Review Problems for the Final

These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence of a topic does not imply that it won't appear on the test.

1. Prove that if n is an integer, then $(4 n+6,3 n+4)$ is either 1 or 2 . Give specific examples which show that both cases can occur.
2. Find the greatest common divisor of 847 and 133 and write it as a linear combination with integer coefficients of 847 and 133.
3. Show that the following set is a subgroup of $G L(2, \mathbb{R})$:

$$
H=\left\{\left.\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right] \right\rvert\, x, y \in \mathbb{R}, \quad x y \neq 0\right\}
$$

However, show that it is not a normal subgroup of $G L(2, \mathbb{R})$.
4. Consider the map $\phi: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{8}$ given by $\phi(n)=n+2(\bmod 8)$. Is ϕ a group homomorphism? Why or why not?
5. Consider the map $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $\phi(n)=n^{2}$. Is ϕ a group homomorphism? Why or why not?
6. $\mathbb{Z} \times \mathbb{Z}$ is a group under componentwise addition and \mathbb{Z} is a group under addition. Prove that

$$
\frac{\mathbb{Z} \times \mathbb{Z}}{\langle(7,25)\rangle} \approx \mathbb{Z}
$$

7. \mathbb{R}^{2} is a group under componentwise addition and \mathbb{R} is a group under addition. Let

$$
H=\{x \cdot(19,-\sqrt{7}) \mid x \in \mathbb{R}\}
$$

Prove that $\frac{\mathbb{R}^{2}}{H} \approx \mathbb{R}$.
8. $\mathbb{Z} \times \mathbb{Z}$ and $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ are groups under componentwise addition. Let

$$
H=\{t \cdot(-4,3,1) \mid t \in \mathbb{Z}\}
$$

Show that

$$
\frac{\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}}{H} \approx \mathbb{Z} \times \mathbb{Z}
$$

9. Here is the multiplication table for the Klein 4-group V :

	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

Write down all the subgroups of V.
10. Find all integer solutions (x, y) to

$$
x^{2}-y^{2}+2 y=12
$$

11. Find an element of order 30 in $\mathbb{Z}_{25} \times \mathbb{Z}_{12}$.
12. Find the primary decomposition of U_{16}.
13. (a) What is the order of the element a^{4} in the cyclic group

$$
\left\{a^{k} \mid a^{22}=1\right\} ?
$$

(b) What is the order of the element 10 in \mathbb{Z}_{45} ?
(c) What elements generate the cyclic group \mathbb{Z}_{12} ?
14. Subgroups of cyclic groups are cyclic. Give an example of an abelian group which is not cyclic, but in which every proper subgroup is cyclic.
15. (a) Prove that a group cannot be the union of two proper subgroups.
(b) Find a group which is a union of three proper subgroups.
16. Let $\phi: G \rightarrow H$ be a group homomorphism. Prove that ϕ is injective if and only if $\operatorname{ker} \phi=\{1\}$.
17. Is there a group homomorphism $\phi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{12}$ such that $\operatorname{ker} \phi=\{0\}$? Construct such a homomorphism, or show that such a homomorphism cannot exist.
18. (a) Give an example of a finite group which is not abelian.
(b) Give an example of an abelian group which is not finite.
(c) Give an example of a group which is neither finite nor abelian.
19. Let $S L(2, \mathbb{R})$ denote the subgroup of $G L(2, \mathbb{R})$ consisting of matrices of determinant 1 . Show that the following matrices lie in the same left coset of $S L(2, \mathbb{R})$:

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
5 & 2 \\
11 & 5
\end{array}\right]
$$

20. Give an example of a finite commutative ring with 1 which is not an integral domain.
21. (a) Define $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x, y)=x^{3}+y^{3}
$$

Show that f is surjective.
(b) Define $g: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(x, y, z)=x-2 y+3 z
$$

Show that g is surjective.
(c) Define $h: M(2, \mathbb{R}) \rightarrow M(2, \mathbb{R})$ by

$$
h\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
a & 2 b \\
3 c & 4 d
\end{array}\right]
$$

Show that h is surjective.
(d) Define $k: \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ by

$$
k(x)=(x, x)
$$

Show that k is not surjective.
(e) Give an example of a group map $p: \mathbb{Z} \rightarrow \mathbb{Z}$ which is not surjective, and a surjective function $q: \mathbb{Z} \rightarrow \mathbb{Z}$ which is not a group map.
22. (a) Explain why \mathbb{Q} is not a group under multiplication.
(b) Do the nonzero elements of \mathbb{Z}_{6} form a group under multiplication $\bmod 6$?
(c) Show that the nonzero elements of \mathbb{Z}_{5} form a group under multiplication mod 5. What group?
23. Reduce $32^{2011}(\bmod 41)$ to an integer in the set $\{0,1, \ldots, 40\}$.
24. Reduce $\frac{148!}{3 \cdot 75}(\bmod 149)$ to an integer in the set $\{0,1, \ldots, 148\}$. (Note: 149 is prime.)
25. The definition of a subring of a ring does not require that you check associativity for addition or multiplication. Explain why.
26. Prove that if I is an ideal in a ring R with identity and $1 \in I$, then $I=R$.
27. Show that the only (two-sided) ideals in $M(2, \mathbb{R})$ are the zero ideal and the whole ring.
28. Consider the following subset of the ring $\mathbb{Z} \times \mathbb{Z}$:

$$
S=\{(m+n, m-n) \mid m, n \in \mathbb{Z}\}
$$

Check each axiom for an ideal. If the axiom holds, prove it. If the axiom does not hold, give a specific counterexample.
29. (a) Show that $x^{2}+x+1$ is irreducible in $\mathbb{Z}_{5}[x]$.
(b) Find $\left[(2 x+3)+\left\langle x^{2}+x+1\right\rangle\right]^{-1}$ in $\frac{\mathbb{Z}_{5}[x]}{\left\langle x^{2}+x+1\right\rangle}$.
(c) Compute the product of the cosets $\left(\left(x^{2}+2\right)+\left\langle x^{2}+x+1\right\rangle\right) \cdot\left((3 x+4)+\left\langle x^{2}+x+1\right\rangle\right)$ in the quotient ring $\frac{\mathbb{Z}_{5}[x]}{\left\langle x^{2}+x+1\right\rangle}$. Write your answer in the form $(a x+b)+\left\langle x^{2}+x+1\right\rangle$, where $a, b \in \mathbb{Z}_{5}$.
30. Factor $x^{4}+64$ in $\mathbb{Q}[x]$.
31. (a) Show that $x^{4}+1$ has no roots in \mathbb{Z}_{5}.
(b) Show that $x^{4}+1$ factors in $\mathbb{Z}_{5}[x]$.
32. In the ring $\mathbb{R}[x]$, consider the subset

$$
\left\langle x^{2}-x-2, x^{2}-1\right\rangle=\left\{a(x)\left(x^{2}-x-2\right)+b(x)\left(x^{2}-1\right) \mid a(x), b(x) \in \mathbb{R}[x]\right\}
$$

(a) Show that $\left\langle x^{2}-x-2, x^{2}-1\right\rangle$ is an ideal.
(b) Is $x^{2}+x+3$ in $\left\langle x^{2}-x-2, x^{2}-1\right\rangle$?
33. $x^{2}+2=(x+1)(x+2)$ is a factorization of $x^{2}+2$ into irreducibles in $\mathbb{Z}_{3}[x]$. Find a different factorization of $x^{2}+2$ into irreducibles in $\mathbb{Z}_{3}[x]$.
34. Compute the product of the cycles $\left(\begin{array}{ll}2 & 4 \\ 6\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)$ (right to left) and write the result as a product of disjoint cycles.
35. Define $\phi: \mathbb{Z}[x] \rightarrow \mathbb{Z}[x]$ by

$$
\phi(f(x))=f(x)^{2} .
$$

Determine which of the axioms for a ring map are satisfied by ϕ. If an axiom is not satisfied, give a specific example which shows that the axiom is violated.
36. Define $\phi: \mathbb{Z}_{2}[x] \rightarrow \mathbb{Z}_{2}[x]$ by

$$
\phi(f(x))=f(x)^{2} .
$$

(a) Show that ϕ is a ring map.
(b) Determine the kernel of ϕ.
(c) Show that $x^{4}+1 \in \operatorname{im} \phi$. Is ϕ surjective?
37. Find the quotient and the remainder when $2 x^{4}+3 x^{3}+x+1$ is divided by $3 x^{2}+1$ in $\mathbb{Z}_{5}[x]$.
38. (a) Explain why $x^{4}+1$ has no roots in \mathbb{R}.
(b) Is $x^{4}+1$ irreducible in $\mathbb{R}[x]$?
39. List the zero divisors and the units in $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$.
40. Prove that if I is a left ideal in a division ring R, then either $I=\{0\}$ or $I=R$.
41. Let R be a ring, and let $r \in R$. The centralizer $C(r)$ of r is the set of elements of R which commute with r :

$$
C(r)=\{a \in R \mid r a=a r\} .
$$

Prove that $C(r)$ is a subring of R.
42. Let

$$
I=\left\{\left.\left[\begin{array}{ccc}
0 & x & 0 \\
0 & y & 0 \\
0 & z & 0
\end{array}\right] \right\rvert\, x, y, z \in \mathbb{R}\right\} .
$$

