
Subspaces

Definition. Let V be a vector space over a field F , and let W ⊂ V , W 6= ∅. W is a subspace of V if:

(a) If u, v ∈ W , then u+ v ∈ W .

(b) If k ∈ F and u ∈ W , then ku ∈ W .

In other words, W is closed under addition of vectors and under scalar multiplication.

If we draw the vectors as arrows, we can picture the axioms in this way:

u

v
u + v

u

k u

If u and v are in W,

 then so is u + v.

  If k is a number and

u is in W, then so is k u.

Remember that not all vectors can be drawn as arrows, so in general these pictures are just aids to your
intuition.

A subspace W of a vector space V is itself a vector space, using the vector addition and scalar multi-
plication operations from V . If you go through the axioms for a vector space, you’ll see that they all hold
in W because they hold in V , and W is contained in V . Thus, the subspace axioms simply ensure that the
vector addition and scalar multiplication operations from V “don’t take you outside of W” when applied to
vectors in W .

Remark. If W is a subspace, then axiom (a) says that sum of two vectors in W is in W . You can show
using induction that if x1, . . . , xn ∈ W , then x1 + · · ·+ xn ∈ W for any n ≥ 1.

What do subspaces “look like”?

The subspaces of the plane R
2 are {0}, R2, and lines passing through the origin. In the picture below,

the lines A and B are subspaces of R2.

x

y

AA

B
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In R
3, the subspaces are the {0}, R3, and lines or planes passing through the origin.

x

y

z

A plane through the origin

Similar statements hold for Rn.
We’ll see below that a subspace must contain the zero vector, which explains why the examples I just

gave are sets which pass through the origin.
As we’ve seen earlier, you get very different pictures of vectors when F is a field other than R. In these

cases, pictures for subspaces are also different. For example, consider the following subspace of Z2

5
:

S = {(0, 0), (2, 3), (4, 1), (1, 4), (3, 2)}.

Here’s a picture, with the gray dots denoting the 5 points of S:

0 1 2 3 4

0

1

2

3

4

While 4 of the points lie on a “line”, the “line” is not a line through the origin. The origin is in S, but
it doesn’t lie on the same “line” as the other points.

Or consider the vector space C(R) over R, consisting of continuous functions R → R. There is a subspace
consisting of all multiples of ex — so things like 2ex, −πex, 1.79132ex, 0 · ex, and so on. Here’s a picture
which shows the graph of some of the elements of this subspace:

Of course, there are actually an infinite number of “graphs” (functions) in this subspace — I’ve only
drawn a few. You can see our subspace is pretty far from “a line through the origin”, even though it consists
of all multiples of a single vector.
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In what follows, we’ll look at properties of subspaces, and discuss how to check whether a set is or is
not a subspace.

First, every vector space contains at least two “obvious” subspaces, as described in the next result.

Proposition. if V is a vector space over a field F , then {0} and V are subspaces of V .

Proof. I’ll do the proof for {0} by way of example. First, I have to take two vectors in {0} and show
that their sum is in {0}. But {0} contains only the zero vector 0, so my “two” vectors are 0 and 0 — and
0 + 0 = 0, which is in {0}.

Next, I have to take k ∈ F and a vector in {0} — which, as I just saw, must be 0 — and show that
their product is in {0}. But k · 0 = 0 ∈ {0}. This verifies the second axiom, and so {0} is a subspace.

Obviously, the very uninteresting vector space consisting of just a zero vector (i.e. V = {0}) has only
the one subspace V = {0}.

If a vector space V is nonzero and one-dimensional — roughly speaking, if V “looks like” a line — then
{0} and V are the only subspaces, and they are distinct. In this case, V consists of all multiples kv of any
nonzero vector v ∈ V by all scalars k ∈ F .

Beyond those cases, a vector space V always has subspaces other than {0} and V . For example, if
V 6= 0, take a nonzero vector x ∈ V and consider the set of all multiples kx of x by scalars k ∈ F . You can
check that this is a subspace — the “line” passing through x.

If you want to show that a subset of a vector space is a subspace, you can combine the verifications for
the two subspace axioms into a single verification.

Proposition. Let V be a vector space over a field F , and let W be a subset of V .
W is a subspace of V if and only if u, v ∈ W and k ∈ F implies ku+ v ∈ W .

Proof. Suppose W is a subspace of V , and let u, v ∈ W and k ∈ F . Since W is closed under scalar
multiplication, ku ∈ W . Since W is closed under vector addition, ku+ v ∈ W .

