
Math 345
10-1-2020

Review Problems for Test 2

These problems are provided to help you study. The presence of a problem on this handout does not
imply that there will be a similar problem on the test. And the absence of a topic does not imply that it
won’t appear on the test.

1. Un is the set of elements of Zn which are relatively prime to n. It is a group under multiplication mod n.
Consider, in particular, the group U13.

(a) Find the order of 5 ∈ U13.

(b) Find 8−1 in U13.

(c) List the elements of the subgroup 〈10〉 of U13.

2. (a) List the elements of the subgroup of Z24 generated by 10.

(b) List the elements of the subgroup 〈10〉 of

U21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}.

3. (a) Find the order of 48 in Z172.

(b) Find the order of 13 in U35.

4. (a) Let G be a group, and let g ∈ G. Prove that if n > 0 and gn = 1, then n is a multiple of the order of
g.

(b) Suppose that G is a group, g ∈ G, and g12 = 1. What are the possibilities for the order of g?

5. (a) Find the order of 142 in Z156.

(b) Find an element n in Z156 such that n has order 26 but n > 78.

6. (a) Construct a multiplication table for U18, the group of units mod 18.

(b) U18 is cyclic. List all the generators of U18.

7. List the elements of all the subgroups of Z10. What elements generate Z10?

8. (a) List the elements of the subgroup of order 12 in Z24.

(b) Find all the generators of the subgroup of order 12 in Z24.

9. Find a generator for the following subgroup of Z:

H =
{

12x+ 30y − 33z
∣
∣
∣ x, y, z ∈ Z

}

.

10. Consider the group Z × Z with the operation of componentwise addition. Prove directly that Z × Z is
not cyclic by showing that no element of the group is a generator.

11. Consider the integers Z with the group operation

m ∗ n = m+ n− 4.

Taking for granted that this gives a group structure on Z, prove that (Z, ∗) is cyclic by exhibiting a
generator. Note: The identity for (Z, ∗) is 4, and n−1 = 8− n.
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12. (a) Give an example of a group G and elements x, y ∈ G, such that x has order 2 and y has order 4, and
〈x〉 ∩ 〈y〉 has order 2.

Note: Remember that the intersection of two sets consists of the elements commmon to both, and the
intersection of subgroups is a subgroup.

(b) Give an example of a group G and elements x, y ∈ G, such that x has order 2 and y has order 4, and
〈x〉 ∩ 〈y〉 has order 1.

13. Suppose x and y are elements of a group G, x has order 9, and y has order 16. The intersection 〈x〉∩ 〈y〉
is a subgroup of G. What is the order of 〈x〉 ∩ 〈y〉?

Hint: If A is a subgroup of B, then |A| | |B|. And 〈x〉 ∩ 〈y〉 is a subgroup of 〈x〉 and of 〈y〉.

14. Reduce 261519 (mod 521) to a number in the range {0, 1, . . . , 520}. Note: 521 is prime.

15. Reduce 263305 (mod 307) to a number in the range {0, 1, . . .306}. Note: 307 is prime.

16. Reduce 448217 (mod 449) to a number in the range {0, 1, . . . , 448}.

17. Simplify
250!

63
(mod 251) to a number in the range {0, 1, . . . , 250}.

18. Reduce 386! (mod 389) to a number in the range {0, 1, . . .388}. Note: 389 is prime.

19. Prove that 309100 + 404102 = 1 (mod 101 · 103).

20. List all the elements of A4 in disjoint cycle notation. For each element, give its order. (Remember that
A4 is the subgroup of S4 consisting of the even permutations.)

21. Write the following permutation as a product of disjoint cycles and as a product of transpositions.
(Multiply permutations from right to left.)

(
1 2 3 4 5 6 7 8
4 8 6 5 1 3 7 2

)

22. (a) What is the order of the permutation (2 6 4 1)(3 5)?

(b) What is the order of the permutation (2 6 1)(1 3 5 4)?

23. Let X be a set, and let SX denote the group of permutations of X under function composition.

(a) Suppose Y ⊂ X , and let
H = {σ ∈ SX | σ(Y ) = Y }.

Thus, H consists of permutations which send Y to itself. Prove that H is a subgroup of SX .

(b) Suppose X = {1, 2, 3, 4} and Y = {1, 4}. List the permutations in S4 which send Y to itself.

24. Compute the product of the permutations and write the answer as a product of disjoint cycles. (Multiply
the permutations right to left.)

(a) (1 5 3 4)(4 2 6).

(b) (1 6 3)−1(3 4 2)2.

(c) [(2 4)(3 4)]722.

25. Write (4 6 7 1) as a product of transpositions. Is this permutation odd or even?

26. Compute
(2 4 1 3)(3 5 1 6)(2 4)(2 4 1 3)−1.
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27. How many elements of S6 send the set {3, 5} into the set {3, 5}?

28. Let S
Z

denote the group of permutations of Z under function composition. Define

H =
{

σ ∈ SZ

∣
∣
∣ σ(Z+) ⊂ Z

+
}

.

Thus, H consists of permutations of the integers which take the positive integers into the positive
integers. For example, consider f : Z → Z given by

f(x) = x+ 3.

f is bijective, since its inverse is given by g(x) = x− 3. And if x > 0, then f(x) = x+3 > 0+ 3 = 3, so
f ∈ H .

Check each subgroup axiom as it applies to H . If the axiom holds, prove it. If the axiom does not hold,
give a specific counterexample.

29. Find the order of (44, 36) in Z56 × Z40

30. (a) Find an element of order 12 in Z6 × Z8.

