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Determinants - Properties

In this section, we’ll derive some properties of determinants. Two key results: The determinant of a
matrix is equal to the determinant of its transpose, and the determinant of a product of two matrices is
equal to the product of their determinants.

We’ll also derive a formula involving the adjugate of a matrix. We’ll use it to give a formula for the
inverse of a matrix, and to derive Cramer’s rule, a method for solving some systems of linear equations.

The first result is a corollary of the permutation formula for determinants which we derived earlier.

Corollary. Let R be a commutative ring with identity, and let A ∈M(n,R). Then |A| = |AT |.

Proof. We’ll use the permutation formula for the determinant, beginning with the determinant of AT .

|AT | =
∑

σ∈Sn

sgn(σ)

n
∏

i=1

AT
iσ(i) =

∑

σ∈Sn

sgn(σ)

n
∏

i=1

Aσ(i)i =

∑

σ∈Sn

sgn(σ)

n
∏

j=1

Ajσ−1(j) =
∑

σ∈Sn

sgn
(

σ−1
)

n
∏

j=1

Ajσ−1(j) =

∑

σ−1∈Sn

sgn
(

σ−1
)

n
∏

j=1

Ajσ−1(j) =
∑

τ∈Sn

sgn (τ)
n
∏

j=1

Ajτ(j) = |A|.

In the fourth equality, I went from summing over σ in Sn to σ−1 in Sn. This is valid because permutations
are bijective functions, so they have inverse functions which are also permutations. So summing over all
permutations in Sn is the same as summing over all their inverses in Sn — you will get the same terms in
the sum, just in a different order.

I got the next-to-the-last equality by letting τ = σ−1. This just makes it easier to recognize the
next-to-last expression as the permutation formula for |A|.

Remark. We’ve used row operations as an aid to computing determinants. Since the rows of A are the
columns of AT and vice versa, the Corollary implies that you can also use column operations to compute
determinants. The allowable operations are swapping two columns, multiplying a column by a number, and
adding a multiple of a column to another column. They have the same effects on the determinant as the
corresponding row operations.

This also means that you can compute determinants using cofactors of rows as well as columns.

In proving the uniqueness of determinant functions, we showed that if D is a function on n×n matrices
which is alternating and linear on the rows, then D(M) = (detM)D(I). We will use this to prove the
product rule for determinants.

Theorem. Let R be a commutative ring with identity, and let A,B ∈M(n,R). Then |AB| = |A||B|.

Proof. Fix B, and define
D(A) = |AB|.

I will show that D is alternating and linear, then apply a result I derived in showing uniqueness of
determinant functions.

Let ri denote the i-th row of A. Then

D(A) =

∣

∣

∣

∣

∣

∣

∣

∣

← r1B →
← r2B →

...
← rnB →

∣

∣

∣

∣

∣

∣

∣

∣

.
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Now | · | is alternating, so interchanging two rows in the determinant above multiplies D(A) by −1.
Hence, D is alternating.

Next, I’ll show that D is linear:

D







...
← kx+ y →

...






=

∣

∣

∣

∣

∣

∣

∣

∣

...
← (kx+ y)B →

...

∣

∣

∣

∣

∣

∣

∣

∣

=

k ·

∣

∣

∣

∣

∣

∣

∣

...
← xB →

...

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

...
← yB →

...

∣

∣

∣

∣

∣

∣

∣

= k ·D







...
← x →

...






+D







...
← y →

...






.

This proves that D is linear in each row.
Since D is a function on M(n,R) which is alternating and linear in the rows, the result I mentioned

earlier shows
D(A) = |A|D(I).

But D(A) = |AB| and D(I) = |IB| = |B|, so we get

|AB| = D(A) = |A|D(I) = |A||B|.

In other words, the determinant of a product is the product of the determinants. A similar result holds
for powers.

Corollary. Let R be a commutative ring with identity, and let A ∈M(n,R). Then for every m ≥ 0,

|Am| = |A|m.

Proof. This follows from the previous result using induction. The result is obvious for m = 0 and m = 1
(note that A0 = I, the identity matrix), and the case m = 2 follows from the previous result if we take
B = A.

