Prime Power Congruences

In this section, I’ll discuss how you solve polynomial congruences mod a power of a prime. The basic idea is to “lift” solutions one power at a time: Start with solutions mod p. Lift them (if possible) to solutions mod p^2. Lift those (if possible) to solutions mod p^3. And so on.

The general approach (where the modulus is composite) is:

1. Solve the congruence mod p, where p is prime.
2. Solve the congruence mod p^k for $k \geq 2$, where p is prime.
3. To solve the congruence mod n, let $n = p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}$. Use step 2 to solve the congruence mod $p_i^{r_i}$ for $i = 1, \ldots, k$, then use the Chinese Remainder Theorem to put together the $p_i^{r_i}$ solutions to get a solution mod n.

First, I’ll show how to use a solution to a quadratic congruence $x^2 = m \pmod{p}$ for p prime to get a solution to $x^2 = m \pmod{p^2}$.

Example. Solve the quadratic congruence

$$x^2 = 12 \pmod{169}.$$

<table>
<thead>
<tr>
<th>y</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y^2 \pmod{13}$</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>

$y^2 = 12 \pmod{13}$ has solutions $y = 5$ and $y = 8$. (Note that $8 = -5 \pmod{13}$.) I will try to “lift” one of these solutions to a solution mod 169.

Write

$$x = 5 + 13z.$$

I will try to find z so that

$$x^2 = 12 \pmod{169}.$$

In other words, I suppose that a solution mod 169 is congruent mod 13 to the mod 13 solution 5. Substitute $x = 5 + 13z$ into $x^2 = 12 \pmod{169}$ and solve:

$$(5 + 13z)^2 = 12 \pmod{169}$$

$$25 + 1304z + 169z^2 = 12 \pmod{169}$$

$$25 + 130z = 12 \pmod{169}$$

$$130z = -13 = 156 \pmod{169}$$

I divide out the common factor of 26, dividing the modulus by $(169, 26) = 13$:

$$5z = 6 \pmod{13}$$

$$8 \cdot 5z = 8 \cdot 6 \pmod{13}$$

$$z = 48 = 9 \pmod{13}$$

Note that if $z = 9 + 13t$, then

$$x = 5 + 13(9 + 13t) = 122 + 169t.$$

Thus, any z which equals 9 mod 13 will give the same solution $x = 122 \pmod{169}$.

Note that $x = -122 = 47 \pmod{169}$ is another solution. You can check that you get it by starting with the solution $y = 8$ to $y^2 = 12 \pmod{13}$.

The general theorem requires two preliminary results.

Lemma. If $k \geq 1$, then the product of k consecutive integers is divisible by $k!$.

Proof. First, if any of the consecutive integers is 0, the product is 0, and it is divisible by $k!$.

Next, if all of the consecutive integers are negative, their product is equal to $(-1)^k$ times the product of k consecutive positive integers.

Hence, it suffices to prove the result for positive integers: The product of k consecutive integers is divisible by $k!$.

Write the k consecutive positive integers in descending order as $n, n - 1, \ldots n - k + 1$.

Then the product is

$$n \cdot (n - 1) \cdots (n - k + 1) = \frac{n \cdot (n - 1) \cdots (n - k + 1)(n - k)(n - k - 1) \cdots 1}{(n - k)(n - k - 1) \cdots 1} = \frac{n!}{(n - k)!} = k! \binom{n}{k}.$$

Therefore, $k! | n \cdot (n - 1) \cdots (n - k + 1)$.

Proposition. Let $f(x) \in \mathbb{Z}[x]$, let $n \geq 1$, and let p be prime. For all $x, t \in \mathbb{Z}$, $f(x + p^n t) = f(x) + f'(x)p^n t \pmod{p^{n+1}}$.

Proof. Let $k = \deg(f)$. Consider the Taylor expansion of f:

$$f(x + p^n t) = f(x) + f'(x) \cdot p^n t + \frac{f''(x)}{2!} p^{2n} t^2 + \frac{f^{(3)}(x)}{3!} p^{3n} t^3 + \cdots + \frac{f^{(k)}(x)}{k!} p^{kn} t^k.$$

I need to show that $p^{n+1} | \frac{f^{(j)}(x)}{j!} p^{jn} t^j$ for $j \geq 2$.

Since $j \geq 2$ and $n \geq 1$, $jn \geq 2n = n + n \geq n + 1$.

Hence, $p^{n+1} | p^{jn}$. This shows that the result is true, provided that $\frac{f^{(j)}(x)}{j!}$ is an integer.

Write $f(x) = \sum_i c_i x^i$. Then

$$f^{(j)}(x) = \sum_i c_i (i - 1) \cdots (i - j + 1) x^{i-j}.$$

Each coefficient $c_i (i - 1) \cdots (i - j + 1)$ has as a factor the product of j consecutive integers, which is divisible by $j!$. Therefore, $\frac{f^{(j)}(x)}{j!}$ is an integer, and the argument above is complete.

Theorem. Let $f(x) \in \mathbb{Z}[x]$, let $n \geq 1$, let p be prime, and let c be a solution to $f(x) = 0 \pmod{p^n}$.

