Quadratic Reciprocity

Theorem. (Gauss’s Lemma) Let p be an odd prime, $(a, p) = 1$. Let k be the number of least positive residues of

$$a, 2a, \ldots, \frac{p-1}{2}a$$

greater than $\frac{p}{2}$.

Then

$$\left(\frac{a}{p} \right) = (-1)^k.$$

Proof. Since p is odd, $\frac{p}{2}$ is not an integer. Hence, every residue of $a, 2a, \ldots, \frac{p-1}{2}a$ is either less than $\frac{p}{2}$ or greater than $\frac{p}{2}$. Label these two sets:

$$a_1, \ldots, a_j < \frac{p}{2}, \quad b_1, \ldots, b_k > \frac{p}{2}.$$

Thus, $j + k = \frac{p-1}{2}$.

Step 1\{ $p-b_1, \ldots, p-b_k, a_1, \ldots, a_j$\} = \{ $1, 2, \ldots, \frac{p-1}{2}$\}.

The a_i’s are contained in \{ $1, 2, \ldots, \frac{p-1}{2}$\}, because the a_i’s are less than $\frac{p}{2}$ (so less than or equal to $\frac{p-1}{2}$). What about the $p-b_i$’s?

$$b_i > \frac{p}{2}, \quad \text{so} \quad p - b_i < p - \frac{p}{2} = \frac{p}{2}.$$

Since $p-b_i$ is an integer and $\frac{p}{2}$ is an integer plus one-half, I have $p-b_i \leq \frac{p-1}{2}$. This shows that the $p-b_i$’s are contained in \{ $1, 2, \ldots, \frac{p-1}{2}$\} as well.

There are $\frac{p-1}{2}$ elements in \{ $1, 2, \ldots, \frac{p-1}{2}$\}, and $j + k = \frac{p-1}{2}$. So if the a_i’s and $p-b_i$’s are all distinct, I’ll know the two sets are equal.

Each a_i has the form ra, where $1 \leq r \leq \frac{p-1}{2}$. So if ra and sa are the same, then

$$ra = sa \pmod{p}, \quad \text{so} \quad p \nmid (r-s)a.$$

$p \nmid a$, so $p \mid (r-s)$. This is impossible for $1 \leq r, s \leq \frac{p-1}{2}$ unless $r = s$ — which implies $ra = sa$ to begin with.

A similar argument shows that the b_i’s, and hence the $p-b_i$’s, are distinct.

Could $a_i = p-b_i$? $a_i = ra$ and $p-b_i = p-sa$ for $1 \leq r, s \leq \frac{p-1}{2}$, so

$$p - sa = ra \pmod{p}, \quad ra + sa = 0 \pmod{p}, \quad p \mid (r+s)a.$$

Again, $p \nmid a$, so $p \mid (r+s)$. But $1 \leq r, s \leq \frac{p-1}{2}$ implies $2 \leq r + s \leq p-1$, so $p \mid (r+s)$ is impossible.

This finishes the proof that \{ $p-b_1, \ldots, p-b_k, a_1, \ldots, a_j$\} = \{ $1, 2, \ldots, \frac{p-1}{2}$\}.

1
Step 2 Since the two sets are the same, the products of the elements in the two sets are the same:

\[(p - b_1) \cdots (p - b_k) \cdot a_1 \cdots a_j = \left(\frac{p-1}{2}\right)! \pmod{p}.\]

Now \(p - b_i = -b_i \pmod{p}\), so

\[(-1)^k b_1 \cdots b_k \cdot a_1 \cdots a_j = \left(\frac{p-1}{2}\right)! \pmod{p}.\]

But the \(a\)'s and \(b\)'s are exactly the residues of the numbers \(a, 2a, \ldots, \frac{p-1}{2}-a\), so I may replace the product of the \(a\)'s and \(b\)'s with the product of \(a, 2a, \ldots, \frac{p-1}{2}-a\):

\[(-1)^k a \cdot 2a \cdots \left(\frac{p-1}{2}\right) a = \left(\frac{p-1}{2}\right)! \pmod{p}\]
\[(-1)^k a^{(p-1)/2} \left(\frac{p-1}{2}\right)! = \left(\frac{p-1}{2}\right)! \pmod{p}\]