Conversely, suppose u, v ∈ W and k ∈ F implies ku+ v ∈ W . Take k = 1: Our assumption says that if
u, v ∈ W , then u + v ∈ W . This proves that W is closed under vector addition. Again in our assumption,
take v = 0. The assumption then says that if u ∈ W and k ∈ F , then ku ∈ W . This proves that W is closed
under scalar multiplication. Hence, W is a subspace.

Note that the two axioms for a subspace are independent: Both can be true, both can be false, or one
can be true and the other false. Hence, some of our examples will ask that you check each axiom separately,
proving that it holds if it’s true and disproving it by a counterexample if it’s false.

Lemma. Let W be a subspace of a vector space V .

(a) The zero vector is in W .

(b) If w ∈ W , then −w ∈ W .

Note: These are not part of the axioms for a subspace: They are properties a subspace must have. So
if you are checking the axioms for a subspace, you don’t need to check these properties. But on the other
hand, if a subset does not have one of these properties (e.g. the subset doesn’t contain the zero vector), then
it can’t be a subspace.

Proof. (a) Take any vector w ∈ W (which you can do because W is nonempty), and take 0 ∈ F . Since W

is closed under scalar multiplication, 0 · w ∈ W . But 0 · w = 0, so 0 ∈ W .

(b) Since w ∈ W and −1 ∈ F , (−1) · w = −w is in W .

Example. Consider the real vector space R
2, the usual x-y plane.

(a) Show that the following sets are subspaces of R2:

W1 = {(x, 0) | x ∈ R} and W2 = {(0, y) | y ∈ R}
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(These are just the x and y-axes.)

(b) Show that the union W1 ∪W2 is not a subspace.

(a) I’ll check that W1 is a subspace. (The proof for W2 is similar.) First, I have to show that two elements
of W1 add to an element of W1. An element of W1 is a pair with the second component 0. So (x1, 0), (x2, 0)
are two arbitrary elements of W1. Add them:

(x1, 0) + (x2, 0) = (x1 + x2, 0).

(x1 + x2, 0) is in W1, because its second component is 0. Thus, W1 is closed under sums.
Next, I have to show that W1 is closed under scalar multiplication. Take a scalar k ∈ R and a vector

(x, 0) ∈ W1. Take their product:
k · (x, 0) = (kx, 0).

The product (kx, 0) is in W1 because its second component is 0. Therefore, W1 is closed under scalar
multiplication.

Thus, W1 is a subspace.
Notice that in doing the proof, I did not use specific vectors in W1 like (42, 0) or (−17, 0). I’m trying to

prove statements about arbitrary elements of W1, so I use “variable” elements.

(b) I’ll show that W1∪W2 is not closed under vector addition. Remember that the union of two sets consists
of everything in the first set or in the second set (or in both). Thus, (3, 0) ∈ W1 ∪W2, because (3, 0) ∈ W1.
And (0, 17) ∈ W1 ∪W2, because (0, 17) ∈ W2. But

(3, 0) + (0, 17) = (3, 17) 6∈ W1 ∪W2.

(3, 17) 6∈ W1 because its second component isn’t 0. And (3, 17) 6∈ W2 because its first component isn’t
0. Since (3, 17) isn’t in either W1 or W2, it’s not in their union.

Pictorially, it’s easy to see: (3, 17) doesn’t lie in either the x-axis (W1) or the y-axis (W2):

x

y

(3,0)

(0,17)

(3,17)

Thus, W1 ∪W2 is not a subspace.
You can check, however, that W1∪W2 is closed under scalar multiplication: Multiplying a vector on the

x-axis by a number gives another vector on the x-axis, and multiplying a vector on the y-axis by a number
gives another vector on the y-axis.

The last example shows that the union of subspaces is not in general a subspace. However, the intersec-
tion of subspaces is a subspace, as we’ll see later.

Example. Prove or disprove: The following subset of R3 is a subspace of R3:

W = {(x, y, 1) | x, y ∈ R}.

If you’re trying to decide whether a set is a subspace, it’s always good to check whether it contains
the zero vector before you start checking the axioms. In this case, the set consists of 3-dimensional vectors
whose third components are equal to 1. Obviously, the zero vector (0, 0, 0) doesn’t satisfy this condition.
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Since W doesn’t contain the zero vector, it’s not a subspace of R3.

Example. Consider the following subset of the vector space R
2:

W = {(x, sinx) | x ∈ R} .

Check each axiom for a subspace (i.e. closure under addition and closure under scalar multiplication).
If the axiom holds, prove it; if the axiom doesn’t hold, give a specific counterexample.