2
(a) If \(p \nmid f'(c) \), then \(f(x) = 0 \pmod{p^{n+1}} \) has a unique solution congruent to \(c \pmod{p^n} \). It is given by
\[
t = -f'(c)^{-1} \cdot \frac{f(c)}{p^n} \pmod{p}.
\]

(b) If \(p \mid f'(c) \), then:

(i) If \(p^{n+1} \mid f(c) \), then \(f(x) = 0 \pmod{p^{n+1}} \) has \(p \) solutions congruent to \(c \pmod{p^n} \). They’re given by
\[
c + p^n t, \quad t = 0, 1, \ldots, p - 1.
\]

(ii) If \(p^{n+1} \nmid f(c) \), then \(f(x) = 0 \pmod{p^{n+1}} \) has no solutions congruent to \(c \pmod{p^n} \).

Proof. Since \(f(c) = 0 \pmod{p^n} \), I have \(p^n \mid f(c) \), and \(\frac{f(c)}{p^n} \) is an integer.

Suppose first that \(p \nmid f'(c) \). Then \(f'(c) \) is invertible mod \(p \). Let
\[
t = -f'(c)^{-1} \cdot \frac{f(c)}{p^n}.
\]

By the previous result
\[
f(c + p^n t) = f(c) + f'(c)p^n t \pmod{p^{n+1}}
\]
\[
f(c + p^n t) = f(c) + f'(c)p^n \cdot \left(-f'(c)^{-1} \cdot \frac{f(c)}{p^n}\right) \pmod{p^{n+1}}
\]
\[
f(c + p^n t) = f(c) - f(c) = 0 \pmod{p^{n+1}}
\]

This shows that \(c + p^n t \) is a solution to \(f(x) = 0 \pmod{p^{n+1}} \), and clearly \(c + p^n t = c \pmod{p^n} \).

Reversing these steps shows that \(t \) is unique mod \(p \).

Now suppose that \(p \mid f'(c) \). Then \(p^{n+1} \mid f'(c)p^n \), so the previous result yields
\[
f(c + p^n t) = f(c) + f'(c)p^n t = f(c) + 0 = f(c) \pmod{p^{n+1}}.
\]

If \(p^{n+1} \mid f(c) \), the equation says
\[
f(c + p^n t) = f(c) = 0 \pmod{p^{n+1}}.
\]

Since \(t \) was arbitrary, this equation is satisfied for all of the \(p \) distinct values of \(t \pmod{p} \), namely \(t = 0, 1, \ldots, p - 1 \).

Finally, if \(p^{n+1} \nmid f(c) \), the equation says
\[
f(c + p^n t) = f(c) \neq 0 \pmod{p^{n+1}}.
\]

This means that for no \(t \) is \(c + p^n t \) a solution to \(f(x) = 0 \pmod{p^{n+1}} \). \(\blacksquare \)

Example. Solve the congruence
\[
x^2 + 5x + 18 = 0 \pmod{49}.
\]

Step 1. Find solutions mod 7.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^2 + 5x + 18 \pmod{7})</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

The solutions are \(x = 3 \) and \(x = 6 \).

Step 2. For each solution \(c \) to the congruence mod \(p^n \), determine whether \(p \) does or does not divide \(f'(c) \) and consider cases.
Since \(f(x) = x^2 + 5x + 18 \), I have \(f'(x) = 2x + 5 \).
I have \(f'(3) = 11 \) and \(7 \not| 11 \). I have \(f'(6) = 17 \) and \(7 \not| 17 \).

I’ll do \(x = 3 \) first. Note that \(f(3) = 42 \). Applying the first case of the theorem, I solve:

\[
egin{align*}
11t &= -\frac{42}{7} \pmod{7} \\
4t &= -6 \pmod{7} \\
2 \cdot 4t &= 2 \cdot (-6) \pmod{7} \\
t &= -12 = 2 \pmod{7}
\end{align*}
\]

Hence, a solution mod 49 is given by \(3 + 7 \cdot 2 = 17 \).
Next, I’ll do \(x = 6 \). Note that \(f(6) = 84 \). Applying the first case of the theorem, I solve:

\[
egin{align*}
17t &= -\frac{84}{7} \pmod{7} \\
3t &= -12 = 2 \pmod{7} \\
5 \cdot 3t &= 5 \cdot 2 \pmod{7} \\
t &= 10 = 3 \pmod{7}
\end{align*}
\]

Hence, a solution mod 49 is given by \(6 + 7 \cdot 3 = 27 \).

Example. Solve the congruence

\[x^2 + x + 7 = 0 \pmod{9}. \]

First, I find solutions to \(x^2 + x + 7 = 0 \pmod{3} \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^2 + x + 7 \pmod{3})</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

I get \(x = 1 \pmod{3} \).
Take \(f(x) = x^2 + x + 7 \). Then \(f'(x) = 2x + 1 \). Then \(f'(1) = 3 \), and \(3 \mid f'(1) \). Therefore, we’re in the second case of the theorem.

Further, \(f(1) = 9 \), and \(9 \mid f(1) \). Hence, we’re in the first subcase of the second case, and \(x^2 + x + 7 = 0 \pmod{9} \) has 3 solutions congruent to 1 mod 3. They’re obtained by adding multiples of 3 to 1: We get \(x = 1, 4, 7 \pmod{9} \).