Prove that I is a left ideal, but not a right ideal, in the ring $M(3, \mathbb{R})$.
43. (a) List the elements of U_{42}.
(b) List the elements of the subgroup $\langle 25\rangle$ in U_{42}.
(c) List the cosets of the subgroup $\langle 25\rangle$ in U_{42}.
(d) Is the quotient group isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or \mathbb{Z}_{4} ?
44. Find the primary decomposition and the invariant factor decomposition for $\mathbb{Z}_{24} \times \mathbb{Z}_{28} \times \mathbb{Z}_{21}$.
45. What is the largest possible order of an element of $\mathbb{Z}_{30} \times \mathbb{Z}_{45} \times \mathbb{Z}_{60}$?
46. Let $f, g: G \rightarrow H$ be group maps. Let

$$
E=\{x \in G \mid f(x)=g(x)\} .
$$

Prove that E is a subgroup of $G .(E$ is called the equalizer of f and g.)
47. Let R be a ring such that for each $r \in R$, there is a unique element $s \in R$ such that $r s r=r$. Prove that R has no zero divisors.
48. Suppose $f: R \rightarrow S$ is a ring homomorphism and R and S are rings with identity, but do not assume that $f\left(1_{R}\right)=1_{S}$. Prove that if f is surjective, then $f\left(1_{R}\right)=1_{S}$.
49. Factor $3 x^{3}+2 x^{2}+3 x+2$ in $\mathbb{Z}_{5}[x]$.
50. Find the remainder when $x^{41}+3 x^{39}+4 x^{11}+2 x^{9}+5 x+3$ is divided by $x+4$ in $\mathbb{Z}_{5}[x]$.
51. Calvin Butterball thinks $x^{2}+1 \in \mathbb{Z}_{2}[x]$ is irreducible, based on the fact that solving $x^{2}+1=0$ gives $x= \pm i$, which are complex numbers. Is he right?
52. Find the greatest common divisor of $x^{4}+x^{3}+x^{2}+2 x+3$ and $x^{3}+4 x^{2}+2 x+3$ in $\mathbb{Z}_{5}[x]$ and express the greatest common divisor as a linear combination (with coefficients in $\mathbb{Z}_{5}[x]$) of the two polynomials.
53. The following set is an ideal in the ring $\mathbb{Z}_{2} \times \mathbb{Z}_{8}$:

$$
I=\{(0,0),(0,4),(1,0),(1,4)\} .
$$

(a) List the cosets of I in $\mathbb{Z}_{2} \times \mathbb{Z}_{8}$.
(b) Construct addition and multiplication tables for the quotient ring $\frac{\mathbb{Z}_{2} \times \mathbb{Z}_{8}}{I}$.
(c) Is $\frac{\mathbb{Z}_{2} \times \mathbb{Z}_{8}}{I}$ an integral domain?

Solutions to the Review Problems for the Final

1. Prove that if n is an integer, then $(4 n+6,3 n+4)$ is either 1 or 2 . Give specific examples which show that both cases can occur.

Note that

$$
3(4 n+6)-4(3 n+4)=2
$$

Now $(4 n+6,3 n+4)$ divides $4 n+6$ and $3 n+4$, so it divides $3(4 n+6)-4(3 n+4)$, and hence it divides
2. The only positive integers that divide 2 are 1 and 2 . Hence, $(4 n+6,3 n+4)$ is either 1 or 2 .

If $n=1$, I have $4 n+6=10$ and $3 n+4=7$, and $(10,7)=1$.
If $n=2$, I have $4 n+6=14$ and $3 n+4=10$, and $(14,10)=2$.
This shows that both cases can occur. \quad]
2. Find the greatest common divisor of 847 and 133 and write it as a linear combination with integer coefficients of 847 and 133.

847	-	51
133	6	8
49	2	3
35	1	2
14	2	1
7	2	0

The greatest common divisor is 7 , and

$$
7=(-8)(847)+(51)(133)
$$

3. Show that the following set is a subgroup of $G L(2, \mathbb{R})$:

$$
H=\left\{\left.\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right] \right\rvert\, x, y \in \mathbb{R}, \quad x y \neq 0\right\}
$$

However, show that it is not a normal subgroup of $G L(2, \mathbb{R})$.
Since $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in H, H$ contains the identity.
If $\left[\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right] \in H$, then

$$
\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right]=\left[\begin{array}{cc}
x^{-1} & 0 \\
0 & y^{-1}
\end{array}\right] \in H
$$

(Note that $x y \neq 0$ implies $x \neq 0$ and $y \neq 0$, so x^{-1} and y^{-1} are defined.) Therefore, H is closed under taking inverses.

Finally,

$$
\left[\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right]\left[\begin{array}{cc}
x^{\prime} & 0 \\
0 & y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
x x^{\prime} & 0 \\
0 & y y^{\prime}
\end{array}\right] \in H
$$

(If $x y \neq 0$ and $x^{\prime} y^{\prime} \neq 0$, then $x, x^{\prime}, y, y^{\prime} \neq 0$, so $x x^{\prime} \neq 0$ and $y y^{\prime} \neq 0$.) Thus, H is closed under products. Hence, H is a subgroup.

However,

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]^{-1}=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & -2 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
-1 & 2 \\
-3 & 4
\end{array}\right] \notin H
$$

Therefore, H is not a normal subgroup.
4. Consider the map $\phi: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{8}$ given by $\phi(n)=n+2(\bmod 8)$. Is ϕ a group homomorphism? Why or why not?

A group homomorphism must map the identity in the domain to the identity in the range. The identity in \mathbb{Z}_{8} is 0 . However, $\phi(0)=2$. Therefore, ϕ is not a homomorphism.
5. Consider the map $\phi: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $\phi(n)=n^{2}$. Is ϕ a group homomorphism? Why or why not?

In this case, $\phi(0)=0$, so ϕ does map the identity to the identity. However,

$$
\phi(1+1)=\phi(2)=2^{2}=4, \quad \text { but } \quad \phi(1)+\phi(1)=1+1=2 .
$$

Since $\phi(a+b) \neq \phi(a)+\phi(b)$ for all a and b, ϕ is not a homomorphism.
6. $\mathbb{Z} \times \mathbb{Z}$ is a group under componentwise addition and \mathbb{Z} is a group under addition. Prove that

$$
\frac{\mathbb{Z} \times \mathbb{Z}}{\langle(7,25)\rangle} \approx \mathbb{Z}
$$

Define $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ by

$$
f(x, y)=25 x-7 y
$$

f can be represented by matrix multiplication:

$$
\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{ll}
25 & -7
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Hence, it's a group map.
Let $n(7,25)=(7 n, 25 n) \in\langle(7,25)\rangle$. Then

$$
f((7 n, 25 n)=25(7 n)-7(25 n)=0
$$

Thus, $\langle(7,25)\rangle \subset \operatorname{ker} f$.
Let $(x, y) \in \operatorname{ker} f$. Then

$$
\begin{aligned}
f(x, y) & =0 \\
25 x-7 y & =0 \\
25 x & =7 y
\end{aligned}
$$

Now $25 \mid 7 y$ but $(7,25)=1$. By Euclid's lemma, $25 \mid y$. Say $y=25 n$. Then

$$
25 x=7(25 n), \quad \text { so } \quad x=7 n
$$

Therefore,

$$
(x, y)=(7 n, 25 n)=n(7,25) \in\langle(7,25)\rangle
$$

Thus, $\operatorname{ker} f \subset\langle(7,25)\rangle$.
Hence, $\langle(7,25)\rangle=\operatorname{ker} f$.
Let $z \in \mathbb{Z}$. Note that

$$
1=(25,-7)=2 \cdot 25+7 \cdot(-7)
$$

Multiplying by z, I get

$$
z=25(2 z)-7(7 z)
$$

Then

$$
f(2 z, 7 z)=25(2 z)-7(7 z)=z
$$

This proves that $\operatorname{im} f=\mathbb{Z}$.
Hence,

$$
\frac{\mathbb{Z} \times \mathbb{Z}}{\langle(7,25)\rangle}=\frac{\mathbb{Z} \times \mathbb{Z}}{\operatorname{ker} f} \approx \operatorname{im} f=\mathbb{Z}
$$

7. \mathbb{R}^{2} is a group under componentwise addition and \mathbb{R} is a group under addition. Let

$$
H=\{x \cdot(19,-\sqrt{7}) \mid x \in \mathbb{R}\}
$$

Prove that $\frac{\mathbb{R}^{2}}{H} \approx \mathbb{R}$.
Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)=\sqrt{7} x+19 y
$$

Note that

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{ll}
\sqrt{7} & 19
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Since f can be expressed as multiplication by a constant matrix, it's a linear transformation, and hence a group map.

