Congruences and Modular Arithmetic

- a is congruent to b mod n means that $n \mid a - b$. Notation: $a = b \pmod{n}$.
- Congruence mod n is an equivalence relation. Hence, congruences have many of the same properties as ordinary equations.
- Congruences provide a convenient shorthand for divisibility relations.

Definition. Let a, b, and m be integers. a is congruent to b mod m if $m \mid a - b$; that is, if $a - b = km$ for some integer k.

Write $a = b \pmod{m}$ to mean that a is congruent to b mod m. m is called the modulus of the congruence; I will almost always work with positive moduli.

Note that $a = 0 \pmod{m}$ if and only if $m \mid a$. Thus, modular arithmetic gives you another way of dealing with divisibility relations.

Example. $101 = 3 \pmod{2}$ and $2 = 101 \pmod{3}$.

Proposition. Congruence mod m is an equivalence relation:

(a) (Reflexivity) $a = a \pmod{m}$ for all a.

(b) (Symmetry) If $a = b \pmod{m}$, then $b = a \pmod{m}$.

(c) (Transitivity) If $a = b \pmod{m}$ and $b = c \pmod{m}$, then $a = c \pmod{m}$.

Proof. I’ll prove transitivity by way of example. Suppose $a = b \pmod{m}$ and $b = c \pmod{m}$. Then there are integers j and k such that $a - b = jm$, $b - c = km$.

Add the two equations: $a - c = (j + k)m$.

This implies that $a = c \pmod{m}$.

Example. Consider congruence mod 3. There are 3 congruence classes:

$$\{\ldots, -3, 0, 3, 6, \ldots\}, \quad \{\ldots, -4, -1, 2, 5, \ldots\}, \quad \{\ldots, -5, -2, 1, 4, \ldots\}.$$

Each integer belongs to exactly one of these classes. Two integers in a given class are congruent mod 3. (If you know some group theory, you probably recognize this as constructing \mathbb{Z}_3 from \mathbb{Z}.)

When you’re doing things mod 3, it is if there were only 3 numbers. I’ll grab one number from each of the classes to represent the classes; for simplicity, I’ll use 0, 2, and 1.

Here is an addition table for the classes in terms of these representatives:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Here’s an example: \(2 + 1 = 0 \), because \(2 + 1 = 3 \) as integers, and 3’s congruence class is represented by 0. This is the table for \textbf{addition mod 3}.

I could have chosen different representatives for the classes — say 3, \(-4\), and 4. A choice of representatives, one from each class, is called a \textbf{complete system of residues mod 3}. But working mod 3 it’s natural to use the numbers 0, 1, and 2 as representatives — and in general, if I’m working mod \(n \), the obvious choice of representatives is the set \(\{0, 1, 2, \ldots, n - 1\} \). This set is called the \textbf{least nonnegative system of residues mod n}, and it is the set of representatives I’ll usually use.

(Sometimes I’ll get sloppy and call it the \textbf{least positive system of residues}, even though it includes 0.) \[\square \]

\textbf{Proposition.} Suppose \(a = b \pmod{m} \). Then

\[
\begin{align*}
 a \pm c &= b \pm c \pmod{m} \quad \text{and} \quad ac = bc \pmod{m}.
\end{align*}
\]

\textbf{Proof.} I’ll prove (part of) the first congruence as an example. Suppose \(a = b \pmod{m} \). Then \(a - b = km \) for some \(k \), so

\[
(a + c) - (b + c) = km.
\]

But this implies that \(a + c = b + c \pmod{m} \). \[\square \]

\textbf{Example.} Solve the congruence

\[
2x + 11 = 7 \pmod{3}.
\]

First, reduce all the coefficients mod 3:

\[
2x + 2 = 1 \pmod{3}.
\]

Next, add 1 to both sides, using the fact that \(2 + 1 = 0 \pmod{3} \):

\[
x = 2 \pmod{3}.
\]

Finally, multiply both sides by 2, using the fact that \(2 \cdot 2 = 4 = 1 \pmod{3} \):

\[
x = 1 \pmod{3}.
\]

That is, any number in the set \(\{\ldots, -5, -2, 1, 4, \ldots\} \) will solve the original congruence. \[\square \]

\textbf{Remark.} Notice that I accomplished division by 2 (in solving \(2x = 2 \pmod{3} \)) by \textit{multiplying} by 2. The reason this works is that, mod 3, 2 is its own \textit{multiplicative inverse}.