Suppose the result is true for m, so |Am| = |A|m. We need to show that the result holds for m+ 1. We
have

|Am+1| = |AmA| = |Am||A| = |A|m|A| = |A|m+1.

We used the case m = 2 to get the second equality, and the induction assumption was used to get the
third equality. This proves the result for m+ 1, so it holds for all m ≥ 0 by induction.

While the determinant of a product is the product of the determinants, the determinant of a sum is not
necessarily the sum of the determinants.

Example. Give a specific example of 2× 2 real matrices A and B for which det(A+B) 6= detA+ detB.

det

[

1 0
0 1

]

= 1 and det

[

−1 0
0 −1

]

= 1.

But

det

([

1 0
0 1

]

+

[

−1 0
0 −1

])

= det

[

0 0
0 0

]

= 0.

The rule for products gives us an easy criterion for the invertibility of a matrix. First, I’ll prove the
result in the special case where the entries of the matrix are elements of a field.

Theorem. Let F be a field, and let A ∈M(n, F ).
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A is invertible if and only if |A| 6= 0.

Proof. If A is invertible, then
|A||A−1| = |AA−1| = |I| = 1.

This equation implies that |A| 6= 0 (since |A| = 0 would yield “0 = 1”).
Conversely, suppose that |A| 6= 0. Suppose that A row reduces to the row reduced echelon matrix R,

and consider the effect of elementary row operations on |A|. Swapping two rows multiplies the determinant
by −1. Adding a multiple of a row to another row leaves the determinant unchanged. And multiplying a
row by a nonzero number multiplies the determinant by that nonzero number. Clearly, no row operation
will make the determinant 0 if it was nonzero to begin with. Since |A| 6= 0, it follows that |R| 6= 0.

Since R is a row reduced echelon matrix with nonzero determinant, it can’t have any all-zero rows. An
n×n row reduced echelon matrix with no all-zero rows must be the identity, so R = I. Since A row reduces
to the identity, A is invertible.

Corollary. Let F be a field, and let A ∈M(n, F ). If A is invertible, then

|A−1| = |A|−1.

Proof. I showed in proving the theorem that |A||A−1| = 1, so |A−1| = |A|−1.

We’ll see below what happens if we have a commutative ring with identity instead of a field.

The next example uses the determinant properties we’ve derived.

Example. Suppose A, B, and C are n× n matrices over R, and

|A| = 18, |B| = 5, |C| = 3.

Compute |ATB2C−1|.

We have |AT | = |A| = 18 and |C−1| =
1

|C|
=

1

3
. Using the product rule for determinants,

|ATB2C−1| = |AT ||B|2|C−1| = 18 · 52 ·
1

3
= 150.

Definition. Let R be a commutative ring with identity. Matrices A,B ∈M(n,R) are similar if there is an
invertible matrix P ∈M(n,R) such that PAP−1 = B.

Similar matrices come up in many places, for instance in changing bases for vector spaces.

Corollary. LetR be a commutative ring with identity. Similar matrices inM(n,R) have equal determinants.

Proof. Suppose A and B are similar, so PAP−1 = B for some invertible matrix P . Then

|B| = |PAP−1| = |P ||A||P−1| = |P ||P−1||A| = |PP−1||A| = |I||A| = |A|.

In the third equality, I used the fact that |P−1| and |A| are numbers — elements of the ring R — and
multiplication in R is commutative. That allows me to commute |P−1| and |A|.

Definition. Let R be a commutative ring with identity, and let A ∈ M(n,R). The adjugate adjA is the
matrix whose i-j-th entry is

(adjA)ij = (−1)i+j |A(j | i)|.

In other words, adjA is the transpose of the matrix of cofactors.

Remark. In the past, adjA was referred to as the adjoint, or the classical adjoint. But the term “adjoint”
is now used to refer to something else: The conjugate transpose, which we’ll see when we discuss the
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spectral theorem. So the term “adjugate” has come to replace it for the matrix defined above. One
advantage of the word “adjugate” is that you can use the same abbreviation “adj” as was used for “adjoint”!

Example. Compute the adjugate of

A =





1 0 3
0 1 1
1 −1 2



 .