Let $x \cdot(19,-\sqrt{7}) \in H$. Then

$$
f[x \cdot(19,-\sqrt{7})]=f(19 x,-\sqrt{7} x)=\sqrt{7}(19 x)+19(-\sqrt{7} x)=0
$$

Therefore, $x \cdot(19,-\sqrt{7}) \in \operatorname{ker} f$, and hence $H \subset \operatorname{ker} f$.
Let $(x, y) \in \operatorname{ker} f$. Then

$$
\begin{aligned}
f(x, y) & =0 \\
\sqrt{7} x+19 y & =0 \\
19 y & =-\sqrt{7} x \\
y & =-\frac{\sqrt{7}}{19} x
\end{aligned}
$$

Hence,

$$
(x, y)=\left(x,-\frac{\sqrt{7}}{19} x\right)=\frac{1}{19} x \cdot(19,-\sqrt{7}) \in H
$$

Therefore, $\operatorname{ker} f \subset H$. Hence, ker $f=H$.
Let $z \in \mathbb{R}$. Note that

$$
f\left(\frac{1}{\sqrt{7}} z, 0\right)=\sqrt{7} \cdot \frac{1}{\sqrt{7}} z+19 \cdot 0=z
$$

Hence, $\operatorname{im} f=\mathbb{R}$.
Thus,

$$
\frac{\mathbb{R}^{2}}{H}=\frac{\mathbb{R}^{2}}{\operatorname{ker} f} \approx \operatorname{im} f=\mathbb{R}
$$

8. $\mathbb{Z} \times \mathbb{Z}$ and $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ are groups under componentwise addition. Let

$$
H=\{t \cdot(-4,3,1) \mid t \in \mathbb{Z}\}
$$

Show that

$$
\frac{\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}}{H} \approx \mathbb{Z} \times \mathbb{Z}
$$

Define $f: \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ by

$$
f(x, y, z)=(x+4 z, y-3 z)
$$

Note that

$$
f\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{ccc}
1 & 0 & 4 \\
0 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Since f can be written as multiplication by a constant matrix, it is a group map.
Let $t \cdot(-4,3,1)=(-4 t, 3 t, t) \in H$. Then

$$
f(-4 t, 3 t, t)=(-4 t+4 t, 3 t-3 t)=(0,0)
$$

Hence, $(-4 t, 3 t, t) \in \operatorname{ker} f$, so $H \subset \operatorname{ker} f$.
Let $(x, y, z) \in \operatorname{ker} f$. Then

$$
\begin{aligned}
f(x, y, z) & =(0,0) \\
(x+4 z, y-3 z) & =(0,0)
\end{aligned}
$$

This gives $x+4 z=0$ and $y-3 z=0$. The first equation gives $x=-4 z$ and the second equation gives $y=3 z$. Hence,

$$
(x, y, z)=(-4 z, 3 z, z) \in H
$$

Therefore, $\operatorname{ker} f \subset H$, and hence $\operatorname{ker} f=H$.
Let $(a, b) \in \mathbb{Z} \times \mathbb{Z}$. Then

$$
f(a, b, 0)=(a, b)
$$

Hence, f is surjective, and $\operatorname{im} f=\mathbb{Z} \times \mathbb{Z}$.
Therefore,

$$
\frac{\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}}{H}=\frac{\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}}{\operatorname{ker} f} \approx \operatorname{im} f=\mathbb{Z} \times \mathbb{Z}
$$

9. Here is the multiplication table for the Klein 4 -group V :

	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

Write down all the subgroups of V.
By Lagrange's theorem, the order of a subgroup must divide the order of the group. Hence, there could be subgroups of order 1,2 , or 4 .

The subgroup of order 1 is $\{1\}$; the subgroup of order 4 is the whole group. A subgroup of order 2 must contain the identity and another element; by closure under inverses, the other element must be its own inverse. Hence, the subgroups of V are:

$$
V,\{1, a\},\{1, b\},\{1, c\},\{1\}
$$

10. Find all integer solutions (x, y) to

$$
\begin{aligned}
x^{2}-y^{2}+2 y=12 & \\
x^{2}-y^{2}+2 y & =12 \\
x^{2}-y^{2}+2 y-1 & =12-1 \\
x^{2}-(y-1)^{2} & =11 \\
(x-(y-1))(x+(y-1)) & =11 \\
(x-y+1)(x+y-1) & =11
\end{aligned}
$$

This equation expresses 11 as a product of two integers $x-y+1$ and $x+y-1$. There are four ways to do this.

Case 1.

$$
\begin{aligned}
& x-y+1=11 \\
& x+y-1=1
\end{aligned}
$$

Solving simultaneously, I get $x=6$ and $y=-4$.

Case 2.

$$
\begin{aligned}
& x-y+1=1 \\
& x+y-1=11
\end{aligned}
$$

Solving simultaneously, I get $x=6$ and $y=6$.

Case 3.

$$
\begin{aligned}
& x-y+1=-1 \\
& x+y-1=-11
\end{aligned}
$$

Solving simultaneously, I get $x=-6$ and $y=-4$.

Case 4.

$$
\begin{aligned}
& x-y+1=-11 \\
& x+y-1=-1
\end{aligned}
$$

Solving simultaneously, I get $x=-6$ and $y=6$.
The solutions are $(6,-4),(6,6),(-6,-4)$, and $(-6,6)$.
11. Find an element of order 30 in $\mathbb{Z}_{25} \times \mathbb{Z}_{12}$.

5 has order 5 in \mathbb{Z}_{25}.
2 has order 6 in \mathbb{Z}_{12}.
Hence, $(5,2)$ has order $[5,6]=30$ in $\mathbb{Z}_{25} \times \mathbb{Z}_{12} . \quad \square$
12. Find the primary decomposition of U_{16}.

$$
U_{16}=\{1,3,5,7,9,11,13,15\}
$$

The operation is multiplication mod 16. The possibilities are

$$
\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \quad \mathbb{Z}_{2} \times \mathbb{Z}_{4}, \quad \mathbb{Z}_{8}
$$

I start computing the orders of elements. The order of an element can be $1,2,4,8$, or 16 , so I can repeatedly square until I get the identity.

$$
3^{2}=9, \quad 3^{4}=1
$$

Since 3 has order 4 , and since every element of $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ has order 2 or less, $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is ruled out.

$$
\begin{gathered}
5^{2}=9, \quad 5^{4}=1 \\
7^{2}=1 \\
9^{2}=1 \\
11^{2}=9, \quad 11^{4}=1 \\
13^{2}=9, \quad 13^{4}=1 \\
15^{2}=1
\end{gathered}
$$

Since there are no elements of order 8 , the group can't be \mathbb{Z}_{8}. Hence, $U_{16} \approx \mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
13. (a) What is the order of the element a^{4} in the cyclic group

$$
\left\{a^{k} \mid a^{22}=1\right\} ?
$$

(b) What is the order of the element 10 in \mathbb{Z}_{45} ?
(c) What elements generate the cyclic group \mathbb{Z}_{12} ?
(a) The order of a^{k} in the cyclic group of order n with generator a is $\frac{n}{(n, k)}$. So the order of a^{4} in $\left\{a^{k} \mid a^{22}=1\right\}$ is

$$
\frac{22}{(4,22)}=\frac{22}{2}=11
$$

(b) The order of 10 in \mathbb{Z}_{45} is

$$
\frac{45}{(45,10)}=\frac{45}{5}=9
$$

(c) The order of the element $m \in \mathbb{Z}_{12}$ is $\frac{12}{(m, 12)}$. If m generates \mathbb{Z}_{12}, it must have order 12 , so

$$
\frac{12}{(m, 12)}=12
$$

This implies that $(m, 12)=1$; that is, m is relatively prime to 12 . Therefore, the generators are $\{1,5,7,11\}$.
14. Subgroups of cyclic groups are cyclic. Give an example of an abelian group which is not cyclic, but in which every proper subgroup is cyclic.
V is not cyclic, since there are no elements of order 4. However, every subgroup of V is cyclic.
15. (a) Prove that a group cannot be the union of two proper subgroups.
(b) Find a group which is a union of three proper subgroups.
(a) Suppose G is a group, H and K are proper subgroups, and $G=H \cup K$. Since H is not all of G, I can find an element $k \in K$ such that $k \notin H$. Likewise, I can find an element $h \in H$ such that $h \notin K$.

