Proof by Cases

You can sometimes prove a statement by:

1. Dividing the situation into cases which exhaust all the possibilities; and

2. Showing that the statement follows in all cases.

It’s important to cover all the possibilities. And don’t confuse this with trying examples; an example is not a proof.

Note that there are usually many ways to divide a situation into cases. For example, if I know that \(x \) is a real number and I’m proving something about \(x \), I could divide the situation into cases in these ways:

- \(x > 0 \), \(x = 0 \), or \(x < 0 \).
- \(|x| > 1 \) or \(|x| \leq 1 \).
- \(x \geq \pi \) or \(x < \pi \)
- \(x \) is rational or \(x \) is irrational.

The division you choose depends on the situation. In general, you should try to use a small number of cases — and in particular, you should see if you can give a proof without taking cases at all!

Example. Premises: \[
\begin{align*}
A &\rightarrow (B \land \sim D) \\
C &\rightarrow A \\
C \lor \sim D
\end{align*}
\]

Prove: \(\sim D \).

I can divide the situation into two cases: Either \(C \) is true, or \(\sim C \) is true. These exhaust the possibilities, by the Law of the Excluded Middle. I’ll assume each in turn and show that I can derive \(\sim D \).

1. \(A \rightarrow (B \land \sim D) \) Premise
2. \(C \rightarrow A \) Premise
3. \(C \lor \sim D \) Premise
4. \(C \) Premise - Case 1
5. \(A \) Modus ponens (2,4)
6. \(B \land \sim D \) Modus ponens (1,5)
7. \(\sim D \) Decomposing a conjunction (6)
8. \(\sim C \) Premise - Case 2
9. \(\sim D \) Disjunctive syllogism (3,8)
10. \(\sim D \) Proof by cases (4,7,8,9)

Since both of my cases led to the conclusion \(\sim D \), and since my cases exhausted the possibilities, I’ve proved \(\sim D \).

In logic proofs, cases of the form \(P \) and \(\sim P \) where \(P \) is some statement will cover all possibilities, since one of \(P \) or \(\sim P \) must be true. So these are the natural cases to take in logic proofs.

How did I know to use \(C \) and \(\sim C \) rather than (say) \(B \) and \(\sim B \)? I looked at my premises and noticed that I could do something with each of those assumptions: \(C \) could be used for modus ponens, and \(\sim C \) could be used for disjunctive syllogism. As with many logic proofs, it was a matter of looking ahead or working backward.
Note: You may use the premises for the proof in either case, but you may not use a statement derived for one case in the other case.

For example, in the first case, I derived the statement A at line 5. I may not use A anywhere in the second case.

Example. In calculus, you learned Rolle’s theorem. Here’s the statement:

Let f be a function which is continuous on the interval $a \leq x \leq b$ and is differentiable on the interval $a < x < b$. Suppose $f(a) = f(b) = 0$. Then there is a real number c such that $a < c < b$ and $f'(c) = 0$.

In other words (to put it roughly), between two roots there must be a horizontal tangent.

![Graph of a function with horizontal tangents at points a, c, and b.]

There are three cases: f is never positive or negative on the interval $a \leq x \leq b$, f is positive somewhere on the interval $a \leq x \leq b$, or f is negative somewhere on the interval $a \leq x \leq b$.

Suppose first that f is never positive or negative on the interval $a \leq x \leq b$. Then $f = 0$, a constant function, and $f'(x) = 0$ for all x in the interval $a < x < b$.

Suppose that f is positive at some point of the interval $a \leq x \leq b$. A continuous function on a closed interval attains a maximum value on the interval; since I already know f is positive somewhere, the maximum value of f must be positive. Since f is 0 at the endpoints, it must attain the maximum value at some point c in the open interval $a < x < b$.

![Graph of a function with a horizontal tangent at point c.]

Since $a < c < b$, f is differentiable at c. But at a point where a differentiable function attains a maximum, the derivative is 0. Therefore, $f'(c) = 0$.

Suppose that f is negative at some point of the interval $a \leq x \leq b$. A continuous function on a closed interval attains a minimum value on the interval; since I already know f is negative somewhere, the minimum value of f must be negative. Since f is 0 at the endpoints, it must attain the minimum value at some point c in the open interval $a < x < b$.

![Graph of a function with a horizontal tangent at point c.]
Since \(a < c < b \), \(f \) is differentiable at \(c \). But at a point where a differentiable function attains a minimum, the derivative is 0. Therefore, \(f'(c) = 0 \).