Notice that this problem is open-ended, in that you aren’t told at the start whether a given axiom holds
or not. So you have to decide whether you’re going to try to prove that the axiom holds, or whether you’re
going to try to find a counterexample. In these kinds of situations, look at the statement of the problem —
in this case, the definition of W . See if your mathematical experience causes you to lean one way or another
— if so, try that approach first.

If you can’t make up your mind, pick either “prove” or “disprove” and get started! Usually, if you pick
the wrong approach you’ll know it pretty quickly — in fact, getting stuck taking the wrong approach may
give you an idea of how to make the right approach work.

Suppose I start by trying to prove that the set is closed under sums. I take two vectors in W — say
(x, sinx) and (y, sin y). I add them:

(x, sinx) + (y, sin y) = (x+ y, sinx+ sin y).

The last vector isn’t in the right form — it would be if sinx + sin y was equal to sin(x + y). Based
on your knowledge of trigonometry, you should know that doesn’t sound right. You might reason that if a
simple identity like “sinx+ sin y = sin(x+ y)” was true, you probably would have learned about it!

I now suspect that the sum axiom doesn’t hold. I need a specific counterexample — that is, two vectors
in W whose sum is not in W .

To choose things for a counterexample, you should try to choose things which are not too “special”
or your “counterexample” might accidentally satisfy the axiom, which is not what you want. At the same
time, you should avoid things which are too “ugly”, because it makes the counterexample less convincing
if a computer is needed (for instance) to compute the numbers. You may need a few tries to find a good
counterexample. Remember that the things in your counterexample should involve specific numbers, not
“variables”.

Returning to our problem, I need two vectors in W whose sum isn’t in W . I’ll use
(π

2
, sin

π

2

)

and

(π, sinπ). Note that
(π

2
, sin

π

2

)

=
(π

2
, 1
)

∈ W and (π, sinπ) = (π, 0) ∈ W.

On the other hand,

(π

2
, sin

π

2

)

+ (π, sin π) =
(π

2
, 1
)

+ (π, 0) =

(

3π

2
, 1

)

.

But

(

3π

2
, 1

)

6∈ W because sin
3π

2
= −1 6= 1.

How did I choose the two vectors? I decided to use a multiple of π in the first component, because the
sine of a multiple of π (in the second component) comes out to “nice numbers”. If I had used (say) (1, sin 1),
I’d have needed a computer to tell me that sin 1 ≈ 0.841470984808 . . ., and a counterexample would have
looked kind of ugly. In addition, an approximation of this kind really isn’t a proof.

How did I know to use
π

2
and π? Actually, I didn’t know till I did the work that these numbers would

produce a counterexample — you often can’t know without trying whether the numbers you’ve chosen will
work.

Thus, W is not closed under vector addition, and so it is not a subspace. If that was the question, I’d
be done, but I was asked to each axiom. It is possible for one of the axioms to hold even if the other one
does not. So I’ll consider scalar multiplication.
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I’ll give a counterexample to show that the scalar multiplication axiom doesn’t hold. I need a vector in

W ; I’ll use
(π

2
, sin

π

2

)

again. I also need a real number; I’ll use 2. Now

2 ·
(π

2
, sin

π

2

)

=
(

π, 2 sin
π

2

)

= (π, 2).

But (π, 2) 6∈ W , because sinπ = 0 6= 2.
Thus, neither the addition axiom nor the scalar multiplication axiom holds. Obviously, W is not a

subspace.

Example. Let F be a field, and let A,B ∈ M(n, F ). Consider the following subset of Fn:

W = {v ∈ Fn | Av = Bv}.

Show that W is a subspace of Fn.

This set is defined by a property rather than by appearance, and axiom checks for this kind of set often
give people trouble. The problem is that elements of W don’t “look like” anything — if you need to refer
to a couple of arbitrary elements of W , you might call them u and v (for instance). There’s nothing about
the symbols u and v which tells you that they belong to W . But u and v are like people who belong to a
club: You can’t tell from their appearance that they’re club members, but you could tell from the property

that they both have membership cards.

When you write a proof, you start from assumptions and reason to the conclusion. You should not

start with the conclusion and “work backwards”. Sometimes reasoning that works in one direction might
not work in the opposite direction. For example, suppose x is a real number. If x = 1, then x2 = 1. But if
x2 = 1, it doesn’t follow that x = 1 — maybe x = −1.