Now \(\left(\frac{p}{\frac{p-1}{2}}\right) = 1\), so I can cancel the \(\left(\frac{p-1}{2}\right)!\) terms from both sides. Then applying Euler’s theorem, I get

\[(-1)^k a^{(p-1)/2} = 1 \pmod{p}\]
\[(-1)^k \left(\frac{a}{p}\right) = 1 \pmod{p}\]
\[\left(\frac{a}{p}\right) = (-1)^k \pmod{p}\]

I made the last step by multiplying both sides by \((-1)^k\) and using the fact that \((-1)^{2k} = 1\). □

Example. Use Gauss’s Lemma to compute \(\left(\frac{6}{7}\right)\).

Since \(p = 7\), I have \(\frac{p}{2} = 3.5\) and \(\frac{p-1}{2} = 3\). Look at the residues \(1 \cdot 6 = 6, 2 \cdot 6 = 5,\) and \(3 \cdot 6 = 4\). All three are greater than \(3.5\) — they’re \(b_i\)'s, in the notation of the proof of Gauss’s Lemma — so Gauss’s Lemma says

\[\left(\frac{6}{7}\right) = (-1)^3 = -1.\]

As a check, Euler’s theorem gives \(\left(\frac{6}{7}\right) = 6^3 = -1 \pmod{7}\). □

The following technical lemma will be needed for the proof of reciprocity.

Lemma. Let \(a, b > 0\), where \(b\) is an odd integer. Then

\[a = b \cdot \left(\left\lfloor\frac{a}{b}\right\rfloor + e\right) + (-1)^e \cdot r \quad \text{for} \quad e = 0 \quad \text{or} \quad 1, \quad 0 \leq r \leq \frac{b-1}{2}.\]

Here \(\left\lfloor\cdot\right\rfloor\) denotes the greatest integer function and \(\left\lfloor\frac{a}{b}\right\rfloor + e\) is the integer closest to \(\frac{a}{b}\).
Proof. By the Division Algorithm,
\[a = bq + r, \text{ where } 0 \leq r < b. \]

Now \(\frac{b}{2} \) is not an integer, so either \(r < \frac{b}{2} \) or \(r > \frac{b}{2} \).

(For example, if \(a = 11 \) and \(b = 3 \), then \(r = 2 > \frac{3}{2} = \frac{b}{2} \), while if \(a = 11 \) and \(b = 5 \), \(r = 1 < \frac{5}{2} = \frac{b}{2} \)).

Consider the two cases.

Case 1: \(r < \frac{b}{2} \).

Write
\[a = b \cdot \left(\left\lfloor \frac{a}{b} \right\rfloor + 0 \right) + (-1)^0 \cdot r. \]

Here \(e = 0 \), and \(\left\lfloor \frac{a}{b} \right\rfloor + 0 \) is the integer closest to \(\frac{a}{b} \). \(r < \frac{b}{2} \), but \(\frac{b}{2} \) is not an integer, so \(r \leq \frac{b-1}{2} \), and \(0 \leq r \leq \frac{b-1}{2} \).

Case 2: \(r > \frac{b}{2} \).

Write
\[a = b \cdot \left(\left\lfloor \frac{a}{b} \right\rfloor + 1 \right) + (r - b) = b \cdot \left(\left\lfloor \frac{a}{b} \right\rfloor + 1 \right) + (-1)^1 \cdot (b - r). \]

Here \(e = 1 \), and \(\left\lfloor \frac{a}{b} \right\rfloor + 1 \) is the integer closest to \(\frac{a}{b} \). \(r < b \), so \(b - r > 0 \). Now \(r > \frac{b}{2} \), so \(-r < -\frac{b}{2} \), or \(b - r < \frac{b}{2} \). Since \(\frac{b}{2} \) is not an integer, \(b - r \leq \frac{b-1}{2} \). Therefore, \(0 \leq r \leq \frac{b-1}{2} \). \(\Box \)

Example. Illustrate the lemma with:

(a) \(a = 42 \) and \(b = 17 \).

