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The Row Space of a Matrix

We will look at 3 subspaces associated to a matrix: The row space, the column space, and the null

space. They provide important information about the matrix and the linear transformation associated to
it. In this section, we’ll discuss the row space of a matrix. We’ll also discuss algorithms for finding a basis
for a subspace spanned by a set of vectors, determining whether a set of vectors is independent, and adding
vectors to an independent set to get a basis.

A lot of what follows generalizes to matrices with entries in a commutative ring with identity, but we
will almost always stick to matrices over a field in this section.

Definition. Let A be an m× n matrix with entries in a field F . The row vectors of A are the vectors in
Fn corresponding to the rows of A. The row space of A is the subspace of Fn spanned by the row vectors
of A.

For example, consider the real matrix

A =





1 0
0 1
0 0



 .

The row vectors are (1, 0), (0, 1), and (0, 0). The row space is the subspace of R2 spanned by these
vectors. Since the first two vectors are the standard basis vectors for R2, the row space is R2.

Lemma. Let A be a matrix with entries in a field. If E is an elementary row operation, then E(A) has the
same row space as A.

Proof. If E is an operation of the form ri ↔ rj , then E(A) and A have the same rows (except for order),
so it’s clear that their row vectors have the same span. Hence, the matrices have the same row space.

If E is an operation of the form ri → ari where a 6= 0, then A and E(A) agree except in the i-th row.
We have

a1r1 + · · ·+ airi + · · ·+ amrm = a1r1 + · · ·+
(

aia
−1

)

(ari) + · · ·+ amrm,

Note that the vectors r1, . . . , ari, . . . , rm are the rows of E(A). So this equation says any linear
combination of the rows r1, . . . , rm of A is a linear combination of the rows of E(A). This means that the
row space of A is contained in the row space of E(A).

Going the other way, a linear combination of the rows r1, . . . , ari, . . . , rm of E(A) looks like this:

b1r1 + · · ·+ bi(ari) + · · ·+ bmrm.

But this is a linear combination of the rows r1, . . . , rm of A, so the row space of E(A) is contained in
the row space of A. Hence, A and E(A) have the same row space.

Finally, suppose E is a row operation of the form ri → ri + arj , where a ∈ F . Then

a1r1 + · · ·+ airi + · · ·+ amrm = a1r1 + · · ·+ ai(ri + arj) + · · ·+ (aj − aia)rj + · · ·+ amrm.

This shows that the row space of A is contained in the row space of E(A).
Conversely,

a1r1 + · · ·+ ai(ri + arj) + · · ·+ ajrj + · · ·+ amrm = a1r1 + · · ·+ airi + · · ·+ (aia+ aj)rj + · · ·+ amrm.

Hence, the row space of E(A) is contained in the row space of A.

Definition. Two matrices over a field are row equivalent if one can be obtained from the other via
elementary row operations.
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Since row operations preserve row space, row equivalent matrices have the same row space. In particular,
a matrix and its row reduced echelon form have the same row space.

The next proposition describes some of the components of a vector in the row space of a row-reduced
echelon matrix R. Such a vector is a linear combination of the nonzero rows of R.

Proposition. Let R = {rij} be a row reduced echelon matrix over a field with nonzero rows r1, . . . , rp.
Suppose the leading entries of R occur at

(1, j1), (2, j2), . . . , where j1 < j2 < · · · .

Suppose v = (v1, . . . , vn) and
v = a1r1 + · · ·+ aprp.

Then vjk = ak for all k.

Proof.

vjk =

p
∑

i=1

airijk .

But the only nonzero element in column jk is the leading entry rkjk = 1. Therefore, the only nonzero
term in the sum is akrkjk = ak.

This result looks a bit technical, but it becomes obvious if you consider an example. Here’s a row
reduced echelon matrix over R:







0 1 2 0 −1 0
0 0 0 1 2 0
0 0 0 0 0 1
0 0 0 0 0 0






.

Here’s a vector in the row space, a linear combination of the nonzero rows:

+

The leading entries occur in columns j1 = 2, j2 = 4, and j3 = 6. The 2nd, 4th, and 6th components of
the vector are

v2 = a, v4 = b, v6 = c.

You can see from the picture why this happens. The coefficients a, b, c multiply the leading entries. The
leading entries are all 1’s, and they’re the only nonzero elements in their columns. So in the components of
the vector corresponding to those columns, you get a, b, and c.

Corollary. The nonzero rows of a row reduced echelon matrix over a field are independent.