First, I’ll compute the cofactors. The first line shows the cofactors of the first row, the second line the
cofactors of the second row, and the third line the cofactors of the third row.

+

∣

∣

∣

∣

1 1
−1 2

∣

∣

∣

∣

= 3, −

∣

∣

∣

∣

0 1
1 2

∣

∣

∣

∣

= 1, +

∣

∣

∣

∣

0 1
1 −1

∣

∣

∣

∣

= −1,

−

∣

∣

∣

∣

0 3
−1 2

∣

∣

∣

∣

= −3, +

∣

∣

∣

∣

1 3
1 2

∣

∣

∣

∣

= −1, −

∣

∣

∣

∣

1 0
1 −1

∣

∣

∣

∣

= 1,

+

∣

∣

∣

∣

0 3
1 1

∣

∣

∣

∣

= −3, −

∣

∣

∣

∣

1 3
0 1

∣

∣

∣

∣

= −1, +

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

= 1.

The adjugate is the transpose of the matrix of cofactors:

adjA =





3 −3 −3
1 −1 −1
−1 1 1



 .

The next result shows that adjugates and tranposes can be interchanged: The adjugate of the transpose
equals the transpose of the adjugate.

Proposition. Let R be a commutative ring with identity, and let A ∈M(n,R). Then

(adjA)T = adjAT .

Proof. Consider the (i, j)th elements of the matrices on the two sides of the equation.

[(adjA)T ]ij = (adjA)ji = (−1)j+i|A(i | j)|,

[adjAT ]ij = (−1)i+j |AT (j | i)|.

The signs (−1)j+i and (−1)i+j are the same; what about the other terms? |A(i | j)| is the determinant
of the matrix formed by deleting the ith row and the jth column from A. And |AT (j | i)| is the determinant
of the matrix formed by deleting the jth row and ith column from AT . But the ith row of A is the ith column
of AT , and the jth column of A is the jth row of AT . So the two matrices that remain after these deletions
are transposes of one another, and hence they have the same determinant. Thus, |A(i | j)| = |AT (j | i)|.
Hence, [(adjA)T ]ij = [adjAT ]ij .

The next theorem is very important, but the proof is a little tricky. So I’ll discuss the main point in the
proof first by giving an example.

Suppose we compute the following determinant over R using expansion by cofactors on the 3rd row:

∣

∣

∣

∣

∣

∣

1 2 4
1 −1 0
2 3 −2

∣

∣

∣

∣

∣

∣

= (2)

∣

∣

∣

∣

2 4
−1 0

∣

∣

∣

∣

− (3)

∣

∣

∣

∣

1 4
1 0

∣

∣

∣

∣

+ (−2)

∣

∣

∣

∣

1 2
1 −1

∣

∣

∣

∣

=

(2)(4)− (3)(−4) + (−2)(−3) = 8 + 12 + 6 = 26.

As usual, I multiplied the cofactors of the 3rd row by the elements of the 3rd row.
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Now suppose I make a mistake: I multiply the cofactors of the 3rd row by elements of the 1st row (which
are 1, 2, 4). Here’s what I get:

(1)

∣

∣

∣

∣

2 4
−1 0

∣

∣

∣

∣

− (2)

∣

∣

∣

∣

1 4
1 0

∣

∣

∣

∣

+ (4)

∣

∣

∣

∣

1 2
1 −1

∣

∣

∣

∣

=

(1)(4)− (2)(−4) + (4)(−3) = 4 + 8− 12 = 0.

Or suppose I multiply the cofactors of the 3rd row by elements of the 2nd row (which are 1, −1, 0).
Here’s what I get:

(1)

∣

∣

∣

∣

2 4
−1 0

∣

∣

∣

∣

− (−1)

∣

∣

∣

∣

1 4
1 0

∣

∣

∣

∣

+ (0)

∣

∣

∣

∣

1 2
1 −1

∣

∣

∣

∣

=

(1)(4)− (−1)(−4) + (0)(−3) = 4− 4 + 0 = 0.

These examples suggest that if I try to do a cofactor expansion by using the cofactors of one row

multiplied by the elements from another row, I get 0. It turns out that this is true in general, and is the key
step in the next proof.

Theorem. Let R be a commutative ring with identity, and let A ∈M(n,R). Then

|A| · I = A · adjA.