(b) Prove that there is no element of order 16 in Z6 × Z8.

31. List the elements of the subgroup 〈(4, 6)〉 of Z10 × Z30.

32. Z× Z is a group under componentwise addition. Let

H = {(x, y) | x, y ∈ Z× Z | 2x = 7y}.

Prove that H is a subgroup of Z× Z.

33. Z× Z is a group under componentwise addition. Define f : Z× Z → Z× Z by

f(x, y) = (2x+ 3y, 7x− y).

(a) Prove that f is a group map.

(b) Prove that ker f = {(0, 0)}.

34. (a) List the elements of the subgroup 〈(3, 7)〉 in U8 × U10.

(b) List the elements of the subgroup 〈3〉 × 〈7〉 in U8 × U10.

35. Find a subgroup of order 8 in Z12 × Z14. Does this group have any elements of order 8?

36. (a) List the elements of order 8 in Z8 × Z6.

(b) List the elements of order 8 in Z4 × Z6.

37. Find the primary decomposition and invariant factor decomposition for Z4 × Z6 × Z75.

38. (a) Determine the largest order of an element of Z10 × Z15 × Z40.

(b) Find a specific element of largest order in Z10 × Z15 × Z40.

39. Z2 × Z10 and Z20 are abelian groups of order 20. Explain why they aren’t isomorphic.

40. Determine all isomorphism classes of abelian groups of order 23 · 33. For each isomorphism class, give
the primary decomposition and the corresponding invariant factor decomposition.

41. Suppose G is an abelian group of order 16.
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(a) If no element of G has order greater than 2, what are the possible primary decompositions of G?

(b) If G has at least one element of order 8, what are the possible primary decompositions of G?

42. Suppose G is an abelian group of order 1701 and the largest order of an element of G is 63 What are
the possible invariant factor decompositions for G?

43. (a) Can Z5 be isomorphic to the direct product of two of its proper subgroups?

(b) Can Z8 be isomorphic to the direct product of two of its proper subgroups?

(c) Can S3 be isomorphic to the direct product of two of its proper subgroups?

44. Suppose A, B, C, and D are groups, all with the operation denoted by multiplication. Suppose that
f : A → C and g : B → D are group maps. Define f × g : A×B → C ×D by

(f × g)(a, b) = (f(a), g(b)).

(a) Prove that f × g is a group map.

(b) Prove that

ker(f × g) = {(a, b) ∈ A×B | a ∈ ker f and b ∈ ker g}.

45. (a) Explain why Z2 × Z3 and Z3 × Z2 are not identical as sets.

(b) Show that if G and H are groups, then G×H ≈ H ×G.

46. (a) Suppose a group has 48 elements. What are the possiblities for the order of a subgroup of G?

(b) A subgroup of a group contains 7 elements. The subgroup has 3 left cosets. What is the order of the
group?

47. List the elements of the cosets of 〈11〉 in U30.

48. List the elements of the cosets of 〈8〉 in Z12.

49. List the elements of the cosets of 〈(1, (1 3))〉 in Z3 × S3.

50. (a) List the cosets of the subgroup 4Z of Z.

(b) What coset of 4Z contains 771?

Solutions to the Review Problems for Test 2

1. Un is the set of elements of Zn which are relatively prime to n. It is a group under multiplication mod n.
Consider, in particular, the group U13.

(a) Find the order of 5 ∈ U13.

(b) Find 8−1 in U13.

(c) List the elements of the subgroup 〈10〉 of U13.

(a)

52 = 12 (mod 13)

53 = 125 = 8 (mod 13)

54 = 625 = 1 (mod 13)
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Therefore, the order of 5 is 4.

(b)

13 - 5

8 1 3

5 1 2

3 1 1

2 1 1

1 2 0

8 · 5 + 13 · (−3) = 1

8 · 5 = 1 (mod 13)

Hence, 8−1 = 5 in U13.

(c)

102 = 100 = 9 (mod 13)

103 = 1000 = 12 (mod 13)

104 = 10000 = 3 (mod 13)

105 = 100000 = 4 (mod 13)

106 = 1000000 = 1 (mod 13)

Hence,

〈10〉 = {1, 10, 9, 12, 3, 4, 1}.

2. (a) List the elements of the subgroup of Z24 generated by 10.

(b) List the elements of the subgroup 〈10〉 of U21.

(a) I add 10 to itself (mod 24) until I get back to 0:

〈10〉 = {0, 10, 20, 6, 16, 2, 12, 22, 8, 18, 4, 14}.

U21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}.

(b) I multiply 10 by itself (mod 21) until I get back to 1:

〈10〉 = {1, 10, 16, 13, 4, 19}.

3. (a) Find the order of 48 in Z172.

(b) Find the order of 13 in U35.

(a) Since (48, 172) = 4, the order of 48 is
172

4
= 43.

In other words, if you add 48 to itself 43 times, you’ll get 0 mod 172, and no smaller multiple of 48 gives
0.
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(b) I don’t know that U35 is cyclic, so I’ll do the computation directly. I raise 13 to successive powers (mod
35) until I get 1, the identity in U35:

132 = 169 = 29, 133 = 2197 = 27, 134 = 28561 = 1.

Therefore, 13 has order 4 in U35.

4. (a) Let G be a group, and let g ∈ G. Prove that if n > 0 and gn = 1, then n is a multiple of the order of
g.

(b) Suppose that G is a group, g ∈ G, and g12 = 1. What are the possibilities for the order of g?