Proof. Suppose R is a row reduced echelon matrix with nonzero rows r1, . . . , rp. Suppose the leading
entries of R occur at (1, j1), (2, j2), . . ., where j1 < j2 < · · ·. Suppose

0 = a1r1 + · · ·+ aprp.

The proposition implies that ak = vjk = 0 for all k. Therefore, {ri} are independent.

Corollary. The nonzero rows of a row reduced echelon matrix over a field form a basis for the row space of
the matrix.
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Proof. The nonzero rows span the row space, and are independent, by the preceding corollary.

Algorithm. Let V be a finite-dimensional vector space, and let v1, . . . , vm be vectors in V . Find a basis
for W = 〈v1, . . . , vm〉, the subspace spanned by the vi.

Let M be the matrix whose i-th row is vi. The row space of M is W . Let R be a row-reduced echelon
matrix which is row equivalent to M . Then R and M have the same row space W , and the nonzero rows of
R form a basis for W .

Example. Consider the vectors v1 = (1, 0, 1, 1), v2 = (−2, 1, 1, 0), and v3 = (7,−2, 1, 3) in R
4. Find a basis

for the subspace 〈v1, v2, v3〉 spanned by the vectors.

Construct a matrix with the vi as its rows and row reduce:




1 0 1 1
−2 1 1 0
7 −2 1 3



 →





1 0 1 1
0 1 3 2
0 0 0 0





The vectors (1, 0, 1, 1) and (0, 1, 3, 2) form a basis for 〈v1, v2, v3〉.

Example. Determine the dimension of the subspace of R3 spanned by (1, 2,−1), (1, 1, 1), and (2,−2, 1).

Form a matrix using the vectors as the rows and row reduce:




1 2 −1
1 1 1
2 −2 1



 →





1 0 0
0 1 0
0 0 1





The subspace has dimension 3, since the row reduced echelon matrix has 3 nonzero rows.

Definition. The rank of a matrix over a field is the dimension of its row space.

Example. Find the rank of the following matrix over Z5:




1 4 2 1
3 3 1 2
0 1 0 4



 .

Row reduce the matrix:




1 4 2 1
3 3 1 2
0 1 0 4



 →





1 0 2 0
0 1 0 4
0 0 0 0





The row reduced echelon matrix has 2 nonzero rows. Therefore, the original matrix has rank 2.

I’ll need the following fact about matrix multiplication for the proof of the next lemma. Consider the
following multiplication:

[a1 a2 · · · an ]









← r1 →
← r2 →

...
← rn →









.

In doing the multiplication, each ai multiplies the corresponding row ri. The result is a linear combi-
nation of the ri’s with the ai’s as coefficients. Here’s the picture:
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Therefore,

[ a1 a2 · · · an ]









← r1 →
← r2 →

...
← rn →









= [ a1r1 + a2r2 + · · ·+ anrn ] .

If instead of a single row vector on the left I have an entire matrix, here’s what I get:









a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

















← r1 →
← r2 →

...
← rn →









=









← a11r1 + a12r2 + · · ·+ a1nrn →
← a21r1 + a22r2 + · · ·+ a2nrn →

...
← am1r1 + am2r2 + · · ·+ amnrn →









.

Hence, the rows of the product are linear combinations of the rows r1, r2, . . . rn.

Proposition. Let M and N be matrices over a field F which are compatible for multiplication. Then

rank(MN) ≤ rankN.

Proof. The preceding discussion shows that the rows of MN are linear combinations of the rows of N .
Therefore, the rows of MN are all contained in the row space of N .

The row space of N is a subspace, so it’s closed under taking linear combinations of vectors. Hence,
any linear combination of the rows of MN is in the row space of N . Therefore, the row space of MN is
contained in the row space of N .

From this, it follows that the dimension of the row space of MN is less than or equal to the dimension
of the row space of N — that is, rank(MN) ≤ rankN .

I already have one algorithm for testing whether a set of vectors in Fn is independent. That algorithm
involves constructing a matrix with the vectors as the columns, then row reducing. The algorithm will also
produce a linear combination of the vectors which adds up to the zero vector if the set is dependent.

If all you care about is whether or not a set of vectors in Fn is independent — i.e. you don’t care about
a possible dependence relation — the results on rank can be used to give an alternative algorithm. In this
approach, you construct a matrix with the given vectors as the rows.

Algorithm. Let V be a finite-dimensional vector space, and let v1, . . . , vm be vectors in V . Determine
whether the set {v1, . . . , vm} is independent.