Now consider the element $h k$. It's in G, so it's either in H or K. But $h k=h^{\prime} \in H$ gives $k=h^{-1} h^{\prime} \in H$, contradicting the assumption that $k \notin H$. And $h k=k^{\prime} \in K$ gives $h=k^{\prime} k^{-1} \in K$, which contradicts the assumption that $h \notin K$.

Therefore, G cannot be the union of H and K. \quad
(b) Consider the Klein 4-group V :

	1	a	b	c
1	1	a	b	c
a	a	1	c	b
b	b	c	1	a
c	c	b	a	1

V is the union of the proper subgroups $\{1, a\},\{1, b\}$, and $\{1, c\}$.
16. Let $\phi: G \rightarrow H$ be a group homomorphism. Prove that ϕ is injective if and only if ker $\phi=\{1\}$.

Suppose that ϕ is injective. (This means that different inputs go to different outputs, or alternatively, that $\phi(x)=\phi(y)$ implies $x=y$.) I want to show that $\operatorname{ker} \phi=\{1\}$.

Since $\{1\} \subset \operatorname{ker} \phi$, I need to show $x \in \operatorname{ker} \phi \operatorname{implies} x=1$. Therefore, take $x \in \operatorname{ker} \phi$, so $\phi(x)=1$. Now $\phi(1)=1$, so $\phi(x)=1=\phi(1)$. Since ϕ is injective, this implies that $x=1$, which is what I wanted to show.

Conversely, suppose $\operatorname{ker} \phi=\{1\}$. I want to show that ϕ is injective. To do this, suppose $\phi(x)=\phi(y)$. I need to show $x=y$. Rearrange the equation:

$$
\phi(x)=\phi(y), \quad \phi(x)^{-1} \phi(x)=\phi(x)^{-1} \phi(y), \quad 1=\phi(x)^{-1} \phi(y), \quad 1=\phi\left(x^{-1}\right) \phi(y), \quad 1=\phi\left(x^{-1} y\right)
$$

But this means that $x^{-1} y \in \operatorname{ker} \phi=\{1\}$, i.e.

$$
x^{-1} y=1, \quad \text { so } \quad x=y
$$

Therefore, ϕ is injective.
17. Is there a group homomorphism $\phi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{12}$ such that $\operatorname{ker} \phi=\{0\}$? Construct such a homomorphism, or show that such a homomorphism cannot exist.

If $\phi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{12}$ is a homomorphism such that $\operatorname{ker} \phi=\{0\}$, then ϕ is 1-1. Since the image of ϕ will be isomorphic to $\mathbb{Z}_{6} /\{0\} \approx \mathbb{Z}_{6}$, the image of such a map must be a cyclic subgroup of order 6 .

The only subgroup of order 6 in \mathbb{Z}_{12} is

$$
\{0,2,4,6,8,10\}
$$

The only possibility is that ϕ maps \mathbb{Z}_{6} isomorphically onto this subgroup. Such an isomorphism must send the generator $1 \in \mathbb{Z}_{6}$ to a generator of $\{0,2,4,6,8,10\}$. Since 2 generates $\{0,2,4,6,8,10\}$, I will try $\phi(1)=2$.

Since ϕ is supposed to be a group map, this forces $\phi(x)=2 x(\bmod 12)$ for $x \in \mathbb{Z}_{6}$. Then if $x, y \in \mathbb{Z}_{6}$,
$\phi(x+y)=2(x+y)(\bmod 12)=(2 x+2 y)(\bmod 12)=2 x(\bmod 12)+2 y(\bmod 12)=\phi(x)+\phi(y)$.
Hence, ϕ is a group map.
Finally, the only element of \mathbb{Z}_{6} that maps to 0 is 0 , by inspection. Thus, $\operatorname{ker} \phi=\{0\}$, and ϕ satisfies the conditions of the problem.
18. (a) Give an example of a finite group which is not abelian.
(b) Give an example of an abelian group which is not finite.
(c) Give an example of a group which is neither finite nor abelian.
(a) S_{3} is finite, but not abelian.
(b) \mathbb{Z} is abelian, but not finite.
(c) $G L(2, \mathbb{R})$ is an infinite group which is not abelian. For example,

$$
\left[\begin{array}{llll}
1 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 3 \\
0 & 1
\end{array}\right] \quad \text { but }\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & 1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] .
$$

19. Let $S L(2, \mathbb{R})$ denote the subgroup of $G L(2, \mathbb{R})$ consisting of matrices of determinant 1 . Show that the following matrices lie in the same left coset of $S L(2, \mathbb{R})$:

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
5 & 2 \\
11 & 5
\end{array}\right]
$$

If H is a subgroup of a group G, then $a H=b H$ if and only if $b^{-1} a \in H$. In this case,

$$
\left[\begin{array}{cc}
5 & 2 \\
11 & 5
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}
5 & -2 \\
-11 & 5
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & 4
\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}
3 & -3 \\
-6 & 9
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right] .
$$

Now

$$
\operatorname{det}\left[\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right]=3-2=1
$$

Hence,

$$
\left[\begin{array}{cc}
5 & 2 \\
11 & 5
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
-2 & 3
\end{array}\right] \in S L(2, \mathbb{R})
$$

This shows that the matrices lie in the same left coset of $S L(2, \mathbb{R})$.
20. Give an example of a finite commutative ring with 1 which is not an integral domain.
\mathbb{Z}_{4} is finite, commutative, and has a multiplicative identity 1 . But $2 \cdot 2=0$, so it's not a domain.
21. (a) Define $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x, y)=x^{3}+y^{3}
$$

Show that f is surjective.
(b) Define $g: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(x, y, z)=x-2 y+3 z
$$

Show that g is surjective.
(c) Define $h: M(2, \mathbb{R}) \rightarrow M(2, \mathbb{R})$ by

$$
h\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
a & 2 b \\
3 c & 4 d
\end{array}\right]
$$

Show that h is surjective.
(d) Define $k: \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ by

$$
k(x)=(x, x)
$$

Show that k is not surjective.
(e) Give an example of a group map $p: \mathbb{Z} \rightarrow \mathbb{Z}$ which is not surjective, and a surjective function $q: \mathbb{Z} \rightarrow \mathbb{Z}$ which is not a group map.
(a) Let $z \in \mathbb{R}$. Then

$$
f(\sqrt[3]{z}, 0)=(\sqrt[3]{z})^{3}+0^{3}=z
$$

Therefore, f is surjective.
(b) Let $w \in \mathbb{R}$. Then

$$
g(w, 0,0)=w-2 \cdot 0+3 \cdot 0=w
$$

Therefore, g is surjective.
(c) Let $\left[\begin{array}{ll}w & x \\ y & z\end{array}\right] \in M(2, \mathbb{R})$. Then

$$
h\left(\left[\begin{array}{ll}
w & \frac{x}{2} \\
\frac{y}{3} & \frac{z}{4}
\end{array}\right]\right)=\left[\begin{array}{ll}
w & x \\
y & z
\end{array}\right] .
$$

Therefore, h is surjective.
(d) $(\sqrt{17}, \pi) \in \mathbb{R} \times \mathbb{R}$. But if

$$
k(x)=(\sqrt{17}, \pi) \quad \text { then } \quad x=\sqrt{17} \quad \text { and } \quad x=\pi .
$$