(b) \(a = 50 \) and \(b = 17 \).

(a) For \(a = 42 \) and \(b = 17 \), I have \(\frac{42}{17} \approx 2.47 \), so the integer closest to \(\frac{42}{17} \) is 2. Then
\[42 = 17 \cdot 2 + 8. \]

And \(0 \leq 8 \leq \frac{17-1}{2} \). \(\Box \)

(b) For \(a = 50 \) and \(b = 17 \), I have \(\frac{50}{17} = 2.94 \), so the integer closest to \(\frac{50}{17} \) is 3. Then
\[50 = 17 \cdot 3 + (-1) \cdot 1. \]

And \(0 \leq 1 \leq \frac{17-1}{2} \). \(\Box \)
In other words, the \(r \) in the lemma represents the distance from \(a \) to the \textit{nearest} multiple of \(b \).

In the first case, the nearest multiple is to the left...

\[
\begin{array}{c}
34 & 42 & 51 \\
\end{array}
\]
\(r=8 \)

... while in this case, the nearest multiple is to the right.

\[
\begin{array}{c}
34 & 50 & 51 \\
\end{array}
\]
\(r=1 \)

The \(\pm \) is needed depending on whether the nearest multiple is less than or greater than \(a \).

I’ll use the lemma to give an ingenious proof of Quadratic Reciprocity due to J.S. Frame [1].

\textbf{Theorem. (Quadratic Reciprocity)} Let \(p \) and \(q \) be distinct odd primes.

\[
\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1) \left(\frac{p-1}{2} \right) \left(\frac{q-1}{2} \right)
\]

\textbf{Proof.} To simplify the writing, let \(p' = \frac{p-1}{2} \) and \(q' = \frac{q-1}{2} \).

Let \(1 \leq n \leq q' \). Apply the Lemma with \(a = np \) and \(b = q' \):

\[
np = q' \cdot \left[\frac{np}{q} \right] + e_n + (-1)^{en} r_n.
\]

Here \(1 \leq r_n \leq q' \) and \(e_n = 0 \) or \(1 \).

The first thing I will show is that the remainders \(r_n \) are just a permutation of the integers 1, \ldots, \(q' \).

If I take the initial equation and reduce mod \(q' \), I get

\[
np = (-1)^{en} r_n \pmod{q'}.
\]

Can two of the \(r \)'s be equal? Suppose \(r_m = r_n \), where \(1 \leq m, n \leq q' \). Then

\[
0 = r_m - r_n = ((-1)^{en} m - (-1)^{en} n) p \pmod{q'}.
\]

In other words, \(q' \mid ((-1)^{en} m - (-1)^{en} n) p \). But \(m + n \leq 2q' = q - 1 \), so \((-1)^{en} m - (-1)^{en} n \) is surely smaller than \(q \) in absolute value. Since \(q' \nmid p \), this is impossible unless \((-1)^{en} m - (-1)^{en} n = 0 \). This in turn is impossible unless \(m = n \). Thus, the \(r \)'s are distinct. Since there are \(q' \) of them, and since they’re all in the range \([1, q']\), they must be some permutation of the numbers 1, \ldots, \(q' \).

As a preliminary to the next computation, take the first equation and reduce mod 2. Now \(p \) and \(q \) are odd, so they equal 1 mod 2. Also, \((-1)^{en} = \pm 1 \), and it both cases \((-1)^{en} = 1 \pmod{2} \). Therefore,

\[
n = \left[\frac{np}{q} \right] + e_n + r_n \pmod{2}.
\]
(I’m going to use this in an exponent of -1 in a second!)

Now let $1 \leq m \leq p'$, $1 \leq n \leq q'$. Then $mq - np \neq 0$, for $mq = np$ implies $p \mid m$ — which is impossible, because $1 \leq m \leq p' = \frac{p-1}{2}$.