(a) Let m be the order of g, so am = 1. By the Division Algorithm,

n = qm+ r, where 0 ≤ r < m.

Then
1 = an = aqm+r = (am)q · ar = 1 · ar = ar.

Thus, ar = 1. But m is the smallest positive power of a such that am = 1, and 0 ≤ r < m. Therefore,
r can’t be positive, so r = 0. This means that n = qm, so n is multiple of the order of g.

(b) By (a), the order of g must divide 12. Therefore, the order of g could be 1, 2, 3, 4, 6, or 12.

5. (a) Find the order of 142 in Z156.

(b) Find an element n in Z156 such that n has order 26 but n > 78.

(a) The order is
156

(142, 156)
=

156

2
= 78.

(b) Since the order of n is
156

(n, 156)
, I want

156

(n, 156)
= 26, or (n, 156) =

156

26
= 6.

Notice that 156 = 6 · (2 · 13). Therefore, I can ensure that (n, 156) = 6 by taking a multiple 6k of 6 such
that k does not have 2 or 13 as a factor. I also want 6k > 78, so k > 13. The easiest way to do this is to
take k to be a prime number greater than 13; I’ll use k = 17. Thus, n = 6k = 6 · 17 = 102.

Now 102 is greater than 78, and (102, 156) = 6, so 102 has order
156

6
= 26 in Z156.

6. (a) Construct a multiplication table for U18, the group of units mod 18.

(b) U18 is cyclic. List all the generators of U18.

(a)

1 5 7 11 13 17

1 1 5 7 11 13 17

5 5 7 17 1 11 13

7 7 17 13 5 1 11

11 11 1 5 13 17 7

13 13 11 1 17 7 5

17 17 13 11 7 5 1
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(b) 5 generates U18:
〈5〉 = {1, 5, 7, 17, 13, 11}.

To find the other generator, note that U18 is cyclic of order 6. In Z6, the cyclic group of order 6, the
generators are 1 and −1 = 5. So the other generator of U18 must be 5−1 = 11.

7. List the elements of all the subgroups of Z10. What elements generate Z10?

There is one subgroup of order n for each natural number n dividing 10. Hence, there are subgroups of
order 1, 2, 5, and 10. I have

〈1〉 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

〈2〉 = {0, 2, 4, 6, 8}

〈5〉 = {0, 5}

〈0〉 = {0}

The generators are 1, 3, 7, and 9: The elements which are relatively prime to 10.

8. (a) List the elements of the subgroup of order 12 in Z24.

(b) Find all the generators of the subgroup of order 12 in Z24.

(a) The subgroup of order 12 in Z24 is

〈2〉 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22}.

(b) Since Z24 is cyclic, the subgroup 〈2〉 of order 12 is a cyclic group of order 12.
Now Z12 is cyclic of order 12, and the generators are the elements relatively prime to 12, namely 1, 5,

7, and 11. But Z12 and 〈2〉 are isomorphic by the function f(x) = 2x (mod 24). So the generators of 〈2〉 are

2 · 1 = 2, 2 · 5 = 10, 2 · 7 = 14, 2 · 11 = 22.

9. Find a generator for the following subgroup of Z:

H =
{

12x+ 30y − 33z
∣
∣
∣ x, y, z ∈ Z

}

.

Note that H must be cyclic, since it’s a subgroup of Z.
The greatest common divisor of 12, 30, and −33 is 3, so I’ll show that 3 generates H :

H = 〈3〉.

First, if 12x+ 30y − 33z ∈ H , then

12x+ 30y − 33z = 3(4x+ 10y − 11z) ∈ 〈3〉.

Conversely, note that
3 = 12 · 0 + 30 · (−1)− 33 · (−1) ∈ H.

Hence,
3n = 12 · 0 + 30 · (−n)− 33 · (−n) ∈ H.

This shows that 〈3〉 ⊂ H .
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Therefore, H = 〈3〉.

10. Consider the group Z × Z with the operation of componentwise addition. Prove directly that Z × Z is
not cyclic by showing that no element of the group is a generator.

No element of the form (x, 0) can generate: If n · (x, 0) = (1, 1), then (x, 0) = (1, 1), and the equality
of the second components gives a contradiction. This shows that (1, 1) is not in the subgroup generated by
(x, 0), so 〈(x, 0)〉 6= Z× Z.

A similar argument shows that no element of the form (0, y) can generate.
Assume, then, that (x, y) is a generator, where x, y 6= 0. I claim that (1, 0) is not a multiple of (x, y).

For if (1, 0) = n · (x, y), then
(1, 0) = n · (x, y)

(1, 0) = (nx, ny)

Equating the second components, I get ny = 0, so n = 0 (since y 6= 0). But equating the first components
now gives

1 = nx = 0 · x = 0.

This contradiction shows that (1, 0) is not in the subgroup generated by (x, y), so 〈(x, y)〉 6= Z× Z.
Therefore, no element of Z× Z generates, so Z× Z is not cyclic.

11. Consider the integers Z with the group operation

m ∗ n = m+ n− 4.

Taking for granted that this gives a group structure on Z, prove that (Z, ∗) is cyclic by exhibiting a
generator.

Notice that
3 ∗ 3 = 3 + 3− 4 = 2

3 ∗ (3 ∗ 3) = 3 ∗ 2 = 3 + 2− 4 = 1

3 ∗ (3 ∗ (3 ∗ 3)) = 3 ∗ 1 = 3 + 1− 4 = 0

For n ≥ 1, write

3n =

n times
︷ ︸︸ ︷

3 ∗ 3 ∗ · · · ∗ 3 .