This contradiction shows that there is no $x \in \mathbb{R}$ such that $k(x)=(\sqrt{17}, \pi)$. Hence, k is not surjective. \square
(e) The function $p: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $p(x)=2 x$ is a group map, since

$$
p(a+b)=2(a+b)=2 a+2 b=p(a)+p(b)
$$

However, p is not surjective, since (for example) there is no $n \in \mathbb{Z}$ such that $p(n)=1$.
The function $q: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $q(x)=x+1$ is surjective: If $y \in \mathbb{Z}$, then

$$
q(y-1)=(y-1)+1=y
$$

But q is not a group map: $q(0)=1$, so q does not map the identity to the identity.
For that matter, the identity map id : $\mathbb{Z} \rightarrow \mathbb{Z}$ is a surjective group map, and the function $r: \mathbb{Z} \rightarrow \mathbb{Z}$ given by $r(x)=x^{2}$ is neither surjective nor a group map. The properties of surjectivity and being a group map are independent. $\quad \square$
22. (a) Explain why \mathbb{Q} is not a group under multiplication.
(b) Do the nonzero elements of \mathbb{Z}_{6} form a group under multiplication mod 6 ?
(c) Show that the nonzero elements of \mathbb{Z}_{5} form a group under multiplication mod 5. What group?
(a) \mathbb{Q} is not a group under multiplication because not every element has a multiplicative inverse. To be specific, $0 \in \mathbb{Q}$ does not have a multiplicative inverse.
(b) $\{1,2,3,4,5\}$ is not a group under multiplication $\bmod 6$, because it is not closed under the operation: $2 \cdot 3=0 \notin\{1,2,3,4,5\}$, for instance.
(c) Here is the operation table:

\cdot	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

The table shows that set is closed under the operation. Take for granted that multiplication mod 6 is associative (since \mathbb{Z}_{6} is a ring under addition and multiplication mod 6). 1 is the identity element. The inverse of 2 is 3 , the inverse of 3 is 2 , and 4 is its own inverse. Therefore, this set is a group; it's usually denoted \mathbb{Z}_{5}^{*}.
\mathbb{Z}_{5}^{*} a group with 4 elements. and the table shows that not every element has order 2 . Therefore, \mathbb{Z}_{5}^{*} is not isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$; it must be isomorphic to \mathbb{Z}_{4}. $\quad \square$
23. Reduce $32^{2011}(\bmod 41)$ to an integer in the set $\{0,1, \ldots, 40\}$.
41×32, so by Fermat's theorem, $32^{40}=1(\bmod 41)$. Therefore,

$$
\begin{gathered}
32^{2011}=32^{2000} \cdot 32^{11}=\left(32^{40}\right)^{50} \cdot 32^{11}= \\
1^{50} \cdot\left(32^{5}\right)^{2} \cdot 32=33554432^{2} \cdot 32(\bmod 41) .
\end{gathered}
$$

Since $33554432=818400 \cdot 41+32,33554432=32(\bmod 41)$. Hence,

$$
33554432^{2} \cdot 32=32^{3}=9(\bmod 41) . \quad \square
$$

24. Reduce $\frac{148!}{3 \cdot 75}(\bmod 149)$ to an integer in the set $\{0,1, \ldots, 148\}$. (Note: 149 is prime.)

$$
\begin{aligned}
x & =\frac{148!}{3 \cdot 75}(\bmod 149) \\
3 \cdot 75 x & =148!=-1(\bmod 149)
\end{aligned}
$$

At this point, you could use the Extended Euclidean Algorithm to find the inverses of 3 and 75 mod 149. But it's easier to note that

$$
150=149+1=1(\bmod 149)
$$

Since $2 \cdot 75=150$ and $50 \cdot 3=150$, I have

$$
\begin{aligned}
2 \cdot 50 \cdot 3 \cdot 75 x & =2 \cdot 50 \cdot(-1)(\bmod 149) \\
x & =-100=49(\bmod 149)
\end{aligned}
$$

25. The definition of a subring of a ring does not require that you check associativity for addition or multiplication. Explain why.

When you consider a subset S of a ring R, addition and multiplication are associative as operations in R. In showing that S is a subring, you're confining the operations to a subset, so they must continue to be associative.
(People often say that associativity is inherited from R by S.) For similar reasons, the definition of a subgroup does not require that you check associativity. $\quad \mathrm{Z}$
26. Prove that if I is an ideal in a ring R with identity and $1 \in I$, then $I=R$.

Since $I \subset R$ by definition, I only need to prove the opposite containment. Let $r \in R$. Now $1 \in I$, so $r \cdot 1 \in I$, i.e. $r \in I$. Hence, $R \subset I$, so $I=R$.
27. Show that the only (two-sided) ideals in $M(2, \mathbb{R})$ are the zero ideal and the whole ring.

Let S be an ideal in $M(2, \mathbb{R})$, and suppose S is nonzero. I'll show that $S=M(2, \mathbb{R})$.
S contains a nonzero matrix A. If A is invertible, then $A \in S$ implies $A^{-1} A \in S$, i.e. $I \in S$, where I is the identity matrix. By the last problem, this implies that $S=M(2, \mathbb{R})$.

Suppose then that A is not invertible. Any 2×2 matrix row reduces to one of the following:

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & * \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

A is not invertible, so it doesn't row reduce to I; it's nonzero, so it doesn't row reduce to the zero matrix.

Suppose A row reduces to $\left[\begin{array}{ll}1 & * \\ 0 & 0\end{array}\right]$. There are elementary matrices E_{1}, \ldots, E_{k} such that

$$
E_{1} \cdots E_{k} A=\left[\begin{array}{ll}
1 & * \\
0 & 0
\end{array}\right]
$$

Since $A \in S$, this equation shows that $\left[\begin{array}{ll}1 & * \\ 0 & 0\end{array}\right] \in S$.
Since S is an ideal,

$$
\left[\begin{array}{cc}
1 & * \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -* \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \in S
$$

Again, since S is an ideal,

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \in S .
$$

And again, since S is an ideal,

$$
\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \in S
$$

Hence,

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \in S
$$

Hence, $S=M(2, \mathbb{R})$.
A similar argument shows that if A row reduces to $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, then $S=M(2, \mathbb{R})$.
Therefore, the only ideals in $M(2, \mathbb{R})$ are the zero ideal and the whole ring.
28. Consider the following subset of the $\operatorname{ring} \mathbb{Z} \times \mathbb{Z}$:

$$
S=\{(m+n, m-n) \mid m, n \in \mathbb{Z}\}
$$

Check each axiom for an ideal. If the axiom holds, prove it. If the axiom does not hold, give a specific counterexample.

The zero element is in S, since $(0,0)=(0+0,0-0) \in S$.
Let $(m+n, m-n) \in S$. Then

$$
-(m+n, m-n)=(-m-n,-m+n)=((-m)+(-n),(-m)-(-n)) \in S
$$

Let $(a+b, a-b),(c+d, c-d) \in S$. Then

$$
(a+b, a-b)+(c+d, c-d)=((a+c)+(b+d),(a+c)-(b+d)) \in S
$$

I have $(5,1)=(3+2,3-2) \in S$. Then

$$
(1,0) \cdot(5,1)=(5,0)
$$

But $(5,0) \notin S$. For suppose $(5,0)=(m+n, m-n)$ for $m, n \in \mathbb{Z}$. Then

$$
m+n=5 \quad \text { and } \quad m-n=0
$$

Adding the two equations gives $2 m=5$, but this equation has no integer solutions. Thus, S is not an ideal in $\mathbb{Z} \times \mathbb{Z}$.
29. (a) Show that $x^{2}+x+1$ is irreducible in $\mathbb{Z}_{5}[x]$.
(b) Find $\left[(2 x+3)+\left\langle x^{2}+x+1\right\rangle\right]^{-1}$ in $\frac{\mathbb{Z}_{5}[x]}{\left\langle x^{2}+x+1\right\rangle}$.
(c) Compute the product of the cosets $\left(\left(x^{2}+2\right)+\left\langle x^{2}+x+1\right\rangle\right) \cdot\left((3 x+4)+\left\langle x^{2}+x+1\right\rangle\right)$ in the quotient ring $\frac{\mathbb{Z}_{5}[x]}{\left\langle x^{2}+x+1\right\rangle}$. Write your answer in the form $(a x+b)+\left\langle x^{2}+x+1\right\rangle$, where $a, b \in \mathbb{Z}_{5}$.
(a) Since it's a quadratic, it suffices to show that it has no roots in \mathbb{Z}_{5}.