Let M be the matrix whose i-th row is vi. Let R be a row reduced echelon matrix which is row equivalent
to M . If R has m nonzero rows, then {v1, . . . , vm} is independent. Otherwise, the set is dependent.

If R has p nonzero rows, then R and M have rank p. (They have the same rank, because they have the
same row space.) Suppose p = m. Since {vi} spans, some subset of {vi} is a basis. However, a basis must
contain p = m elements. Therefore, {vi} must be independent.

Any independent subset of the row space must contain ≤ p elements. Hence, if m > p, {vi} must be
dependent.

Example. Determine whether the vectors v1 = (1, 0, 1, 1), v2 = (−2, 1, 1, 0), and v3 = (7,−2, 1, 3) in R
4 are

independent.

Form a matrix with the vectors as the rows and row reduce:





1 0 1 1
−2 1 1 0
7 −2 1 3



 →





1 0 1 1
0 1 3 2
0 0 0 0





The row reduced echelon matrix has only two nonzero rows. Hence, the vectors are dependent.
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I already know that every matrix can be row reduced to a row reduced echelon matrix. The next result
completes the discussion by showing that the row reduced echelon form is unique

Proposition. Every matrix over a field can be row reduced to a unique row reduced echelon matrix.

Proof. Suppose M row reduces to R, a row reduced echelon matrix with nonzero rows r1, . . . , rp. Suppose
the leading coefficients of R occur at (1, j1), (2, j2), . . ., where j1 < j2 < · · ·.

Let W be the row space of R and let v = (v1, . . . , vn) W . Since r1, . . . rp span the row space W , we
have

v = a1r1 + · · ·+ aprp.

Claim: The first nonzero component of v must occur in column jk, for some k = 1, 2, . . ..

Suppose ak is the first ai which is nonzero. Since the airi terms before akrk are zero, we have

v = akrk + · · ·+ aprp.

The first nonzero element of rk is a 1 at (k, jk). The first nonzero element in rk+1, . . . , rp lies to the
right of column jk. Thus, vj = 0 for j < jk, and vjk = ak. Evidently, this is the first nonzero component of
v. This proves the claim.

This establishes that if a row reduced echelon matrix R′ is row equivalent to M , its leading coefficients
must lie in the same columns as those of R. For the rows of R′ are elements of W , and the claim applies.

Next, I’ll show that the nonzero rows of R′ are the same as the nonzero row of R.
Consider, for instance, the first nonzero rows of R and R′. Their first nonzero components are 1’s lying

in column j1. Moreover, both r1 and r′1 have zeros in columns j2, j3, . . . .
Suppose r1 6= r′1. Then r1− r′1 is a nonzero vector in W whose first nonzero component is not in column

j1, j2, . . . , which is a contradiction.
The same argument applies to show that rk = r′k for all k. Therefore, R = R′.

In my discussion of bases, I showed that every independent set is a subset of a basis. To put it another
way, you can add vectors to an independent set to get a basis.

Here’s how to find specific vectors to add to an independent set to get a basis.

Example. The following set of vectors in R
5 is independent:

{(2,−4, 1, 0, 8), (−1, 2,−1,−1,−4), (2,−4, 1, 1, 7)}

Add vectors to the set to make a basis for R5.

If I make a matrix with these vectors as rows and row reduce, the row reduced echelon form will have
the same row space (i.e. the same span) as the original set of vectors:





2 −4 1 0 8
−1 2 −1 −1 −4
2 −4 1 1 7



 →





1 −2 0 0 3
0 0 1 0 2
0 0 0 1 −1




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Since there are three nonzero rows and the original set had three vectors, the original set of vectors is
indeed independent.

By examining the row reduced echelon form, I see that the vectors (0, 1, 0, 0, 0) and (0, 0, 0, 0, 1) will not
be linear combinations of the others. Reason: A nonzero linear combination of the rows of the row reduced
echelon form must have a nonzero entry in at least one of the first, third, or fourth columns, since those are
the columns containing the leading entries.

In other words, I’m choosing standard basis vectors with a 1’s in positions not occupied by leading
entries in the row reduced echelon form. Therefore, I can add (0, 1, 0, 0, 0) and (0, 0, 0, 0, 1) to the set and
get a new independent set:

{(2,−4, 1, 0, 8), (−1, 2,−1,−1,−4), (2,−4, 1, 1, 7), (0, 1, 0, 0, 0), (0, 0, 0, 0, 1)} .

There are 5 vectors in this set, so it is a basis for R5.
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