The pattern above suggests the formula

3n = 4− n for n ≥ 1.

Since 31 = 3 and 4− 1 = 3, the result is true for n = 1.
Assume that 3n = 4− n. Then

3n+1 = 3 ∗ 3n

= 3 + 3n − 4

= 3 + (4− n)− 4

= 3− n

= 4− (n+ 1)

This proves the result for n+ 1, so the result is true for all n ≥ 1 by induction.
As n = 1, 2, 3, . . ., the powers 3n = 4− n give the numbers 3, 2, 1, 0,−1, . . ..
The identity in (Z, ∗) is 4, so 30 = 4.
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To get the numbers greater than 4, just take inverses. If n ≥ 1, then

3−n = (3n)−1 = (4− n)−1 = 8− (4 − n) = 4 + n.

As n = 1, 2, 3, . . ., the negative powers 3−n = 4 + n give the numbers 5, 6, 7, . . ..
This shows that every element in Z is a power of 3, so 3 is a generator and (Z, ∗) is cyclic.

12. (a) Give an example of a group G and elements x, y ∈ G, such that x has order 2 and y has order 4, and
〈x〉 ∩ 〈y〉 has order 2.

(b) Give an example of a group G and elements x, y ∈ G, such that x has order 2 and y has order 4, and
〈x〉 ∩ 〈y〉 has order 1.

(a) In Z4, the element 1 has order 4 and the element 2 has order 2. I have

〈1〉 = {0, 1, 2, 3} and 〈2〉 = {0, 2}.

Thus, 〈1〉 ∩ 〈2〉 has order 2:
〈1〉 ∩ 〈2〉 = {0, 2}.

(b) In Z2 × Z4, consider the subgroups

〈(1, 0)〉 = {(0, 0), (1, 0)} and 〈(0, 1)〉 = {(0, 0), (0, 1), (0, 2), (0, 3)}.

Then (1, 0) has order 2 and (0, 1) has order 4. Moreover,

〈(1, 0)〉 ∩ 〈(0, 1)〉 = {(0, 0)}.

So the intersection has order 1.
Here’s a more complicated example.
In D4, the group of symmetries of a square, let r denote rotation through 90◦ counterclockwise. Then

r generates a subgroup of order 4:
〈r〉 = {id, r, r2, r3}.

r2 is rotation through 180◦, and r3 is rotation through 270◦.
Let m denote a reflection — say reflection across a line through the center bisecting opposite sides of

the square. Then m generates a subgroup of order 2:

〈m〉 = {id,m}.

Now
〈r〉 ∩ 〈m〉 = {id}.

To see that m can’t be an element of 〈r〉, note that m “flips the square over”, whereas none of the
rotations r, r2 or r3 do this. So the two subgroups can’t overlap in two elements, because this would mean
m ∈ 〈r〉.

In this case, the intersection 〈r〉 ∩ 〈m〉 has order 1.

13. Suppose x and y are elements of a group G, x has order 9, and y has order 16. The intersection 〈x〉∩ 〈y〉
is a subgroup of G. What is the order of 〈x〉 ∩ 〈y〉?

〈x〉 ∩ 〈y〉 is a subgroup of 〈x〉, which is a cyclic group of order 9. Therefore, the order of 〈x〉 ∩ 〈y〉 is 1,
3, or 9.
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〈x〉 ∩ 〈y〉 is a subgroup of 〈y〉, which is a cyclic group of order 16. Therefore, the order of 〈x〉 ∩ 〈y〉 is 1,
2, 4, 8, or 16.

The only way of satisfying both of these conditions is if the order of 〈x〉 ∩ 〈y〉 is 1.

14. Reduce 261519 (mod 521) to a number in the range {0, 1, . . . , 520}. Note: 521 is prime.

By Fermat’s Theorem,
261520 = 1 (mod 521) .

Let x = 261519 (mod 521). Then

x = 261519 (mod 521)

261 · x = 261 · 261519 (mod 521)

261x = 261520 (mod 521)

261x = 1 (mod 521)

2 · 261x = 2 · 1 (mod 521)

522x = 2 (mod 521)

x = 2 (mod 521)

Note: In general, to solve an equation like “261x = 1 (mod 521)”, I’d need to find 261−1 (mod 521)
using the Extended Euclidean algorithm. But I happened to notice that 261 was half of 522 = 1 (mod 521),
so I had a shortcut.

15. Reduce 263305 (mod 307) to a number in the range {0, 1, . . .306}. Note: 307 is prime.

By Fermat’s theorem, 263306 = 1 (mod 307). So

x = 263305 (mod 307)

263x = 263306 = 1 (mod 307)

307 - 7

263 1 6

44 5 1

43 1 1

1 43 0

6 · 307 + (−7) · 263 = 1

(−7) · 263 = 1 (mod 307)

300 · 263 = 1 (mod 307)

Hence, 263−1 = 300 (mod 307).
Therefore,

300 · 263x = 300 · 1 (mod 307)

x = 300 (mod 307)

16. Reduce 448217 (mod 449) to a number in the range {0, 1, . . . , 448}.
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Since 448 = −1 (mod 449), I have

448217 = (−1)217 = −1 = 448 (mod 449) .

17. Simplify
250!

63
(mod 251) to a number in the range {0, 1, . . . , 250}.

By Wilson’s theorem, 250! = −1 (mod 251). So

x =
250!

63
(mod 251)

63x = 250! = −1 (mod 251)

251 - 4

63 3 1

62 1 1

1 62 0

1 = (63, 251) = 4 · 63 + (−1) · 251.