Reasoning in mathematics is deductive, not confirmational.
In this problem, to check closure under addition, you assume that u and v and in W , and show that

u+ v is in W . You do not start by assuming that u+ v is in W .
Nevertheless, in deciding how to do a proof, it’s okay to work backwards “on scratch paper” to figure

out what to do. Here’s a way of sketching out a proof that allows you to work backward while ensuring that
the steps work forward as well.

Start by putting down the assumptions u ∈ W and v ∈ W at the top and the conclusion u+ v ∈ W at
the bottom. Leave space in between to work.

u ∈W v ∈W

Au = Bu Av = Bv

A� + Av = Bu + Bv

A(u + v) = B (u + v)

u + v ∈W

Next, use the definition of W to translate each of the statements: u ∈ W means Au = Bu, so put
“Au = Bu” below “u ∈ W”. Likewise, v ∈ W means Av = Bv, so put “Av = Bv” below “v ∈ W”. On the
other hand, u + v ∈ W means A(u + v) = B(u + v), but since “u + v ∈ W” is what we want to conclude,
put “A(u+ v) = B(u + v)” above “u+ v ∈ W”.

u ∈W v ∈W

Au = Bu Av = Bv

Au + Av = Bu + Bv

A(u + v) = B (u + v)

u + v ∈W
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At this point, you can either work downwards from Au = Bu and Av = Bv, or upwards from A(u+v) =
B(u + v). But if you work upwards from A(u + v) = B(u + v), you must ensure that the algebra you do is
reversible — that it works downwards as well.

I’ll work downwards from Au = Bu and Av = Bv. What algebra could I do which would get me closer
to A(u + v) = B(u + v)? Since the target involves addition, it’s natural to add the equations:

u ∈W v ∈W

Au = Bu Av = Bv

Au + Av = Bu + Bv

A(u + v) = B (u + v)

u + v ∈W

Add equations

At this point, I’m almost done. To finish, I have to explain how to go from Au + Av = Bu + Bv to
A(u + v) = B(u + v). You can see that I just need to factor A out of the left side and factor B out of the
right side:

u ∈W v ∈W

Au = B u Av = B v

Au + Av = B u + B v

A(u + v) = B (u + v)

u + v ∈W

Factor out A and B

The proof is complete! If you were just writing the proof for yourself, the sketch above might be good
enough. If you were writing this proof more formally — say for an assignment or a paper — you might add
some explanatory words.

For instance, you might say: “I need to show that W is closed under addition. Let u ∈ W and let
v ∈ W . By definition of W , this means that Au = Bu and Av = Bv. Adding the equations, I get
Au = Av = Bu+Bv. Factoring A out of the left side and B out of the right side, I get A(u+ v) = B(u+ v).
By definition of W , this means that u+ v ∈ W . Hence, W is closed under addition.”

By the way, be careful not to write things like “A(u+v)+B(u+v) ∈ W” — do you see why this doesn’t
make sense? “A(u + v) = B(u + v)” is an equation that u + v satisfies. You can’t write “∈ W”, since an
equation can’t be an element of W . Elements of W are vectors. You say “u+ v ∈ W”, as in the last line.

Here’s a sketch of a similar “fill-in” proof for closure under scalar multiplication:

u ∈W k ∈F

Au = Bu

kAu = kBu

A(ku) = B(ku)

ku ∈W

Try working through the proof yourself.

Example. Consider the following subset of the polynomial ring R[x]:

V = {f(x) ∈ R[x] | f(2) = 1}.

Show that V is not a subspace of R[x].

The zero polynomial (i.e. the zero vector) is not in V , because the zero polynomial does not give 1 when
you plug in x = 2. Hence, V is not a subspace.
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Alternatively, the constant polynomial f(x) = 1 is an element of V — it gives 1 when you plug in 2 —
but 2 · f(x) is not. So V is not closed under scalar multiplication.

See if you can give an example which shows that V is not closed under vector addition.

Proposition. If A is an m×n matrix over the field F , consider the set V of n-dimensional vectors x which
satisfy

Ax = 0.

Then V is a subspace of Fn.

Proof. Suppose x, y ∈ V . Then Ax = 0 and Ay = 0, so

A(x + y) = Ax+Ay = 0 + 0 = 0.

Hence, x+ y ∈ V .

Suppose x ∈ V and k ∈ F . Then Ax = 0, so

A(kx) = k(Ax) = k · 0 = 0.

Therefore, kx ∈ V .

Thus, V is a subspace.

The subspace defined in the last proposition is called the null space of A.

Definition. Let A be an m× n matrix over the field F .

null space(A) = {x ∈ Fn | Ax = 0}.

