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Divisor Functions

Definition. The sum of divisors function is given by

σ(n) =
∑

d|n

d.

As usual, the notation “d | n” as the range for a sum or product means that d ranges over the positive

divisors of n.

The number of divisors function is given by

τ(n) =
∑

d|n

1.

For example, the positive divisors of 15 are 1, 3, 5, and 15. So

σ(15) = 1 + 3 + 5 + 15 = 24 and τ(15) = 4.

I want to find formulas for σ(n) and τ(n) in terms of the prime factorization of n. This will be easy if
I can show that σ and τ are multiplicative. I can do most of the work in the following theorem.

Theorem. The divisor sum of a multiplicative function is multiplicative.

Proof. Suppose f is multiplicative, and let D(f) be the divisor sum of f . Suppose (m,n) = 1. Then

[D(f)](m) =
∑

a|m

f(a) and [D(f)](n) =
∑

b|n

f(b).

Then

[D(f)](m) · [D(f)](n) =





∑

a|m

f(a)









∑

b|n

f(b)



 =
∑

a|m

∑

b|n

f(a)f(b).

Now (m,n) = 1, so if a | m and b | n, then (a, b) = 1. Therefore, multiplicativity of f implies

[D(f)](m) · [D(f)](n) =
∑

a|m

∑

b|n

f(ab).

Now every divisor d of mn can be written as d = ab, where a | m and b | n. Going the other way, if
a | m and b | n then ab | mn. So I may set d = ab, where d | mn, and replace the double sum with a single
sum:

[D(f)](m) · [D(f)](n) =
∑

d|mn

f(d) = [D(f)](mn).

This proves that D(f) is multiplicative.

Theorem. (a) The sum of divisors function σ is multiplicative.

(b) The number of divisors function τ is multiplicative.

Proof. (a) The identity function id(x) = x is multiplicative: id(mn) = mn = id(m) · id(n) for all m, n, so
obviously it’s true for (m,n) = 1. Therefore, the divisor sum of id is multiplicative. But

[D(id)](n) =
∑

d|n

id(d) =
∑

d|n

d = σ(n).
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Hence, the sum of divisors function σ is multiplicative.

(b) The constant function I(n) = 1 is multiplicative: I(mn) = 1 = 1 · 1 = I(m) · I(n) for all m, n, so
obviously it’s true for (m,n) = 1. Therefore, the divisor sum of I is multiplicative. But

[D(I)](n) =
∑

d|n

I(d) =
∑

d|n

1 = τ(n).

Hence, the number of divisors function τ is multiplicative.

I’ll use multiplicativity to obtain formulas for σ(n) and τ(n) in terms of their prime factorizations (as I
did with φ). First, I’ll get the formulas in the case where n is a power of a prime.

Lemma. Let p be prime.

(a) σ(pk) =
pk+1 − 1

p− 1
.

(b) τ(pk) = k + 1.

Proof. The divisors of pk are 1, p, p2, . . . , pk. So the sum of the divisors is

σ(pk) = 1 + p+ p2 + · · ·+ pk =
pk+1 − 1

p− 1
.

And since the divisors of pk are 1, p, p2, . . . , pk, there are k + 1 of them, and

τ(pk) = k + 1.

Theorem. Let n = pr11 · · · prk
k
, where the p’s are distinct primes and ri ≥ 1 for all i. Then:

σ(n) =

(

pr1+1

1 − 1

p1 − 1

)

· · ·

(

prk+1

k
− 1

pk − 1

)

τ(n) = (r1 + 1) · · · (rk + 1)

Proof. These results follow from the preceding lemma, the fact that σ and τ are multiplicative, and the
fact that the prime power factors pri

i
are pairwise relatively prime.

Here is a graph of σ(n) for 1 ≤ n ≤ 1000.
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Note that if p is prime, σ(p) = p + 1. This gives the point (p, p + 1), which lies on the line y = x + 1.
This is the line that you see bounding the dots below.

2



For each n, there are only finitely many numbers k whose divisor sum is equal to n: that is, such that
σ(k) = n. For k divides itself, so

n = σ(k) = (other terms) + k > k.

This says that k must be less than n. So if I’m looking for numbers whose divisors sum to n, I only
need to look at numbers less than n. For example, if I want to find all numbers whose divisors sum to 42, I
only need to look at {1, 2, . . . , 41}.

Here is a graph of τ(n) for 1 ≤ n ≤ 1000.
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If p is prime, τ(p) = 2. Thus, τ repeatedly returns to the horizontal line y = 2, which you can see
bounding the dots below.

The formulas given in the theorem allow us to compute σ(n) and τ(n) by hand for at least small values
of n. For example, 720 = 24 · 32 · 5, so

σ(720) =

(

25 − 1

2− 1

)(

33 − 1

3− 1

)(

52 − 1

5− 1

)

= 2418,

τ(720) = (4 + 1)(2 + 1)(1 + 1) = 30.

Example. Find all positive integers n such that σ(n) = n+ 8.

Since n = 1 doesn’t work, I can assume n > 1.
I have

n+ 8 = σ(n) = 1 + (sum of divisors other than 1 and n) + n

7 = (sum of divisors other than 1 and n)

In other words, (sum of divisors other than 1 and n) is a sum of distinct positive integers other than 1
and n that is equal to 7. I have to consider all possible ways of doing this. I’ll consider cases according to
the largest element of this sum, which is the largest divisor d of n other than 1 and n.

Suppose d = 7.
(sum of divisors other than 1 and n) = 7.

Then the only divisor of n other than 1 and n is 7. Since n 6= 7, I know n = 7k for k > 1. But if n > 49,
then 49 would be a divisor of n other than 1 and n. Hence, n = 49, and this is a solution.

Suppose d = 6. Then the expression (sum of divisors other than 1 and n) must have the form 6 + 1,
which contradicts the assumption that the sum does not include 1.

Suppose d = 5. Then the expression (sum of divisors other than 1 and n) must have the form 2+ 5. In
this case, n = 2 · 5 = 10.

Suppose d = 4. Then

(sum of divisors other than 1 and n) = (terms adding to 3) + 4.
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But if 4 | n, then 2 | n. So (terms adding to 3) must have the form 1 + 2, contradicting the assumption
that the sum does not include 1.

Suppose d = 3. Then

(sum of divisors other than 1 and n) = (terms adding to 4) + 3.

However, (terms adding to 4) can’t include 1, and can’t use 2 twice. Hence, this isn’t possible.
Suppose d = 2. Then the remaining terms in (sum of divisors other than 1 and n) must sum to 5 and

can only use 1, which is excluded by assumption. Hence, this isn’t possible.
Therefore, n = 10 or n = 49.
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