It follows that 63−1 = 4 (mod 251), so

4 · 63x = 4 · (−1) (mod 251)

x = −4 = 247 (mod 251)

18. Reduce 386! (mod 389) to a number in the range {0, 1, . . .388}. Note: 389 is prime.

Let x = 386! (mod 389). Then

x = 386! (mod 389)

388 · 387 · x = 388 · 387 · 386! (mod 389)

388 · 387 · x = 388! (mod 389)

388 · 387 · x = −1 (mod 389)

(−1) · (−2) · x = −1 (mod 389)

2x = −1 (mod 389)

195 · 2x = 195 · −1 (mod 389)

390x = −195 (mod 389)

x = 194 (mod 389)

19. Prove that 309100 + 404102 = 1 (mod 101 · 103).

Since 101 6 | 309, Fermat’s Theorem gives 309100 = 1 (mod 101). Since 101 | 404, it follows that

309100 + 404102 = 1 + 0 = 1 (mod 101) .
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Similarly, 103 6 | 404, so Fermat’s Theorem gives 404102 = 1 (mod 103). Since 103 | 309, it follows that

309100 + 404102 = 0 + 1 = 1 (mod 103) .

Since 309100 + 404102 is congruent to 1 mod 101 and mod 103, and since (101, 103) = 1, it follows that

309100 + 404102 = 1 (mod 101 · 103) .

20. List all the elements of A4 in disjoint cycle notation. For each element, give its order.

A4 is the subgroup of even permutations in S4. This is half of S4: twelve elements. To list them, note
that if a, b, and c are distinct, (a b c) = (a c)(a b) is even, and these 3-cycles have order 3. And if the
pairs {a, b} and {c, d} are distinct, then (a b)(c d) is even, and has order 2. (In particular, such a product
of transpositions is different from the 3-cycles mentioned earlier.)

If you simply list all possible 3-cycles and all possible products of disjoint transpositions (and the
identity), you wind up with 12 elements — all of A4.

Element of A4 Order

id 1

(1 2)(3 4) 2

(1 3)(2 4) 2

(1 4)(2 3) 2

(1 2 3) 3

(1 2 4) 3

(1 3 4) 3

(1 3 2) 3

(1 4 2) 3

(1 4 3) 3

(2 3 4) 3

(2 4 3) 3

21. Write the following permutation as a product of disjoint cycles and as a product of transpositions.
(Multiply permutations from right to left.)

(
1 2 3 4 5 6 7 8
4 8 6 5 1 3 7 2

)

Right-to-left:

(
1 2 3 4 5 6 7 8
4 8 6 5 1 3 7 2

)

= (1 4 5)(2 8)(3 6) = (1 5)(1 4)(2 8)(3 6).

22. (a) What is the order of the permutation (2 6 4 1)(3 5)?
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(b) What is the order of the permutation (2 6 1)(1 3 5 4)?

(a) (2 6 4 1) has order 4 and (3 5) has order 2. Since the cycles are disjoint, they commute, and the order
of the product is the least common multiple of the orders of the factors: [4, 2] = 4.

(b) The cycles are not disjoint, so I have to multiply and write the product in disjoint cycle form first:

1 2 3 4 5 6
(1 3 5 4)

3 2 5 1 4 6
(2 6 1)

3 6 5 2 4 1

Thus, (2 6 1)(1 3 5 4) = (1 3 5 4 2 6), and the permutation has order 6.

23. Let X be a set, and let SX denote the group of permutations of X under function composition.

(a) Suppose Y ⊂ X , and let
H = {σ ∈ SX | σ(Y ) = Y }.

Thus, H consists of permutations which send Y to itself. Prove that H is a subgroup of SX .

(b) Suppose X = {1, 2, 3, 4} and Y = {1, 4}. List the permutations in S4 which send Y to itself.

(a) First, id(Y ) = Y , so id ∈ H .
Suppose σ, τ ∈ H , so σ(Y ) = Y and τ(Y ) = Y . Then

(σ · τ)(Y ) = σ[τ(Y )] = σ(Y ) = Y.

Hence, σ · τ ∈ H .
Finally, suppose σ ∈ H , so σ(Y ) = Y . Then

σ−1[σ(Y )] = σ−1(Y )

Y = σ−1(Y )

Therefore, σ−1 ∈ H .
Hence, H is a subgroup of SX .

(b) The permutations in S4 which send Y to itself are id, (1 4), (2 3), and (1 4)(2 3).

24. Compute the product of the permutations and write the answer as a product of disjoint cycles. (Multiply
the permutations right to left.)

(a) (1 5 3 4)(4 2 6).

(b) (1 6 3)−1(3 4 2)2.

(c) [(2 4)(3 4)]722.

(a)
1 2 3 4 5 6

(4 2 6)
1 6 3 2 5 4

(1 5 3 4)
5 6 4 2 3 1

13



(1 5 3 4)(4 2 6) = (1 5 3 4 2 6).

(b)
(1 6 3)−1(3 4 2)2 = (3 6 1)(3 2 4) = (1 3 2 4 6).

1 2 3 4 5 6
(3 2 4)

1 4 2 3 5 6
(3 6 1)

3 4 2 6 5 1

(c) First, (2 4)(3 4) = (2 4 3).
2 3 4

(3 4)
2 4 3

(2 4)
4 2 3

Since (2 4 3) has order 3,

[(2 4)(3 4)]722 = (2 4 3)722 = [(2 4 3)3]240 · (2 4 3)2 = id · (2 4 3)2 = (2 3 4).

