1 2 1
1 2 1

]

→
r2 → r2 − r1

[

1 2 1
0 0 0

]

.

However, all the elements of the column space of the second matrix have their second component equal
to 0; this is obviously not true of elements of the column space of the first matrix.

Example. Find a basis for the column space of the following matrix over Z3:

A =





0 1 1 0
1 2 1 0
2 1 2 1



 .

Row reduce the matrix:





0 1 1 0
1 2 1 0
2 1 2 1





→
r1 ↔ r2





1 2 1 0
0 1 1 0
2 1 2 1





→
r3 → r3 + r1





1 2 1 0
0 1 1 0
0 0 0 1





→
r1 → r1 + r2





1 0 2 0
0 1 1 0
0 0 0 1





The leading entries occur in columns 1, 2, and 4. Hence, columns 1, 2, and 4 of A are independent and
form a basis for the column space of A:











0
1
2



 ,





1
2
1



 ,





0
0
1










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I showed earlier that you can add vectors to an independent set to get a basis. The column space basis
algorithm shows how to remove vectors from a spanning set to get a basis.

Example. Find a subset of the following set of vectors which forms a basis for R3.











1
2
1



 ,





−1
1
−1



 ,





1
1
1



 ,





4
−1
2











Make a matrix with the vectors as columns and row reduce:





1 −1 1 4
2 1 1 −1
1 −1 1 2



 →











1 0
2

3
0

0 1 −
1

3
0

0 0 0 1











The leading entries occur in columns 1, 2, and 4. Therefore, the corresponding columns of the original
matrix are independent, and form a basis for R3:











1
2
1



 ,





−1
1
−1



 ,





4
−1
2











.

Definition. Let A be a matrix. The column rank of A is the dimension of the column space of A.

This is really just a temporary definition, since we’ll show that the column rank is the same as the rank
we define earlier (the dimension of the row space).

Proposition. Let A be a matrix. Then

rank(A) = column rank(A).

Proof. Let R be the row reduced echelon matrix which is row equivalent to A. Suppose the leading entries
of R occur in columns j1, . . . , jp, where j1 < · · · < jp, and let ci denote the i-th column of A. By the
preceding lemma, {cj1 , . . . , cjp} is independent. There is one vector in this set for each leading entry, and
the number of leading entries equals the row rank. Therefore,

rank(A) ≤ column rank(A).

3



Now consider AT . This is A with the rows and columns swapped, so

rank(AT ) = column rank(A),

column rank(AT ) = rank(A).

Applying the first part of the proof to AT ,

column rank(A) = rank(AT ) ≤ column rank(AT ) = rank(A).

Therefore,
column rank(A) = rank(A).

Proposition. Let A, B, P and Q be matrices, where P and Q are invertible. Suppose A = PBQ. Then

rankA = rankB.

Proof. I showed earlier that rankMN ≤ rankN . This was row rank; a similar proof shows that

column rank(MN) ≤ column rank(M).

Since row rank and column rank are the same, rankMN ≤ rankM .
Now

rankA = rankPBQ ≤ rankBQ = column rank(BQ) ≤ column rank(B) = rankB.

But B = P−1AQ−1, so repeating the computation gives rankB ≤ rankA. Therefore, rankA = rankB.
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