Now here’s the heart of the proof. The idea will be to define a weird product which turns out to be the Legendre symbol. Define

$$f(p, q) = \prod_{m=1}^{p'} \prod_{n=1}^{q'} \frac{mq - np}{|mq - np|}.$$

Notice that $\frac{mq - np}{|mq - np|}$ is a fancy way of expressing the sign of $mq - np$ — +1 when it’s positive, −1 when it’s negative.

When is $mq - np$ negative?

$$mq - np < 0$$

$$mq < np$$

$$m < \frac{np}{q}$$

$$m \leq \left\lfloor \frac{np}{q} \right\rfloor$$

That is, $mq - np$ is negative for $m = 1, \ldots, \left\lfloor \frac{np}{q} \right\rfloor$. So the product for $f(p, q)$ for fixed n has $\left\lfloor \frac{np}{q} \right\rfloor$ terms equal to -1, and

$$f(p, q) = \prod_{n=1}^{q'} (-1)^{\left\lfloor np/q \right\rfloor}.$$

(The terms equal to 1 contribute nothing to the product.)

Now

$$n = \left\lfloor \frac{np}{q} \right\rfloor + e_n + r_n \pmod{2}$$

$$n - r_n - e_n = \left\lfloor \frac{np}{q} \right\rfloor \pmod{2}$$

$$n - r_n + e_n = \left\lfloor \frac{np}{q} \right\rfloor \pmod{2}$$

The last equality comes from the fact that $-e_n = e_n \pmod{2}$.

Now if $a = b \pmod{2}$ then $(-1)^a = (-1)^b$. So

$$f(p, q) = \prod_{n=1}^{q'} (-1)^{n-r_n+e_n} = \prod_{n=1}^{q'} (-1)^{n-r_n} (-1)^{e_n} = (-1)^{\sum_{n=1}^{q'} \left(n-r_n \right)} \prod_{n=1}^{q'} (-1)^{e_n}.$$

Since the r_n’s are just the integers from 1 to q' and since n runs from 1 to q', the sum of the r_n’s is the same as the sum of the n’s from 1 to q', and

$$\sum_{n=1}^{q'} (n-r_n) = \sum_{n=1}^{q'} n - \sum_{n=1}^{q'} r_n = 0.$$

So the previous equation becomes

$$f(p, q) = \prod_{n=1}^{q'} (-1)^{e_n}.$$

Recall from above that

$$np = (-1)^{e_n} r_n \pmod{q}.$$
Now \(r_n \) is invertible mod \(q \), so I may write
\[
\frac{np}{r_n} = (-1)^{e^n} \pmod{q}.
\]
Plugging this into the last equation for \(f(p, q) \), I get
\[
f(p, q) = \prod_{n=1}^{q'} \frac{np}{r_n} \pmod{q}.
\]
But \(\prod_{n=1}^{q'} \frac{n}{r_n} = 1 \), because as \(n \) runs over the numbers from 1 to \(q' \), so does \(r_n \). So by Euler’s theorem,
\[
f(p, q) = \prod_{n=1}^{q'} \frac{p}{n} = p^{q'} = \left(\frac{p}{q} \right).
\]
Notice that
\[
\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = f(p, q) f(q, p) = \prod_{m=1}^{q'} \prod_{n=1}^{p'} \frac{mp - np}{|mp - np|} = \prod_{m=1}^{q'} \prod_{n=1}^{p'} \frac{np - mq}{|np - mq|}.
\]
I got the second product by swapping \(m \) and \(n \) in the first.

Whew! The rest is easy — fortunately!

\[
\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = f(p, q) f(q, p) = \prod_{m=1}^{q'} \prod_{n=1}^{p'} \frac{mp - np}{|mp - np|} = \prod_{m=1}^{q'} \prod_{n=1}^{p'} (-1) = (-1)^{p'q'}.
\]

Since \(p' = \frac{p - 1}{2} \) and \(q' = \frac{q - 1}{2} \), I’m done! \(\square \)

As complicated as this proof is, it’s actually no worse than most proofs of this result.

Before giving an example, I want to discuss what reciprocity tells you about solutions to quadratic congruences.