25. Write (4 6 7 1) as a product of transpositions. Is this permutation odd or even?

(4 6 7 1) = (4 1)(4 7)(4 6).

Since it’s a product of 3 transpositions, it is odd.

26. Compute
(2 4 1 3)(3 5 1 6)(2 4)(2 4 1 3)−1.

You can do this directly by multiplying out the permutations.

1 2 3 4 5 6
(3 1 4 2)

4 3 1 2 5 6
(2 4)

2 3 1 4 5 6
(3 5 1 6)

2 5 6 4 1 3
(2 4 1 3)

4 5 6 1 3 2

Alternatively, you can use the following fact about the conjugate of a cycle by a permutation: If σ and
τ are permutations and τ is written as a product of cycles, then στσ−1 can be found by applying σ to the
elements of the cycles in τ .

That is, just apply (2 4 1 3) to each of the numbers in (3 5 1 6), then to each of the numbers in (2 4).
This gives

(2 4 1 3)(3 5 1 6)(2 4)(2 4 1 3)−1 = (2 5 3 6)(4 1).
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27. How many elements of S6 send the set {3, 5} into the set {3, 5}?

Let σ ∈ S6 be a permutation which sends the set {3, 5} into the set {3, 5}. Since permutations are
injective, different elements must go to different places. Thus, either

σ(3) = 3 and σ(5) = 5, or σ(3) = 5 and σ(5) = 3.

That is, there are two possibilities.
σ also permutes the elements {1, 2, 4, 6} among themselves. There are 4! = 24 such permutations.
Therefore, there are a total of 24 · 2 = 48 elements of S6 which send the set {3, 5} into the set {3, 5}.

28. Let S
Z

denote the group of permutations of Z under function composition. Define

H =
{

σ ∈ S
Z

∣
∣
∣ σ(Z+) ⊂ Z

+
}

.

(H is the set of permutations of the set of integers that take positive integers to positive integers.)
Check each subgroup axiom as it applies to H . If the axiom holds, prove it. If the axiom does not hold,

give a specific counterexample.

Suppose that τ, σ ∈ H , so τ(Z+) ⊂ Z
+ and σ(Z+) ⊂ Z

+. Then

(τ · σ)(Z+) = τ(σ(Z+)) ⊂ τ(Z+) ⊂ Z
+.

Therefore, τ · σ ∈ H .
Since id(Z+) = Z

+ ⊂ Z
+, it follows that id ∈ H .

Consider the function f : Z → Z given by

f(n) = n+ 1.

f is bijective: Its inverse is f−1(n) = n− 1. Thus, f ∈ S
Z
. Moreover, if n ∈ Z

+, then n > 0, so

f(n) = n+ 1 > 0 + 1 = 1.

Hence, f(n) ∈ Z
+, and so f(Z+) ⊂ Z

+. Thus, f ∈ H .
However, f−1 /∈ H , since f−1(1) = 0 /∈ Z

+.
Thus, H is not a subgroup of S

Z
.

29. Find the order of (44, 36) in Z56 × Z40.

The order of 44 in Z56 is
56

(56, 44)
=

56

4
= 14.

The order of 36 in Z40 is
40

(40, 36)
=

40

4
= 10.

Hence, the order of (44, 36) in Z56 × Z40 is [14, 10] = 70.

30. (a) Find an element of order 12 in Z6 × Z8.

(b) Prove that there is no element of order 16 in Z6 × Z8.
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(a) 2 has order 3 in Z6 and 2 has order 4 in Z8, so (2, 2) has order [3, 4] = 12 in Z6 × Z8.

(b) Let (a, b) ∈ Z6 × Z8. Suppose a has order m in Z6 and b has order n in Z8. The order of (a, b) is [m,n].
Assume that [m,n] = 16.
The divisors of 6 and 8 are

6 : 1, 2, 3, 6

8 : 1, 2, 4, 8

Thus, m ∈ {1, 2, 3, 6} and n ∈ {1, 2, 4, 8}.
If m = 3 or m = 6, then 3 | m | [m,n] = 16, which is a contradiction. Hence, m = 1 or m = 2.
If m = 1, then

16 = [m,n] = [1, n] = n.

But 16 is not a divisor of 8, as n is assumed to be. This is a contradiction.
Finally, suppose m = 2. Since there are only 4 possibilities for n, I’ll just check cases:

[2, 1] = 2, [2, 2] = 2, [2, 4] = 4, [2, 8] = 8.

In no case do I have [m,n] = 16.
This final contradiction shows that no element of Z6 × Z8 has order 16.

31. List the elements of the subgroup 〈(4, 6)〉 of Z10 × Z30.

〈(4, 6)〉 = {(0, 0), (4, 6), (8, 12), (2, 18), (6, 24)}.

32. Z× Z is a group under componentwise addition. Let

H = {(x, y) | x, y ∈ Z× Z | 2x = 7y}.

Prove that H is a subgroup of Z× Z.

Since 2 · 0 = 0 = 7 · 0, it follows that (0, 0) ∈ H .
Suppose (x, y) ∈ H . Then

2x = 7y

−2x = −7y

2(−x) = 7(−y)

Hence,
−(x, y) = (−x,−y) ∈ H.

Suppose (a, b), (c, d) ∈ H . Then
2a = 7b and 2c = 7d.

Hence,
2a+ 2c = 7b+ 7d

2(a+ c) = 7(b+ d)

Therefore,
(a, b) + (c, d) = (a+ c, b+ d) ∈ H.
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33. Z× Z is a group under componentwise addition. Define f : Z× Z → Z× Z by

f(x, y) = (2x+ 3y, 7x− y).

