Wilson’s Theorem and Fermat’s Theorem

- **Wilson’s theorem** says that \(p \) is prime if and only if \((p - 1)! = -1 \pmod{p}\).
- **Fermat’s theorem** says that if \(p \) is prime and \(p \nmid a \), then \(a^{p-1} = 1 \pmod{p} \).
- Wilson’s theorem and Fermat’s theorem can be used to reduce large numbers with respect to a given modulus and to solve congruences. They are also used to prove other results in number theory — for example, those used in cryptographic applications.

Lemma. Let \(p \) be a prime and let \(0 < k < p \). \(k^2 = 1 \pmod{p} \) if and only if \(k = 1 \) or \(k = p - 1 \).

Proof. If \(k = 1 \), then \(k^2 = 1 \pmod{p} \). If \(k = p - 1 \), then

\[k^2 = p^2 - 2p + 1 = 1 \pmod{p}. \]

Conversely, suppose \(k^2 = 1 \pmod{p} \). Then

\[p \mid k^2 - 1 = (k - 1)(k + 1), \]

and since \(p \) is prime, \(p \mid k - 1 \) or \(p \mid k + 1 \). The only number in \(\{1, \ldots, p - 1\} \) which satisfies \(p \mid k - 1 \) is 1, and the only number in \(\{1, \ldots, p - 1\} \) which satisfies \(p \mid k + 1 \) is \(p - 1 \). \(\square \)

Theorem. (Wilson’s theorem) Let \(p > 1 \). \(p \) is prime if and only if

\[(p - 1)! = -1 \pmod{p}.\]

Proof. Suppose \(p \) is prime. If \(k \in \{1, \ldots, p - 1\} \), then \(k \) is relatively prime to \(p \). So there are integers \(a \) and \(b \) such that

\[ak + bp = 1, \quad \text{or} \quad ak = 1 \pmod{p}. \]

Reducing \(a \) mod \(p \), I may assume \(a \in \{1, \ldots, p - 1\} \).

Thus, every element of \(\{1, \ldots, p - 1\} \) has a reciprocal mod \(p \) in this set. The preceding lemma shows that only 1 and \(p - 1 \) are their own reciprocals. Thus, the elements \(2, \ldots, p - 2 \) must pair up into pairs \(\{x, x^{-1}\} \). It follows that their product is 1. Hence,\n
\[(p - 1)! = 1 \cdot 2 \cdots (p - 2) \cdot (p - 1) = 1 \cdot 1 \cdot (p - 1) = p - 1 = -1 \pmod{p}. \]

Now suppose \((p - 1)! = -1 \pmod{p}\). I want to show \(p \) is prime. Begin by rewriting the equation as \((p - 1)! + 1 = kp\).

Suppose \(p = ab \). I may take \(1 \leq a, b \leq p \). If \(a = p \), the factorization is trivial, so suppose \(a < p \). Then \(a \mid (p - 1)! \) (since it’s one of \(\{1, \ldots, p - 1\} \)) and \(a \mid p \), so \((p - 1)! + 1 = kp\) shows \(a \mid 1 \). Therefore, \(a = 1 \).

This proves that the only factorization of \(p \) is the trivial one, so \(p \) is prime. \(\square \)

Example. Wilson’s theorem implies that the product of any ten consecutive numbers, none divisible by 11, equals \(-1 \pmod{11}\) (since any ten consecutive numbers reduce mod 11 to \(\{1, 2, \ldots, 10\} \)). For example,

\[12 \cdot 13 \cdots 20 \cdot 21 = -1 \pmod{11}. \]
Example. Find the least nonnegative residue of 70! (mod 5183).

Note that 5183 = 71 · 73. I'll start by finding the residues of 70! mod 71 and 73.
By Wilson’s theorem,

\[70! = -1 \pmod{71} . \]

Next, let \(k = 70! \pmod{73} \). Then

\[71 \cdot 72 \cdot k = 70! \cdot 71 \cdot 72 \pmod{73} , \]

\[(-2)(-1)k = 72! \pmod{73} , \]

\[2k = -1 \pmod{73} . \]

Note that \(2 \cdot 37 = 74 = 1 \pmod{73} \). So

\[37 \cdot 2k = 37 \cdot (-1) \pmod{73} , \]

\[k = -37 = 36 \pmod{73} . \]

Thus,

\[70! = -1 \pmod{71} \quad \text{and} \quad 70! = 36 \pmod{73} . \]

I’ll the the iterative method of the Chinese Remainder Theorem to get a congruence mod 5183. First, \(70! = -1 \pmod{71} \) means \(70! = -1 + 71a \) for some \(a \in \mathbb{Z} \). Plugging this into the second congruence yields

\[-1 + 71a = 36 \pmod{73} , \]

\[71a = 37 \pmod{73} , \]

\[-2a = 37 \pmod{73} , \]

\[(-37)(-2a) = (-37)(37) \pmod{73} , \]

\[a = -1369 = 18 \pmod{73} . \]

The last congruence means that \(a = 18 + 73b \) for some \(b \in \mathbb{Z} \). Plugging this into \(70! = -1 + 71a \) gives

\[70! = -1 + 71(18 + 73b) = 1277 + 5183b, \quad \text{or} \quad 70! = 1277 \pmod{5183} . \]

Theorem. (Fermat) Let \(p \) be prime, and suppose \(p \nmid a \). Then \(a^{p-1} = 1 \pmod{p} \).