As a specific example of the last proposition, consider the following system of linear equations over R:

[

1 1 0 1
0 0 1 3

]







w

x

y

z






=







0
0
0
0






.

You can show by row reduction that the general solution can be written as

w = −s− t, x = s, y = −3t, z = t.

Thus,






w

x

y

z






=







−s− t

s

−3t
t






.

The Proposition says that the set of all vectors of this form constitute a subspace of R4.

For example, if you add two vectors of this form, you get another vector of this form:







−s− t

s

−3t
t






+







−s′ − t′

s′

−3t′

t′






=







−(s+ s′)− (t+ t′)
s+ s′

−3(t+ t′)
t+ t′






.

You can check directly that the set is also closed under scalar multiplication.
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In terms of systems of linear equations, a vector (x1, . . . , xn) ∈ Fn is in the null space of the matrix
A = (aij) if it’s a solution to the system

a11x1 + · · · + a1nxn = 0
a21x1 + · · · + a2nxn = 0

...
an1x1 + · · · + annxn = 0

In this situation, we say that the vectors (x1, . . . , xn) make up the solution space of the system. Since
the solution space of the system is another name for the null space of A, the solution space is a subspace of
Fn.

We’ll study the null space of a matrix in more detail later.

Example. C(R) denotes the real vector space of continuous functions R → R. Consider the following subset
of C(R):

S =

{

f ∈ C(R)
∣

∣

∣
f(x) =

∫ x

0

etf(t) dt

}

.

Prove that S is a subspace of C(R).

Let f, g ∈ S. Then

f(x) =

∫ x

0

etf(t) dt and g(x) =

∫ x

0

etg(t) dt.

Adding the two equations and using the fact that “the integral of a sum is the sum of the integrals”,
we have

f(x) + g(x) =

∫ x

0

etf(t) dt+

∫ x

0

etg(t) dt =

∫ x

0

et[f(t) + g(t)] dt.

This proves that f(x) + g(x) ∈ S, so S is closed under addition.
Let f ∈ S, so

f(x) =

∫ x

0

etf(t) dt.

Let c ∈ R. Using the fact that constants can be moved into integrals, we have

c · f(x) = c ·

∫ x

0

etf(t) dt =

∫ x

0

et[c · f(t)] dt.

This proves that c · f(x) ∈ S, so S is closed under scalar multiplication. Thus, S is a subspace of C(R).

Intersections of subspaces.

We’ve seen that the union of subspaces is not necessarily a subspace. For intersections, the situation
is different: The intersection of any number of subspaces is a subspace. The only signficant issue with the
proof is that we will deal with an arbitrary collection of sets — possibly infinite, and possibly uncountable.
Except for taking care with the notation, the proof is fairly easy.

Theorem. Let V be a vector space over a field F , and let {Ui}i∈I be a collection of subspaces of V . The

intersection
⋂

i∈I

Ui is a subspace of V .

Proof. We have to show that
⋂

i∈I

Ui is closed under vector addition and under scalar multiplication.

Suppose x, y ∈
⋂

i∈I

Ui. For x and y to be in the intersection of the Ui, they must be in each Ui for

all i ∈ I. So pick a particular i ∈ I; we have x, y ∈ Ui. Now Ui is a subspace, so it’s closed under vector

addition. Hence, x+ y ∈ Ui. Since this is true for all i ∈ I, I have x+ y ∈
⋂

i∈I

Ui.
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Thus,
⋂

i∈I

Ui is closed under vector addition.

Next, suppose k ∈ F and x ∈
⋂

i∈I

Ui. For x to be in the intersection of the Ui, it must be in each Ui

for all i ∈ I. So pick a particular i ∈ I; we have x ∈ Ui. Now Ui is a subspace, so it’s closed under scalar

multiplication. Hence, kx ∈ Ui. Since this is true for all i ∈ I, I have kx ∈
⋂

i∈I

Ui.

Thus,
⋂

i∈I

Ui is closed under scalar multiplication.

Hence,
⋂

i∈I

Ui is a subspace of V .

You can see that the proof was pretty easy, the two parts being pretty similar. The key idea is that
something is in the intersection of a bunch of sets if and only if it’s in each of the sets. How many sets there
are in the bunch doesn’t matter. If you’re still feeling a little uncomfortable, try writing out the proof for
the case of two subspaces: If U and V are subspaces of a vector space W over a field F , then U ∩ V is a
subspace of W . The notation is easier for two subspaces, but the idea of the proof is the same as the idea
for the proof above.
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