Recall that two numbers \(x \) and \(y \) are \textbf{multiplicative inverses} if \(x \cdot y = 1 \) and \(y \cdot x = 1 \). For example, in the rational numbers, \(\frac{3}{5} \) and \(\frac{5}{3} \) are multiplicative inverses. \textit{Division by a number is defined to be multiplication by its multiplicative inverse.} Thus, division by 3 \textit{means} multiplication by \(\frac{1}{3} \).

In the integers, only 1 and \(-1\) have multiplicative inverses. When you perform a “division” in \(\mathbb{Z} \) — such as dividing \(2x = 6 \) by 2 to get \(x = 3 \) — you are actually factoring and using the Zero Divisor Property:

\[
2x = 6, \quad 2x - 6 = 0, \quad 2(x - 3) = 0, \quad x - 3 = 0, \quad x = 3.
\]

(I used the Zero Divisor Property in making the third step: Since \(2 \neq 0 \), \(x - 3 \) must be 0.)

In doing modular arithmetic, however, many numbers may have multiplicative inverses. In these cases, you can perform division by multiplying by the multiplicative inverse.
Here is a multiplication table mod 3, using the standard residue system \{0, 1, 2\}:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

You can construct similar tables for other moduli. For example, 2 and 3 are multiplicative inverses mod 5, because \(2 \cdot 3 = 1 \pmod{5}\). So if you want to “divide” by 3 mod 5, you multiply by 2 instead.

This doesn’t always work. For example, consider \(2x = 4 \pmod{6}\).

2 does not have a multiplicative inverse mod 6; that is, there is no \(k\) such that \(2k = 1 \pmod{6}\). You can check by trial that the solutions to the equation above are \(x = 2 \pmod{6}\) and \(x = 5 \pmod{6}\) — just look at \(2x \pmod{6}\) for \(x = 0, 1, 2, 3, 4, 5\).

Proposition. Suppose \(a = b \pmod{m}\) and \(c = d \pmod{m}\). Then

\[
ac = bd \pmod{m}.
\]

Note that you can use the second property and induction to show that if \(a = b \pmod{m}\), then

\[
a^n = b^n \pmod{m} \quad \text{for all} \quad n \geq 1.
\]

Proof. Suppose \(a = b \pmod{m}\) and \(c = d \pmod{m}\). Then \(m \mid a - b\) and \(m \mid c - d\), so by properties of divisibility,

\[
m \mid (a - b) + (c - d) = (a + c) - (b + d).
\]

This implies that \(a + c = b + d \pmod{m}\).

To prove the second equation, note that \(m \mid a - b\) and \(m \mid c - d\) imply that there are integers \(j\) and \(k\) such that

\[
mj = a - b \quad \text{and} \quad mk = c - d.
\]

Therefore,

\[
a = b + mj \quad \text{and} \quad c = d + mk.
\]

Multiplying these two equations, I obtain

\[
ac = (b + mj)(d + mk) \\
ac = bd + m(dj + bk + mjk) \\
ac - bd = m(dj + bk + mjk)
\]

Hence, \(m \mid ac - bd\), so \(ac = bd \pmod{m}\).

Example. What is the least positive residue of \(99^{10} \pmod{7}\)?

\(99 = 1 \pmod{7}\), so

\(99^{10} = 1^{10} = 1 \pmod{7}\).
Example. If p is prime, then
\[(x + y)^p = x^p + y^p \pmod{p}.
\]

By the Binomial Theorem,
\[(x + y)^p = \sum_{i=0}^{p} \binom{p}{i} x^i y^{p-i}.
\]

A typical coefficient $\binom{p}{i} = \frac{p!}{i!(p-i)!}$ is divisible by p for $i \neq 0, p$. So going mod p, the only terms that remain are x^p and y^p. For example
\[(x + y)^2 = x^2 + y^2 \pmod{2} \quad \text{and} \quad (x + y)^3 = x^3 + y^3 \pmod{3}.
\]

The result is not true if the modulus is not prime. For example,
\[(1 + 1)^4 = 0 \pmod{4}, \quad \text{but} \quad 1^4 + 1^4 = 2 \pmod{4}. \quad \square
\]