Proof. The idea is to show that the integers

\[a, 2a, \ldots, (p-1)a \]

reduce mod \(p \) to the standard system of residues \(\{1, \ldots, p-1\} \), then apply Wilson’s theorem.

There are \(p-1 \) numbers in the set \(\{a, 2a, \ldots, (p-1)a\} \). So all I need to do is show that they’re distinct mod \(p \). Suppose that \(1 \leq j, k \leq p-1 \), and

\[aj = ak \pmod{p} . \]

This means \(p \mid aj - ak = a(j - k) \), so \(p \mid a \) or \(p \mid j - k \). Since the first case is ruled out by assumption, \(p \mid j - k \). But since \(1 \leq j, k \leq p-1 \), this is only possible if \(j = k \).

Thus, \(\{a, 2a, \ldots, (p-1)a\} \) are \(p-1 \) distinct numbers mod \(p \). So if I reduce mod \(p \), I must get the numbers in \(\{1, \ldots, p-1\} \). Hence,

\[a \cdot 2a \cdots (p-1)a = 1 \cdot 2 \cdots (p-1) = (p-1)! = -1 \pmod{p} . \]
On the other hand, another application of Wilson’s theorem shows that
\[a \cdot 2a \cdots (p-1)a = a^{p-1}(p-1)! = -a^{p-1} \pmod{p} . \]
So \(-a^{p-1} = -1 \pmod{p}\), or \(a^{p-1} = 1 \pmod{p}\).

Corollary. If \(p\) is prime, then \(a^p = a \pmod{p}\) for all \(a\).

Proof. If \(p \mid a\), then \(a^p = 0 \pmod{p}\) and \(a = 0 \pmod{p}\), so \(a^p = a \pmod{p}\).

If \(p \nmid a\), then \(a^{p-1} = 1 \pmod{p}\). Multiplying by \(a\), I get \(a^p = a \pmod{p}\) again.

Example. Compute \(50^{250} \pmod{83}\).

One way is to multiply out \(50^{250}\); Mathematica tells me it is

\[
52714787526044560247265192192255725514240233239220086415170222
09078987540239533171017648022226464649987502681255357847020768
63325972445883979224173171678557991981506347656250000000000000
00
00
00

Now just reduce mod 83. Heh.

If you don’t have Mathematica, maybe you should use Fermat’s theorem. \(83 \nmid 50\), so Fermat says \(50^{82} = 1 \pmod{83}\). Now \(3 \cdot 82 = 246\), so

\[50^{250} = 50^{246} \cdot 50^4 = (50^{82})^3 \cdot 2500^2 = 1^3 \cdot 10^2 = 100 = 17 \pmod{83} . \]

In other words, if you’re trying to reduce \(a^k \pmod{p}\), where \(p \nmid a\), factor out as many \(a^{p-1}\)’s as possible, then reduce the rest “by hand”.

Example. Solve \(16x = 25 \pmod{41}\).

I’d like to multiply both sides by the reciprocal of 16 mod 41. What is it? Well, I could use the Euclidean algorithm on \((16, 41)\), or I could do a multiplication table mod 41. A simpler approach is to note that by Fermat, \(16^{40} = 1 \pmod{41}\). Hence,

\[16^{39} \cdot 16x = 16^{39} \cdot 25 \pmod{41} \quad \text{gives} \quad x = 16^{39} \cdot 25 \pmod{41}. \]

Now this is an answer, but a rather cheesy one. I ought to reduce the right side mod 41 to something a little smaller! I can’t use Fermat any more, so I just “divide and conquer”.

\[16^2 = 256 = 10 \pmod{41}, \quad \text{so} \quad 16^{39} \cdot 25 = (16^2)^{19} \cdot (16 \cdot 25) = 10^{19} \cdot 400 = 10^{19} \cdot 31 \pmod{41}. \]

Now \(10^2 = 100 = 18 \pmod{41}, \) so

\[10^{19} \cdot 31 = (10^2)^9 \cdot (10 \cdot 31) = 18^9 \cdot 310 = 18^9 \cdot 23 \pmod{41}. \]

\[18^2 = 324 = 37 \pmod{41}, \quad \text{so} \quad 18^9 \cdot 23 = (18^4)^2 \cdot (18 \cdot 23) = 37^4 \cdot 414 = 1874161 \cdot 414 = 10 \cdot 4 = 40 \pmod{41}. \]

(I reduce down to the point where the arithmetic can be handled by whatever computational tools I have available.)

©2008 by Bruce Ikenaga