x	$x^{2}+x+1(\bmod 5)$
0	1
1	3
2	2
3	3
4	1

It has no roots in \mathbb{Z}_{5}, so it's irreducible over \mathbb{Z}_{5}.
(b) In general, you can find an inverse using the Extended Euclidean Algorithm. In this case, the coset representative $2 x+3$ is linear, so I can just Apply the Division Algorithm:

$$
\begin{aligned}
x^{2}+x+1 & =(3 x+1)(2 x+3)+3 \\
\left(x^{2}+x+1\right)-(3 x+1)(2 x+3) & =3 \\
2\left(x^{2}+x+1\right)-2(3 x+1)(2 x+3) & =2 \cdot 3 \\
2\left(x^{2}+x+1\right)-(x+2)(2 x+3) & =1 \\
2\left(x^{2}+x+1\right)+(4 x+3)(2 x+3) & =1 \\
2\left(x^{2}+x+1\right)+(4 x+3)(2 x+3)+\left\langle x^{2}+x+1\right\rangle & =1+\left\langle x^{2}+x+1\right\rangle \\
(4 x+3)(2 x+3)+\left\langle x^{2}+x+1\right\rangle & =1+\left\langle x^{2}+x+1\right\rangle \\
{\left[(4 x+3)+\left\langle x^{2}+x+1\right\rangle\right]\left[(2 x+3)+\left\langle x^{2}+x+1\right\rangle\right] } & =1+\left\langle x^{2}+x+1\right\rangle
\end{aligned}
$$

Hence,

$$
\left[(2 x+3)+\left\langle x^{2}+x+1\right\rangle\right]^{-1}=(4 x+3)+\left\langle x^{2}+x+1\right\rangle
$$

(c) First,

$$
\left(\left(x^{2}+2\right)+\left\langle x^{2}+x+1\right\rangle\right) \cdot\left((3 x+4)+\left\langle x^{2}+x+1\right\rangle\right)=\left(x^{2}+2\right)(3 x+4)+\left\langle x^{2}+x+1\right\rangle=
$$

$$
\left(3 x^{3}+4 x^{2}+x+3\right)+\left\langle x^{2}+x+1\right\rangle .
$$

Apply the Division Algorithm:

$$
3 x^{3}+4 x^{2}+x+3=\left(x^{2}+x+1\right)(3 x+1)+(2 x+2) .
$$

Therefore, the product is

$$
\left(3 x^{3}+4 x^{2}+x+3\right)+\left\langle x^{2}+x+1\right\rangle=(2 x+2)+\left\langle x^{2}+x+1\right\rangle .
$$

30. Factor $x^{4}+64$ in $\mathbb{Q}[x]$.

The idea is to add a middle term to complete the square, then subtract it back off:
$x^{4}+64=x^{4}+16 x^{2}+64-16 x^{2}=\left(x^{2}+8\right)^{2}-(4 x)^{2}=\left(x^{2}+8+4 x\right)\left(x^{2}+8-4 x\right)=\left(x^{2}+4 x+8\right)\left(x^{2}-4 x+8\right)$.
You can check using the Quadratic Formula that $x^{2}+4 x+8$ and $x^{2}-4 x+8$ do not factor over \mathbb{Q}. \quad
31. (a) Show that $x^{4}+1$ has no roots in \mathbb{Z}_{5}.
(b) Show that $x^{4}+1$ factors in $\mathbb{Z}_{5}[x]$.
(a)

x	0	1	2	3	4
$x^{4}+1$	1	2	2	2	2

(b) $x^{4}+1=\left(x^{2}+2\right)\left(x^{2}+3\right)$.
32. In the ring $\mathbb{R}[x]$, consider the subset

$$
\left\langle x^{2}-x-2, x^{2}-1\right\rangle=\left\{a(x)\left(x^{2}-x-2\right)+b(x)\left(x^{2}-1\right) \mid a(x), b(x) \in \mathbb{R}[x]\right\} .
$$

(a) Show that $\left\langle x^{2}-x-2, x^{2}-1\right\rangle$ is an ideal.
(b) Is $x^{2}+x+3$ in $\left\langle x^{2}-x-2, x^{2}-1\right\rangle$?
(a) Suppose $a(x)\left(x^{2}-x-2\right)+b(x)\left(x^{2}-1\right), c(x)\left(x^{2}-x-2\right)+d(x)\left(x^{2}-1\right) \in\left\langle x^{2}-x-2, x^{2}-1\right\rangle$, where $a(x), b(x), c(x), d(x) \in \mathbb{R}[x]$. Then

$$
\begin{aligned}
& {\left[a(x)\left(x^{2}-x-2\right)+b(x)\left(x^{2}-1\right)\right]+\left[c(x)\left(x^{2}-x-2\right)+d(x)\left(x^{2}-1\right)\right]=} \\
& {[a(x)+c(x)]\left(x^{2}-x-2\right)+[b(x)+d(x)]\left(x^{2}-1\right) \in\left\langle x^{2}-x-2, x^{2}-1\right\rangle .}
\end{aligned}
$$

I have

$$
0=0 \cdot\left(x^{2}-x-2\right)+0 \cdot\left(x^{2}-1\right) \in\left\langle x^{2}-x-2, x^{2}-1\right\rangle .
$$

Let $a(x)\left(x^{2}-x-2\right)+b(x)\left(x^{2}-1\right) \in\left\langle x^{2}-x-2, x^{2}-1\right\rangle$. Then
$-\left[a(x)\left(x^{2}-x-2\right)+b(x)\left(x^{2}-1\right)\right]=(-a(x))\left(x^{2}-x-2\right)+(-b(x))\left(x^{2}-1\right) \in\left\langle x^{2}-x-2, x^{2}-1\right\rangle$.
Finally, let $f(x) \in \mathbb{R}[x]$ and let $a(x)\left(x^{2}-x-2\right)+b(x)\left(x^{2}-1\right) \in\left\langle x^{2}-x-2, x^{2}-1\right\rangle$. Then

$$
f(x)\left[a(x)\left(x^{2}-x-2\right)+b(x)\left(x^{2}-1\right)\right]=[f(x) a(x)]\left(x^{2}-x-2\right)+[f(x) b(x)]\left(x^{2}-1\right) \in\left\langle x^{2}-x-2, x^{2}-1\right\rangle .
$$

(Note that $\mathbb{R}[x]$ is commutative, so I only need to check multiplication on the left.) Hence, $\left\langle x^{2}-x-\right.$ $\left.2, x^{2}-1\right\rangle$ is an ideal.
(b) The greatest common divisor of $x^{2}-x-2=(x-2)(x+1)$ and $x^{2}-1=(x-1)(x+1)$ is $x+1$, and it must divide any linear combination $a(x)\left(x^{2}-x-2\right)+b(x)\left(x^{2}-1\right)$. Suppose then that

$$
x^{2}+x+3=a(x)\left(x^{2}-x-2\right)+b(x)\left(x^{2}-1\right)
$$

Then $x+1 \mid x^{2}+x+3$. But in fact,

$$
x^{2}+x+3=x(x+1)+3 .
$$

Thus, $x+1 \not \backslash x^{2}+x+3$, and so $x^{2}+x+3$ cannot be an element of $\left\langle x^{2}-x-2, x^{2}-1\right\rangle$.
33. $x^{2}+2=(x+1)(x+2)$ is a factorization of $x^{2}+2$ into irreducibles in $\mathbb{Z}_{3}[x]$. Find a different factorization of $x^{2}+2$ into irreducibles in $\mathbb{Z}_{3}[x]$.

Since $2 \cdot 2=1$ in \mathbb{Z}_{3},

$$
x^{2}+2=(x+1)(x+2)=2(x+1) \cdot 2(x+2)=(2 x+2)(2 x+1)
$$

34. Compute the product of the cycles $\left(\begin{array}{ll}2 & 4 \\ 6\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)$ (right to left) and write the result as a product of disjoint cycles.

$$
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 2 & 4 & 1 & 5 & 6 \\
2 & 4 & 6 & 1 & 5 & 3 \tag{2463}
\end{array}
$$

The product is (124)(36).
35. Define $\phi: \mathbb{Z}[x] \rightarrow \mathbb{Z}[x]$ by

$$
\phi(f(x))=f(x)^{2}
$$

Determine which of the axioms for a ring map are satisfied by ϕ. If an axiom is not satisfied, give a specific example which shows that the axiom is violated.