(a) Prove that f is a group map.

(b) Prove that ker f = {(0, 0)}.

(a) A direct computation:

f [(a, b)+(c, d)] = f(a+c, b+d) = (2(a+c)+3(b+d), 7(a+c)− (b+d) = (2a+2c+3b+3d, 7a+7c−b−d) =

((2a+ 3b) + (2c+ 3d), (7a− b) + (7c− d) = (2a+ 3b, 7a− b) + (2c+ 3d, 7c− d) = f(a, b) + f(c, d).

Alternatively, note that f can be represented using matrix multiplication:

f

([
x
y

])

=

[
2 3
7 −1

] [
x
y

]

.

Write

A =

[
2 3
7 −1

]

, u =

[
a
b

]

, v =

[
c
d

]

.

Then by properties of matrix multiplication,

f(u+ v) = A(u + v) = Au+Av = f(u) + f(v).

(b) Suppose (x, y) ∈ ker f . Then

f(x, y) = (2x+ 3y, 7x− y) = (0, 0).

Hence,
2x+ 3y = 0, 7x− y = 0.

Multiply the second equation by 3 and add it to the first equation:

2x+ 3y = 0

21x− 3y = 0

23x = 0

x = 0

Plugging this into 7x− y = 0 gives −y = 0, so y = 0. Therefore, (x, y) = (0, 0). Hence, ker f = {(0, 0)}.

34. (a) List the elements of the subgroup 〈(3, 7)〉 in U8 × U10.

(b) List the elements of the subgroup 〈3〉 × 〈7〉 in U8 × U10.

Note that the operations are multiplication mod 8 in U8 and multiplication mod 10 in U10.

(a) 〈(3, 7)〉 consists of powers of (3, 7).

〈(3, 7)〉 = {(1, 1), (3, 7), (1, 9), (3, 3)}.

(b) First,
〈3〉 = {1, 3} in U8.
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〈7〉 = {1, 7, 9, 3} in U10.

〈3〉 × 〈7〉 consists of pairs where the first component is in 〈3〉 and the second component is in 〈7〉:

〈3〉 × 〈7〉 = {(1, 1), (1, 7), (1, 9), (1, 3), (3, 1), (3, 7), (3, 9), (3, 3)}.

Note that the answers to (a) and (b) are different!

35. Find a subgroup of order 8 in Z12 × Z14. Does this group have any elements of order 8?

Since 8 6 | 12 and 8 6 | 14, neither Z12 nor Z14 has a subgroup of order 8.
But I can get a subgroup of order 8 by taking the product of a subgroup of order 4 in Z12 and a subgroup

of order 2 in Z14. Thus, 〈3〉 × 〈7〉 is a subgroup of order 8 in Z12 × Z14.
If (a, b) ∈ Z12×Z14, then the order of (a, b) is [ord(a), ord(b)]. But ord(a) | 12, so ord(a) = 1, 2, 3, 4, 6, 12,

and ord(b) | 14, so ord(b) = 1, 2, 7, 14. No combination of these numbers will give [ord(a), ord(b)] = 8. Hence,
there are no elements of order 8.

36. (a) List the elements of order 8 in Z8 × Z6.

(b) List the elements of order 8 in Z4 × Z6.

(a) Let ord(x) denote the order of x. If (a, b) ∈ Z8 × Z6, then the order of (a, b) is [ord(a), ord(b)]. Suppose
[ord(a), ord(b)] = 8. By Lagrange’s theorem, I also have

ord(a) | 8 and ord(b) | 6.

Thus, ord(a) = 1, 2, 4, 8 and ord(b) = 1, 2, 3, 6. Of the 16 possible combinations of values, the ones that
give [ord(a), ord(b)] = 8 are

ord(a) = 8 and ord(b) = 1, 2.

The elements of order 8 in Z8 are 1, 3, 5, and 7.
The elements of order 1 or 2 in Z6 are 0 and 3.
Thus, the elements of order 8 in Z8 × Z6 are

(1, 0), (3, 0), (5, 0), (7, 0), (1, 3), (3, 3), (5, 3), (7, 3).

(b) Let ord(x) denote the order of x. If (a, b) ∈ Z4 × Z6, then the order of (a, b) is [ord(a), ord(b)]. Suppose
[ord(a), ord(b)] = 8. By Lagrange’s theorem, I also have

ord(a) | 4 and ord(b) | 6.

Thus, ord(a) = 1, 2, 4 and ord(b) = 1, 2, 3, 6. Of the 12 possible combinations of values, no combination
gives [ord(a), ord(b)] = 8. Hence, Z4 × Z6 has no elements of order 8.

37. Find the primary decomposition and invariant factor decomposition for Z4 × Z6 × Z75.

The primary decomposition is
Z4 × Z2 × Z3 × Z3 × Z25.

2 4
3 3

25
2 300
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The invariant factor decomposition is Z6 × Z300.

38. (a) Determine the largest order of an element of Z10 × Z15 × Z40.

(b) Find a specific element of largest order in Z10 × Z15 × Z40.

(a) The largest possible order of an element is

[10, 15, 40] = 120.

Alternative method: The primary decomposition is

Z2 × Z5 × Z3 × Z5 × Z8 × Z5.

From this, I find that the invariant factor decomposition is

Z5 × Z10 × Z120.

The top factor is Z120, so the largest order of an element is 120.

(b) (1, 1, 1) is an element of order [10, 15, 40] = 120.

