Limits at Infinity

In this section, I’ll discuss proofs for limits of the form \(\lim_{x \to \infty} f(x) \). They are like \(\varepsilon-\delta \) proofs, though the setup and algebra are a little different.

Recall that \(\lim_{x \to c} f(x) = L \) means that for every \(\varepsilon > 0 \), there is a \(\delta > 0 \) such that if \(|x - c| > \delta \), then \(\varepsilon > |f(x) - L| \).

Definition. \(\lim_{x \to \infty} f(x) = L \) means that for every \(\varepsilon > 0 \), there is an \(M > 0 \) such that if \(x > M \), then \(\varepsilon > |f(x) - L| \).

In other words, I can make \(f(x) \) as close to \(L \) as I please by making \(x \) sufficiently large.

Remarks. Limits at infinity often occur as limits of sequences, such as

\[
\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n}, \ldots
\]

In this case, \(\lim_{n \to \infty} \frac{1}{n} = 0 \). I won’t make a distinction between the limit at infinity of a sequence and the limit at infinity of a function; the proofs you do are essentially the same in both cases.

There is a similar definition for \(\lim_{x \to -\infty} f(x) = L \), and the proofs are similar as well. I’ll stick to \(\lim_{x \to \infty} f(x) \) here.

Example. Prove that \(\lim_{n \to \infty} \frac{1}{n} = 0 \).

As with \(\varepsilon-\delta \) proofs, I do some scratch work, working backwards from what I want. Then I write the “real proof” in the forward direction.

Scratch work. I want

\[
\varepsilon > \left| \frac{1}{n} - 0 \right| = \left| \frac{1}{n} \right| = \frac{1}{n}.
\]

I want to drop the absolute values, so I’ll assume \(n > 0 \). Rearranging the inequality, I get \(n > \frac{1}{\varepsilon} \).

Here’s the real proof. Let \(\varepsilon > 0 \). Set \(M = \frac{1}{\varepsilon} \). Since \(\varepsilon > 0 \), I have \(M = \frac{1}{\varepsilon} > 0 \). Suppose \(n > M \). Then \(n > M > 0 \), and

\[
\begin{align*}
n > M &= \frac{1}{\varepsilon} \\
\varepsilon &> \frac{1}{n} \\
\varepsilon &> \left| \frac{1}{n} \right| \\
\varepsilon &> \left| \frac{1}{n} - 0 \right|
\end{align*}
\]

This proves that \(\lim_{n \to \infty} \frac{1}{n} = 0 \). \(\square \)
Example. Prove that \(\lim_{x \to \infty} \frac{6x + 1}{2x + 1} = 3 \).

Scratch work. I want
\[
\epsilon > \left| \frac{6x + 1}{2x + 1} - 3 \right| = \left| \frac{6x + 1 - 3(2x + 1)}{2x + 1} \right| = \left| \frac{-2}{2x + 1} \right| = \left| \frac{2}{2x + 1} \right| = \frac{2}{2x + 1}.
\]

In order to drop the absolute values, I need to assume \(x > 0 \).
Rearrange the inequality:
\[
\epsilon > \frac{2}{2x + 1}
\]
\[
(2x + 1)\epsilon > 2
\]
\[
2x\epsilon + \epsilon > 2
\]
\[
2x\epsilon > 2 - \epsilon
\]
\[
x > \frac{2 - \epsilon}{2\epsilon}
\]

Here’s the real proof. Let \(\epsilon > 0 \). Set \(M = \max \left(0, \frac{2 - \epsilon}{2\epsilon} \right) \). If \(x > M \), then \(x > 0 \) and \(x > \frac{2 - \epsilon}{2\epsilon} \). So
\[
x > \frac{2 - \epsilon}{2\epsilon}
\]
\[
2x\epsilon > 2 - \epsilon
\]
\[
2x\epsilon + \epsilon > 2
\]
\[
\epsilon(2x + 1) > 2
\]
\[
\epsilon > \frac{2}{2x + 1}
\]
\[
\epsilon > \left| \frac{2}{2x + 1} \right|
\]
\[
\epsilon > \left| \frac{-2}{2x + 1} \right|
\]
\[
\epsilon > \left| \frac{6x + 1 - 3(2x + 1)}{2x + 1} \right|
\]
\[
\epsilon > \left| \frac{6x + 1}{2x + 1} - 3 \right|
\]

Therefore,
\[
\lim_{x \to \infty} \frac{6x + 1}{2x + 1} = 3. \quad \Box
\]

Note that the expression \(\frac{2 - \epsilon}{2\epsilon} \) would be negative if \(\epsilon > 2 \). So I took \(M \) to be the max of 0 and \(\frac{2 - \epsilon}{2\epsilon} \) to ensure that if \(x > M \), then \(x \) would be positive. Now you actually need \(2x + 1 \) to be positive in order to put on the absolute values, and \(2x + 1 > 0 \) if \(x > -\frac{1}{2} \). It isn’t hard to prove that \(\frac{2 - \epsilon}{2\epsilon} > -\frac{1}{2} \), so in fact I don’t need to take the max with 0 — provided that I’m willing to prove that \(\frac{2 - \epsilon}{2\epsilon} > -\frac{1}{2} \). I decided to take the easy way out!
Example. Prove that \(\lim_{n \to \infty} (-1)^n \) is undefined.

I’ll use proof by contradiction. Suppose that

\[
\lim_{n \to \infty} (-1)^n = L.
\]

Taking \(\epsilon = \frac{1}{2} \) in the definition, I can find \(M \) such that if \(n > M \), then \(\frac{1}{2} > |(-1)^n - L| \).

Choose \(p \) to be an even number greater than \(M \). Then

\[
\frac{1}{2} > |(-1)^p - L| = |1 - L|.
\]

This says that the distance from \(L \) to 1 is less than \(\frac{1}{2} \), so

\[
\frac{1}{2} < L < \frac{3}{2}.
\]

Choose \(q \) to be an odd number greater than \(M \). Then

\[
\frac{1}{2} > |(-1)^q - L| = |-1 - L|.
\]

This says that the distance from \(L \) to \(-1\) is less than \(\frac{1}{2} \), so

\[
-\frac{3}{2} < L < -\frac{1}{2}.
\]

This is a contradiction, since \(L \) can’t be in \(\left(\frac{1}{2}, \frac{3}{2} \right) \) and in \(\left(-\frac{3}{2}, -\frac{1}{2} \right) \) at the same time.

Hence, \(\lim_{n \to \infty} (-1)^n \) is undefined. ☐