First, $\phi(1)=1^{2}=1$.
If $f(x), g(x) \in \mathbb{Z}[x]$,

$$
\phi(f(x) g(x)))=(f(x) g(x))^{2}=f(x)^{2} g(x)^{2}=\phi(f(x)) \phi(g(x))
$$

However,

$$
\phi(x+x)=\phi(2 x)=4 x^{2}, \quad \text { but } \quad \phi(x)+\phi(x)=x^{2}+x^{2}=2 x^{2}
$$

Thus, $\phi(x+x) \neq \phi(x)+\phi(x)$.
36. Define $\phi: \mathbb{Z}_{2}[x] \rightarrow \mathbb{Z}_{2}[x]$ by

$$
\phi(f(x))=f(x)^{2} .
$$

(a) Show that ϕ is a ring map.
(b) Determine the kernel of ϕ.
(c) Show that $x^{4}+1 \in \operatorname{im} \phi$. Is ϕ surjective?
(a) If $f(x), g(x) \in \mathbb{Z}[x]$,

$$
\begin{gathered}
\phi(f(x) g(x)))=(f(x) g(x))^{2}=f(x)^{2} g(x)^{2}=\phi(f(x)) \phi(g(x)) \\
\phi(f(x)+g(x))=(f(x)+g(x))^{2}=f(x)^{2}+2 f(x) g(x)+g(x)^{2}=f(x)^{2}+g(x)^{2}=\phi(f(x))+\phi(g(x)) \\
\phi(1)=1^{2}=1
\end{gathered}
$$

Therefore, ϕ is a ring map. $\quad \square$
(b) $\phi(f(x))=0$ means $f(x)^{2}=0$, which is only possible if $f(x)=0$ (since $\mathbb{Z}_{2}[x]$ is an integral domain). Therefore, $\operatorname{ker} \phi=\{0\}$. \quad]
(c)

$$
x^{4}+1=x^{4}+2 x^{2}+1=\left(x^{2}+1\right)^{2}=\phi\left(x^{2}+1\right)
$$

ϕ is not surjective. If $\phi(f(x))=x$, then $f(x)^{2}=x$. This implies $\operatorname{deg} f(x)^{2}=\operatorname{deg} x=1$, or $2 \operatorname{deg} f(x)=$ 1. Obviously, $2 \nless 1$. This contradiction shows that x is not in the image of ϕ, and ϕ is not surjective. \square
37. Find the quotient and the remainder when $2 x^{4}+3 x^{3}+x+1$ is divided by $3 x^{2}+1$ in $\mathbb{Z}_{5}[x]$.

$$
3 x^{2}+1 \begin{array}{r}
4 x^{2}+x+2 \\
\begin{array}{l}
2 x^{4}+3 x^{3}+x+1 \\
2 x^{4}+4 x^{2}
\end{array} \\
\frac{3 x^{3}+x^{2}+x}{3 x^{3}+x}
\end{array}+\begin{array}{r}
x^{2}+1 \\
x^{2}+2
\end{array} ~\left(\begin{array}{r}
4
\end{array}\right.
$$

The quotient is $4 x^{2}+x+2$ and the remainder is 4 .
38. (a) Explain why $x^{4}+1$ has no roots in \mathbb{R}.
(b) Is $x^{4}+1$ irreducible in $\mathbb{R}[x]$?
(a) Since $x^{4} \geq 0$ for all x, it follows that $x^{4}+1 \geq 1>0$. In particular, no real value of x makes it 0 .
(b)

$$
x^{4}+1=\left(x^{4}+2 x^{2}+1\right)-2 x^{2}=\left(x^{2}+1\right)^{2}-2 x^{2}=\left(x^{2}+1-\sqrt{2} x\right)\left(x^{2}+1+\sqrt{2} x\right) .
$$

Hence, $x^{4}+1$ is not irreducible in $\mathbb{R}[x]$. $\quad \square$
39. List the zero divisors and the units in $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$.

$$
(0,1)(1,0)=(0,0), \quad(0,2)(1,0)=(0,0), \quad(1,0)(0,1)=(0,0)
$$

The zero divisors are $(0,1),(0,2)$, and $(1,0)$.

$$
(1,1)(1,1)=(1,1), \quad(1,2)(1,2)=(1,1)
$$

The units are $(1,1)$ and $(1,2)$.
40. Prove that if I is a left ideal in a division ring R, then either $I=\{0\}$ or $I=R$.

Suppose $I \neq\{0\}$. Then I can find a nonzero element $x \in I$. Since R is a division ring, x is invertible. Since I is a left ideal, $x^{-1} \cdot x \in I$. But $x^{-1} \cdot x=1$, so $1 \in I$. An ideal that contains 1 is the whole ring, so $I=R$.
41. Let R be a ring, and let $r \in R$. The centralizer $C(r)$ of r is the set of elements of R which commute with r :

$$
C(r)=\{a \in R \mid r a=a r\} .
$$

Prove that $C(r)$ is a subring of R.
Let $a, b \in C(r)$, so $a r=r a$ and $b r=r b$. Then

$$
(a+b) r=a r+b r=r a+r b=r(a+b)
$$

Therefore, $a+b \in C(r)$.
Since $0 \cdot r=0=r \cdot 0$, I have $0 \in C(r)$.
Let $a \in C(r)$, so $a r=r a$. Then

$$
(-a) r=-(a r)=-(r a)=r(-a)
$$

Hence, $-a \in C(r)$.
Let $a, b \in C(r)$, so $a r=r a$ and $b r=r b$. Then

$$
(a b) r=a(b r)=a(r b)=(a r) b=(r a) b=r(a b)
$$

Therefore, $a b \in C(r)$.
Hence, $C(r)$ is a subring.
42. Let

$$
I=\left\{\left.\left[\begin{array}{ccc}
0 & x & 0 \\
0 & y & 0 \\
0 & z & 0
\end{array}\right] \right\rvert\, x, y, z \in \mathbb{R}\right\} .
$$

Prove that I is a left ideal, but not a right ideal, in the $\operatorname{ring} M(3, \mathbb{R})$.

$$
\left[\begin{array}{lll}
0 & x & 0 \\
0 & y & 0 \\
0 & z & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & x^{\prime} & 0 \\
0 & y^{\prime} & 0 \\
0 & z^{\prime} & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & x+x^{\prime} & 0 \\
0 & y+y^{\prime} & 0 \\
0 & z+z^{\prime} & 0
\end{array}\right] \in I
$$

Hence, I is closed under sums.

Elements of I are exactly the 3×3 matrices with all-zero first and third columns. Thus,

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \in I
$$

If

$$
\left[\begin{array}{lll}
0 & x & 0 \\
0 & y & 0 \\
0 & z & 0
\end{array}\right] \in I, \quad \text { then } \quad-\left[\begin{array}{lll}
0 & x & 0 \\
0 & y & 0 \\
0 & z & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & -x & 0 \\
0 & -y & 0 \\
0 & -z & 0
\end{array}\right] \in I .
$$

Thus, I is closed under taking additive inverses.
Let

$$
\left[\begin{array}{lll}
0 & x & 0 \\
0 & y & 0 \\
0 & z & 0
\end{array}\right] \in I \quad \text { and } \quad\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \in M(3, \mathbb{R})
$$

Then

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{lll}
0 & x & 0 \\
0 & y & 0 \\
0 & z & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & a x+b y+c z & 0 \\
0 & d x+e y+f z & 0 \\
0 & g x+h y+i z & 0
\end{array}\right] \in I
$$

Hence, I is a left ideal.
However,

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right] \in I \quad \text { and } \quad\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \in M(3, \mathbb{R})
$$

But

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \notin I
$$

Hence, I is not a right ideal. \square
43. (a) List the elements of U_{42}.
(b) List the elements of the subgroup $\langle 25\rangle$ in U_{42}.
(c) List the cosets of the subgroup $\langle 25\rangle$ in U_{42}.
(d) Is the quotient group isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or \mathbb{Z}_{4} ?
(a)

$$
U_{42}=\{1,5,11,13,17,19,23,25,29,31,37,41\}
$$

(b)

$$
\langle 25\rangle=\{1,25,37\}
$$

(c)

$$
\begin{aligned}
\langle 25\rangle & =\{1,25,37\} \\
5 \cdot\langle 25\rangle & =\{5,41,17\} \\
11 \cdot\langle 25\rangle & =\{11,23,29\} \\
13 \cdot\langle 25\rangle & =\{13,31,19\}
\end{aligned}
$$