Since the three cases exhaust all the possibilities, this proves that \(f'(c) = 0 \) for some \(c \) in the interval \(a < x < b \). □

Many problems involving divisibility of integers use the **Division Algorithm**. It is a consequence of the **Well-Ordering Axiom** for the positive integers, which is also the basis for **mathematical induction**.

Theorem. (Division Algorithm) Let \(m \) and \(n \) be integers, where \(n > 0 \). Then there are unique integers \(q \) and \(r \) such that

\[
m = nq + r, \quad \text{where} \quad 0 \leq r < n.
\]

(“\(q \)” stands for “quotient” and “\(r \)” stands for “remainder”.)

I won’t give a proof of this, but here are some examples which show how it’s used.

Examples.

(a) Let \(m = 31 \) and \(n = 8 \). Then I have

\[
31 = 8 \cdot 3 + 7.
\]

In this case, \(q = 3 \) and \(r = 7 \). Note that \(0 \leq 7 < 8 \) holds — when you divide, the remainder should be nonnegative, and less than the number you divided by. □

(b) (a) Let \(m = -31 \) and \(n = 8 \). Then I have

\[
31 = 8 \cdot (-4) + 1.
\]

In this case, \(q = -4 \) and \(r = 1 \). Again, \(0 \leq 1 < 8 \) holds. Note that if I wrote \(“31 = 8 \cdot (-3) + (-7)” \), the equation is true, but the numbers aren’t the ones produced by the Division Algorithm — \(r \) is not allowed to be negative. □

(c) Take \(m \) to be any integer, and let \(n = 2 \). Then

\[
m = 2q + r, \quad \text{where} \quad 0 \leq r < 2.
\]

Now since \(r \) is an integer and \(0 \leq r < 2 \), I must have \(r = 0 \) or \(r = 1 \). Thus, if \(m \in \mathbb{Z} \), then

\[
m = 2q \quad \text{or} \quad m = 2q + 1.
\]

Of course, the first case occurs when \(m \) is even, and the second case occurs when \(m \) is odd. **If a problem involves odd or even integers, you might consider taking cases in this way.**

A similar situation occurs when \(n \) is any positive integer. For example, if \(m \in \mathbb{Z} \) and \(n = 5 \), then

\[
m = 5q + r, \quad \text{where} \quad 0 \leq r < 5.
\]

The condition \(0 \leq r < 5 \) means \(r = 0, r = 1, r = 2, r = 3, \) or \(r = 4 \). So if \(m \in \mathbb{Z} \), the possibilities are

\[
m = 5q, \quad m = 5q + 1, \quad m = 5q + 2, \quad m = 5q + 3, \quad \text{or} \quad m = 5q + 4.
\]

If a problem involves divisibility by 5 you might consider taking cases in this way.

(When I discuss **modular arithmetic**, there will be an easier way to deal with these cases.) □

Example. Prove that if \(n \) is an integer, then \(3n^2 + n + 14 \) is even.

Let \(n \in \mathbb{Z} \). I’ll consider two cases: \(n \) is even and \(n \) is odd.
Case 1. \(n \) is even.

Since \(n \) is even, I can write \(n = 2k \), where \(k \in \mathbb{Z} \). Then

\[
3n^2 + n + 14 = 3(2k)^2 + 2k + 14 \\
= 12k^2 + 2k + 14 \\
= 2(6k^2 + k + 7)
\]

Since \(6k^2 + k + 7 \) is an integer, \(3n^2 + n + 14 \) is even if \(n \) is even.

Case 2. \(n \) is odd.

Since \(n \) is odd, I can write \(n = 2k + 1 \), where \(k \in \mathbb{Z} \). Then

\[
3n^2 + n + 14 = 3(2k + 1)^2 + (2k + 1) + 14 \\
= 3(4k^2 + 4k + 1) + (2k + 1) + 14 \\
= 12k^2 + 12k + 3 + 2k + 1 + 14 \\
= 12k^2 + 14k + 18 \\
= 2(6k^2 + 7k + 9)
\]

Since \(6k^2 + 7k + 9 \) is an integer, \(3n^2 + n + 14 \) is even if \(n \) is odd.

Since in both cases \(3n^2 + n + 14 \) is even, it follows that if \(n \) is an integer, then \(3n^2 + n + 14 \) is even.