An odd prime \(p \) is congruent to 1 or to 3 mod 4.
If \(p = 4k + 1 \), then \(\frac{p - 1}{2} = 2k \), an even number. If \(p = 4k + 3 \), then \(\frac{p - 1}{2} = 2k + 1 \), an odd number.
Since an even number times anything is even,
\[
\frac{p - 1}{2} \cdot \frac{q - 1}{2} = \begin{cases}
\text{even} & \text{if } p \text{ or } q = 1 \pmod{4} \\
\text{odd} & \text{if } p \text{ and } q = 3 \pmod{4}
\end{cases}
\]

Therefore,
\[
\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^{\frac{p - 1}{2} \cdot \frac{q - 1}{2}} = \begin{cases}
+1 & \text{if } p \text{ or } q = 1 \pmod{4} \\
-1 & \text{if } p \text{ and } q = 3 \pmod{4}
\end{cases}
\]

However,
\[
\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = +1 \text{ means } \left(\frac{p}{q} \right) = \left(\frac{q}{p} \right) = 1 \text{ or } \left(\frac{p}{q} \right) = \left(\frac{q}{p} \right) = -1
\]
\[
\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = -1 \text{ means one of } \left(\frac{p}{q} \right), \left(\frac{q}{p} \right) \text{ is } +1 \text{ and the other is } -1
\]

Consider the congruences
\[
x^2 = p \pmod{q} \quad \text{and} \quad x^2 = q \pmod{p}.
\]
This means:

1. If at least one of \(p, q \) is congruent to 1 mod 4, then both equations are solvable or both equations are unsolvable.

2. If both \(p \) and \(q \) are congruent to 3 mod 4, then one equation is solvable and the other is unsolvable.

Corollary. Let \(p \) and \(q \) be distinct odd primes.

(a) If at least one of \(p, q \) is congruent to 1 mod 4, then

\[
\left(\frac{p}{q} \right) = \left(\frac{q}{p} \right).
\]

(b) If both \(p \) and \(q \) are congruent to 3 mod 4, then

\[
\left(\frac{p}{q} \right) = -\left(\frac{q}{p} \right). \quad \square
\]

Example. Compute \(\left(\frac{17}{71} \right) \).

\(17 = 1 \pmod{4} \), so

\[
\left(\frac{17}{71} \right) = \left(\frac{71}{17} \right) = \left(\frac{3}{17} \right) = \left(\frac{17}{3} \right) = \left(\frac{2}{3} \right) = 2^{(3-1)/2} = 2 = -1 \pmod{3}.
\]

In other words, \(x^2 = 17 \pmod{71} \) does not have any solutions. \(\square \)

Example. Compute \(\left(\frac{299}{359} \right) \).

\[
\left(\frac{299}{359} \right) = \left(\frac{13}{359} \right) \left(\frac{23}{359} \right).
\]

I’ll compute \(\left(\frac{13}{359} \right) \) and \(\left(\frac{23}{359} \right) \). First,

\[
\left(\frac{13}{359} \right) = \left(\frac{359}{13} \right) = \left(\frac{8}{13} \right) = 8^{(13-1)/2} = 8^6 = 262144 = -1 \pmod{13}.
\]

Next,

\[
\left(\frac{23}{359} \right) = -\left(\frac{359}{23} \right) = -\left(\frac{14}{23} \right) = -\left(\frac{2}{23} \right) \left(\frac{7}{23} \right).
\]

Next, I’ll compute \(\left(\frac{2}{23} \right) \) and \(\left(\frac{7}{23} \right) \).

\[
\left(\frac{2}{23} \right) = 2^{(23-1)/2} = 2^{11} = 2048 = 1 \pmod{23}.
\]

\[
\left(\frac{7}{23} \right) = -\left(\frac{23}{7} \right) = -\left(\frac{2}{7} \right) = -(2^{(7-1)/2}) = -8 = -1 \pmod{7}.
\]

©2019 by Bruce Ikenaga
Therefore, \(\left(\frac{23}{359} \right) = -(1)(-1) = 1 \), and
\[
\left(\frac{299}{359} \right) = (-1)(1) = -1.
\]

In other words, the congruence \(x^2 = 299 \pmod{359} \) does not have a solution. \(\square \)