Proof. This proof is a little tricky, so you may want to skip it for now.

We expand |A| by cofactors of row i:

|A| =
∑

j

(−1)i+jAij |A(i | j)|.

First, suppose k 6= i. Construct a new matrix B by replacing row k of A with row i of A. Thus, the
elements of B are the same as those of A, except that B’s row k duplicates A’s row i.

A B

row k

In symbols,

Blj =

{

Alj if l 6= k

Aij if l = k

Suppose we compute detB by expanding by cofactors of row k. We get

n
∑

j=1

(−1)k+jBkj |B(k | j)| =

n
∑

j=1

(−1)k+jAij |A(k | j)|.

Why is |B(k | j)| = |A(k | j)|? To compute |B(k | j)|, you delete row k and column j from B. To
compute |A(k | j)|, you delete row k and column j from A. But A and B only differ in row k, which is being
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deleted in both cases. Hence, |B(k | j)| = |A(k | j)|.

A B

delete row k

  delete

column j

  delete

column j

The deleted row k is the only row

  in which A and  B are different

On the other hand, B has two equal rows — its row i and row k are both equal to row i of A — so the
determinant of B is 0. Hence,

n
∑

j=1

(−1)k+jAij |A(k | j)| = 0.

This is the point we illustrated prior to stating the theorem: if you do a cofactor expansion by using
the cofactors of one row multiplied by the elements from another row, you get 0. The last equation is what
we get for k 6= i. In case k = i, we just get the cofactor expansion for |A|:

n
∑

j=1

(−1)i+ jAij |A(i | j)| = |A|.

We can combine the two equations into one using the Kronecker delta function:

∑

j

(−1)k+jAij |A(k | j)| = δik|A| for all i, k.

Remember that δik = 1 if i = k, and δik = 0 if i 6= k. These are the two cases above.
Interpret this equation as a matrix equation, where the two sides represent the (i, k)-th entries of their

respective matrices. What are the respective matrices? Since δik is the (i, k)-th entry of the identity matrix,
the right side is the (i, k)-th entry of |A| · I.

The left side is the (i, k)-th entry of A · adjA, because

(A · adjA)ik =
∑

j

Aij(adjA)jk =
∑

j

Aij(−1)
j+k|A(k | j)|.

Therefore,
|A| · I = A · adjA. .

I can use the theorem to obtain an important corollary. I already know that a matrix over a field is
invertible if and only if its determinant is nonzero. The next result explains what happens over a commutative
ring with identity, and also provides a formula for the inverse of a matrix.

Corollary. Let R be a commutative ring with identity. A matrix A ∈ M(n,R) is invertible if and only if
|A| is invertible in R, in which case

A−1 = |A|−1 adjA.
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Proof. First, suppose A is invertible. Then AA−1 = I, so

|A||A−1| = |AA−1| = |I| = 1.

Therefore, |A| is invertible in R.
Since |A| is invertible, I can take the equation |A| · I = A · adjA and multiply by |A|−1 to get

I = A · |A|−1 adjA.

This implies that A−1 = |A|−1 adjA.

Conversely, suppose |A| is invertible in R. As before, I get

I = A · |A|−1 adjA.

Again, this implies that A−1 = |A|−1 adjA, so A is invertible.

As a special case, we get the formula for the inverse of a 2× 2 matrix.

Corollary. Let R be a commutative ring with identity. Suppose a, b, c, d ∈ R, and ad − bc is invertible in
R. Then

[

a b

c d

]−1

= (ad− bc)−1

[

d −b
−c a

]

.

Proof.

det

[

a b

c d

]

= ad− bc and adj

[

a b

c d

]

=

[

d −b
−c a

]

.

Hence, the result follows from the adjugate formula.

To see the difference between the general case of a commutative ring with identity and a field, consider
the following matrices over Z6:

[

5 3
1 1

]

and

[

2 1
1 3

]

In the first case,

det

[

5 3
1 1

]

= 2.

2 is not invertible in Z6 — do you know how to prove it? Hence, even though the determinant is nonzero,
the matrix is not invertible.

det

[

2 1
1 3

]

= 5.