(d) Note that

$$
5^{2}=25, \quad 11^{2}=37, \quad 13^{2}=1
$$

The results are all elements of the identity coset $\{1,25,37\}$.
So all three cosets have order 2.
$\frac{U_{42}}{\langle 25\rangle}$ is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, since every element squares to the identity. $\quad \square$
44. Find the primary decomposition and the invariant factor decomposition for $\mathbb{Z}_{24} \times \mathbb{Z}_{28} \times \mathbb{Z}_{21}$.

$$
\begin{aligned}
\mathbb{Z}_{24} & \approx \mathbb{Z}_{3} \times \mathbb{Z}_{8} \\
\mathbb{Z}_{28} & \approx \mathbb{Z}_{4} \times \mathbb{Z}_{7} \\
\mathbb{Z}_{21} & \approx \mathbb{Z}_{3} \times \mathbb{Z}_{7}
\end{aligned}
$$

Therefore, the primary decomposition is

$$
\mathbb{Z}_{4} \times \mathbb{Z}_{8} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{7} \times \mathbb{Z}_{7}
$$

Here's the work for the invariant factor decomposition:

4	8
3	3
7	7
84	168

The invariant factor decomposition is $\mathbb{Z}_{84} \times \mathbb{Z}_{168}$.
45. What is the largest possible order of an element of $\mathbb{Z}_{30} \times \mathbb{Z}_{45} \times \mathbb{Z}_{60}$?

The primary decomposition is

$$
\mathbb{Z}_{30} \times \mathbb{Z}_{45} \times \mathbb{Z}_{60} \approx \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{9} \times \mathbb{Z}_{5} \times \mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5}
$$

Compute the invariant factor decomposition:

	2	4
3	3	9
5	5	5
15	30	180

The invariant factor decomposition is $\mathbb{Z}_{15} \times \mathbb{Z}_{30} \times \mathbb{Z}_{180}$. Hence, the largest possible order of an element is 180 .
46. Let $f, g: G \rightarrow H$ be group maps. Let

$$
E=\{x \in G \mid f(x)=g(x)\} .
$$

Prove that E is a subgroup of $G .(E$ is called the equalizer of f and g.)
Let $x, y \in E$, so $f(x)=g(x)$ and $f(y)=g(y)$. Then

$$
f(x) f(y)=g(x) g(y), \quad \text { so } \quad f(x y)=g(x y) .
$$

Therefore, $x y \in E$.
Since $f(1)=1=g(1), 1 \in E$.

Let $x \in E$, so $f(x)=g(x)$. Then $f(x)^{-1}=g(x)^{-1}$, so $f\left(x^{-1}\right)=g\left(x^{-1}\right)$. Hence, $x^{-1} \in E$.
Therefore, E is a subgroup of G. \square
47. Let R be a ring such that for each $r \in R$, there is a unique element $s \in R$ such that $r s r=r$. Prove that R has no zero divisors.

Suppose that $r \in R$ is a zero divisor, so $r \neq 0$ and $r t=0$ for some $t \neq 0$. Let s be the unique element of R such that $r s r=r$. Then

$$
r(s+t) r=r s r+r t r=r+0=r .
$$

But $x=s$ was the unique solution to $r x r=r$, so $s=s+t$, and $t=0$. This contradiction implies that there is no such t, so R has no zero divisors. \square
48. Suppose $f: R \rightarrow S$ is a ring homomorphism and R and S are rings with identity, but do not assume that $f\left(1_{R}\right)=1_{S}$. Prove that if f is surjective, then $f\left(1_{R}\right)=1_{S}$.

Since f is surjective, there is an element $e \in R$ such that $f(e)=1_{S}$. Then

$$
1_{S}=f(e)=f\left(e \cdot 1_{R}\right)=f(e) \cdot f\left(1_{R}\right)=1_{S} \cdot f\left(1_{R}\right)=f\left(1_{R}\right)
$$

49. Factor $3 x^{3}+2 x^{2}+3 x+2$ in $\mathbb{Z}_{5}[x]$.

If a cubic or quadratic polynomial over a field factors, it must have a linear factor, i.e. a root. Therefore, I'll try the elements of \mathbb{Z}_{5} to find the roots.

x	$3 x^{3}+2 x^{2}+3 x+2$
0	2
1	0
2	0
3	0
4	4

1,2 , and 3 are roots, so $x-1=x+4, x-2=x+3$, and $x-3=x+2$ are factors. Since the leading coefficient is 3 , I must have

$$
3 x^{3}+2 x^{2}+3 x+2=3(x+4)(x+3)(x+2)
$$

50. Find the remainder when $x^{41}+3 x^{39}+4 x^{11}+2 x^{9}+5 x+3$ is divided by $x+4$ in $\mathbb{Z}_{5}[x]$.

Notice that $x+4=x-1$ in $\mathbb{Z}_{5}[x]$. By the Remainder Theorem, the remainder is

$$
1^{41}+3 \cdot 1^{39}+4 \cdot 1^{11}+2 \cdot 1^{9}+5 \cdot 1+3=3 . \quad \square
$$

51. Calvin Butterball thinks $x^{2}+1 \in \mathbb{Z}_{2}[x]$ is irreducible, based on the fact that solving $x^{2}+1=0$ gives $x= \pm i$, which are complex numbers. Is he right?

In fact, since $2=0$ in \mathbb{Z}_{2},

$$
(x+1)^{2}=x^{2}+2 x+1=x^{2}+1
$$

Thus, $x^{2}+1$ is not irreducible in $\mathbb{Z}_{2}[x]$. $\quad \square$
52. Find the greatest common divisor of $x^{4}+x^{3}+x^{2}+2 x+3$ and $x^{3}+4 x^{2}+2 x+3$ in $\mathbb{Z}_{5}[x]$ and express the greatest common divisor as a linear combination (with coefficients in $\mathbb{Z}_{5}[x]$) of the two polynomials.

a	q	y
$x^{4}+x^{3}+x^{2}+2 x+3$		$x+2$
$x^{3}+4 x^{2}+2 x+3$	$x+2$	1
$x^{2}+2$	$x+4$	0

The greatest common divisor is $x+2$, and

$$
1 \cdot\left(x^{4}+x^{3}+x^{2}+2 x+3\right)-(x+2)\left(x^{3}+4 x^{2}+2 x+3\right)=x+2
$$

53. The following set is an ideal in the ring $\mathbb{Z}_{2} \times \mathbb{Z}_{8}$:

$$
I=\{(0,0),(0,4),(1,0),(1,4)\}
$$

(a) List the cosets of I in $\mathbb{Z}_{2} \times \mathbb{Z}_{8}$.
(b) Construct addition and multiplication tables for the quotient ring $\frac{\mathbb{Z}_{2} \times \mathbb{Z}_{8}}{I}$.
(c) Is $\frac{\mathbb{Z}_{2} \times \mathbb{Z}_{8}}{I}$ an integral domain?
(a)

$$
\begin{aligned}
I & =\{(0,0),(0,4),(1,0),(1,4)\} \\
(0,1)+I & =\{(0,1),(0,5),(1,1),(1,5)\} \\
(0,2)+I & =\{(0,2),(0,6),(1,2),(1,6)\} \\
(0,3)+I & =\{(0,3),(0,7),(1,3),(1,7)\}
\end{aligned}
$$

(b) I will let $(0,0),(0,1),(0,2)$, and $(0,3)$ stand for their respective cosets.

+	$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$
$(0,0)$	$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$
$(0,1)$	$(0,1)$	$(0,2)$	$(0,3)$	$(0,0)$
$(0,2)$	$(0,2)$	$(0,3)$	$(0,0)$	$(0,1)$
$(0,3)$	$(0,3)$	$(0,0)$	$(0,1)$	$(0,2)$

\cdot	$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$
$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$	$(0,0)$
$(0,1)$	$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$
$(0,2)$	$(0,0)$	$(0,2)$	$(0,0)$	$(0,2)$
$(0,3)$	$(0,0)$	$(0,3)$	$(0,2)$	$(0,1)$

(c) Since $((0,2)+I)((0,2)+I)=I$ (which is the zero element in $\frac{\mathbb{Z}_{2} \times \mathbb{Z}_{8}}{I}$), the quotient ring $\frac{\mathbb{Z}_{2} \times \mathbb{Z}_{8}}{I}$ is not an integral domain. $\quad \square$

The best thing for being sad is to learn something. - Merlyn, in T. H. White's The Once and Future King