Example. Prove that if \(n \) is any integer which is not divisible by 5, then \(n^2 \) leaves a remainder of 1 or 4 when it is divided by 5.

Let \(n \) be an integer which is not divisible by 5. I want to show that \(n^2 \) leaves a remainder of 1 or 4 when it is divided by 5.

Since \(n \) is not divisible by 5, it leaves a remainder of 1, 2, 3, or 4 when it is divided by 5. These four cases exhaust all the possibilities.

If \(n \) leaves a remainder of 1 when it’s divided by 5, then \(n = 5k + 1 \) for some integer \(k \). So

\[
n^2 = (5k + 1)^2 = 25k^2 + 10k + 1 = 5(5k^2 + 2k) + 1.
\]

Therefore, \(n^2 \) leaves a remainder of 1 when it’s divided by 5.

If \(n \) leaves a remainder of 2 when it’s divided by 5, then \(n = 5k + 2 \) for some integer \(k \). So

\[
n^2 = (5k + 2)^2 = 25k^2 + 20k + 4 = 5(5k^2 + 4k) + 4.
\]

Therefore, \(n^2 \) leaves a remainder of 4 when it’s divided by 5.

If \(n \) leaves a remainder of 3 when it’s divided by 5, then \(n = 5k + 3 \) for some integer \(k \). So

\[
n^2 = (5k + 3)^2 = 25k^2 + 30k + 9 = 25k^2 + 30k + 5 + 4 = 5(5k^2 + 6k + 1) + 4.
\]

Therefore, \(n^2 \) leaves a remainder of 4 when it’s divided by 5.

If \(n \) leaves a remainder of 4 when it’s divided by 5, then \(n = 5k + 4 \) for some integer \(k \). So

\[
n^2 = (5k + 4)^2 = 25k^2 + 40k + 16 = 25k^2 + 40k + 15 + 1 = 5(5k^2 + 8k + 3) + 1.
\]

Therefore, \(n^2 \) leaves a remainder of 1 when it’s divided by 5.

I’ve exhausted all the cases. This proves that if \(n \) is any integer which is not divisible by 5, then \(n^2 \) leaves a remainder of 1 or 4 when it is divided by 5.
This is not the best way to write this kind of proof, since the algebra can be a bit annoying. Proofs like this one can be written more easily using **modular arithmetic**.

Example. Prove that for all $x \in \mathbb{R}$,

$$-5 \leq |x + 2| - |x - 3| \leq 5.$$

You often think of taking cases in dealing with absolute values. I have

$$|x + 2| = \begin{cases}
 x + 2 & \text{if } x + 2 > 0 \\
 -(x + 2) & \text{if } x + 2 \leq 0
\end{cases}.$$

Now $x + 2 > 0$ means $x > -2$, and $x + 2 \leq 0$ means $x \leq -2$. So

$$|x + 2| = \begin{cases}
 x + 2 & \text{if } x > -2 \\
 -(x + 2) & \text{if } x \leq -2
\end{cases}.$$

In the same way,

$$|x - 3| = \begin{cases}
 x - 3 & \text{if } x > 3 \\
 -(x - 3) & \text{if } x \leq 3
\end{cases}.$$

Given the way the functions are broken apart, I’ll consider the cases $x \leq -2$, $-2 < x \leq 3$, and $x > 3$. Notice that all real numbers are in one of the three cases.

Case 1. $x \leq -2$. In this case,

$$|x + 2| - |x - 3| = -(x + 2) - [-(x - 3)] = -5.$$

Therefore, $-5 \leq |x + 2| - |x - 3| \leq 5$ holds in this case.

Case 2. $-2 < x \leq 3$. In this case,

$$|x + 2| - |x - 3| = (x + 2) - [-(x - 3)] = 2x - 1.$$

I have to do some additional work to see whether the target inequality holds. I have

$$-2 < x \leq 3, \quad \text{so} \quad -4 < 2x \leq 6, \quad \text{and} \quad -5 < 2x - 1 \leq 5.$$

Therefore, $-5 \leq |x + 2| - |x - 3| \leq 5$ holds in this case.

Case 3. $x > 3$. In this case,

$$|x + 2| - |x - 3| = (x + 2) - (x - 3) = 5.$$

Therefore, $-5 \leq |x + 2| - |x - 3| \leq 5$ holds in this case.

Since $-5 \leq |x + 2| - |x - 3| \leq 5$ holds all three cases, it is true for all $x \in \mathbb{R}$.

©2008 by Bruce Ikenaga