5 is invertible in Z6 — in fact, 5 ·5 = 1. Hence, the second matrix is invertible. You can find the inverse
using the formula in the last corollary.

The adjugate formula can be used to find the inverse of a matrix. It’s not very good for big matrices
from a computational point of view: The usual row reduction algorithm uses fewer steps. However, it’s not
too bad for small matrices — say 3× 3 or smaller.

Example. Compute the inverse of the following real matrix using the adjugate formula.

A =





1 −2 −2
3 −2 0
1 1 1



 .
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First, I’ll compute the cofactors. The first line shows the cofactors of the first row, the second line the
cofactors of the second row, and the third line the cofactors of the third row. I’m showing the “checkerboard”
pattern of pluses and minuses as well.

+

∣

∣

∣

∣

−2 0
1 1

∣

∣

∣

∣

= −2, −

∣

∣

∣

∣

3 0
1 1

∣

∣

∣

∣

= −3, +

∣

∣

∣

∣

3 −2
1 1

∣

∣

∣

∣

= 5,

−

∣

∣

∣

∣

−2 −2
1 1

∣

∣

∣

∣

= 0, +

∣

∣

∣

∣

1 −2
1 1

∣

∣

∣

∣

= 3, −

∣

∣

∣

∣

3 −2
1 1

∣

∣

∣

∣

= −3,

+

∣

∣

∣

∣

−2 −2
2 0

∣

∣

∣

∣

= −4, −

∣

∣

∣

∣

1 −2
3 0

∣

∣

∣

∣

= −6, +

∣

∣

∣

∣

1 −2
3 −2

∣

∣

∣

∣

= 4.

The adjugate is the transpose of the matrix of cofactors:

adjA =





−2 0 −4
−3 3 −6
5 −3 4



 .

I’ll let you show that detA = −6. So I have

A−1 = −
1

6





−2 0 −4
−3 3 −6
5 −3 4



 .

Another consequence of the formula |A| · I = A · adjA is Cramer’s rule, which gives a formula for the
solution of a system of linear equations.

Corollary. (Cramer’s rule) If A is an invertible n× n matrix, the unique solution to Ax = y is given by

xi =
|Bi|

|A|
,

Here Bi is the matrix obtained from A by replacing its i-th column by y.

Proof.
Ax = y

(adjA)Ax = (adjA)y

Hence,

|A|xi =
∑

j

(adjA)ijyj =
∑

j

(−1)i+jyj |A(j | i)|.

But the last sum is a cofactor expansion of A along column i, where instead of the elements of A’s
column i I’m using the components of y. This is exactly |Bi|.

Example. Use Cramer’s Rule to solve the following system over R:

2x + y + z = 1
x + y − z = 5
3x − y + 2z = −2

In matrix form, this is




2 1 1
1 1 −1
3 −1 2









x

y

z



 =





1
5
−2



 .
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I replace the successive columns of the coefficient matrix with (1, 5,−2), in each case computing the
determinant of the resulting matrix and dividing by the determinant of the coefficient matrix:

x =

∣

∣

∣

∣

∣

∣

1 1 1
5 1 −1
−2 −1 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 1 1
1 1 −1
3 −1 2

∣

∣

∣

∣

∣

∣

=
−10

−7
=

10

7
, y =

∣

∣

∣

∣

∣

∣

2 1 1
1 5 −1
3 −2 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 1 1
1 1 −1
3 −1 2

∣

∣

∣

∣

∣

∣

=
−6

−7
=

6

7
, z =

∣

∣

∣

∣

∣

∣

2 1 1

1 1 5

3 −1 −2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 1 1
1 1 −1
3 −1 2

∣

∣

∣

∣

∣

∣

=
19

−7
= −

19

7
.

This looks pretty simple, doesn’t it? But notice that you need to compute four 3×3 determinants to do
this (and I didn’t write out the work for those computations!). It becomes more expensive to solve systems
this way as the matrices get larger.

As with the adjugate formula for the inverse of a matrix, Cramer’s rule is not computationally efficient:
It’s better to use row reduction to solve large systems. Cramer’s rule is not too bad for solving systems of
two linear equations in two variables; for anything larger, you’re probably better off using row reduction.
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