39. Z2 × Z10 and Z20 are abelian groups of order 20. Explain why they aren’t isomorphic.

Z20 has elements of order 20 — for instance, 1 has order 20.
If (x, y) ∈ Z2 × Z10, then

10 · (x, y) = (10x, 10y) = (0, 0).

Therefore, no element of Z2 × Z10 has order greater than 10.
Therefore, Z2 × Z10 and Z20 aren’t isomorphic.

40. Determine all isomorphism classes of abelian groups of order 23 · 33. For each isomorphism class, give
the primary decomposition and the corresponding invariant factor decomposition.

Factor 23 and 33 into prime powers:

23 : 23, 2 · 22, 2 · 2 · 2

33 : 33, 3 · 32, 3 · 3 · 3

The primary decompositions and their corresponding invariant factor decompositions are:

Primary decomposition Invariant factor decomposition

Z8 × Z27 Z216

Z8 × Z3 × Z9 Z3 × Z72

Z8 × Z3 × Z3 × Z3 Z3 × Z3 × Z24

Z2 × Z4 × Z27 Z2 × Z108

Z2 × Z4 × Z3 × Z9 Z6 × Z36

Z2 × Z4 × Z3 × Z3 × Z3 Z3 × Z6 × Z12

Z2 × Z2 × Z2 × Z27 Z2 × Z2 × Z54

Z2 × Z2 × Z2 × Z3 × Z9 Z2 × Z6 × Z18

Z2 × Z2 × Z2 × Z3 × Z3 × Z3 Z6 × Z6 × Z6
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41. Suppose G is an abelian group of order 16.

(a) If no element of G has order greater than 2, what are the possible primary decompositions of G?

(b) If G has at least one element of order 8, what are the possible primary decompositions of G?

(a) The primary decompositions for abelian groups of order 16 are

Z16, Z2 × Z8, Z4 × Z4, Z2 × Z2 × Z4, Z2 × Z2 × Z2 × Z2.

1 ∈ Z16 has order 16, (0, 1) ∈ Z2×Z8 has order 8, (1, 1) ∈ Z4×Z4 has order 4, and (0, 0, 1) ∈ Z2×Z2×Z4

has order 4. So if no element of G has order greater than 2, then G cannot be isomorphic to any of the first
four groups.

On the other hand, if (a, b, c, d) ∈ Z2 × Z2 × Z2 × Z2, then

2(a, b, c, d) = (0, 0, 0, 0).

This proves that every element of Z2 ×Z2 ×Z2 ×Z2 has order at most 2. Therefore, if no element of G
has order greater than 2, the primary decomposition of G is

G ≈ Z2 × Z2 × Z2 × Z2.

(b) If (a, b) ∈ Z4 × Z4, then 4(a, b) = (0, 0).
Therefore, elements of Z4 × Z4 have order at most 4.
If (a, b, c) ∈ Z2 × Z2 × Z4, then

4(a, b, c) = (0, 0, 0).

Therefore, elements of Z2 × Z2 × Z4 have order at most 4.
I already showed that elements of Z2 × Z2 × Z2 × Z2 have order at most 2.
Therefore, if G has at least one element of order 8, G cannot be isomorphic to Z4 × Z4, Z2 × Z2 × Z4,

or Z2 × Z2 × Z2 × Z2.
On the other hand, 2 ∈ Z16 has order 8, and (0, 1) ∈ Z2×Z8 has order 8. These groups do have elements

of order 8.
Hence, if G has at least one element of order 8, the possible primary decompositions of G are

Z16 or Z2 × Z8.

42. Suppose G is an abelian group of order 1701 and the largest order of an element of G is 63 What are
the possible invariant factor decompositions for G?

It would be really tedious to list all the possible invariant factor decompositions for groups of order
1701. However, this isn’t necessary.

Note that
1701

63
= 27. The invariant factor decomposition for G has the form

Zd1
× Zd2

× · · · × Zdn
× Z63.

Here d1 | d2 | · · · | dn | 63 and d1d2 · · · dn = 27.
The possible factorizations of 27 are 3 · 3 · 3, 3 · 9, and 27. Now 27 6 | 63, so the last one is ruled out. The

possible invariant factor decompositions are

Z3 × Z3 × Z3 × Z63 and Z3 × Z9 × Z63.
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43. (a) Can Z5 be isomorphic to the direct product of two of its proper subgroups?

(b) Can Z8 be isomorphic to the direct product of two of its proper subgroups?

(c) Can S3 be isomorphic to the direct product of two of its proper subgroups?

(a) Z5 does not have any proper subgroups, so it can’t be isomorphic to the direct product of two of its
proper subgroups.

(b) Suppose Z8 is isomorphic to A×B, where A and B are proper subgroups of Z8. Then one of A, B has
order 2, while the other has order 4. Suppose without loss of generality that |A| = 2 and |B| = 4.

Using multiplicative notation, x2 = 1 for all x ∈ A, while y4 = 1 for all y ∈ B. Then if (x, y) ∈ A×B,

(x, y)4 = (x4, y4) = (1, 1).

Therefore, elements of A×B have order no greater than 4.
However, Z8 has elements of order 8 (such as 1).
This contradiction proves that Z8 can’t be isomorphic to the direct product of two of its proper sub-

groups.

(c) Proper subgroups of S3 have order 2 or 3, so they’re isomorphic to Z2 (order 2) or Z3 (order 3). Both
Z2 and Z3 are abelian, and the product of abelian groups is abelian — but S3 is nonabelian. So S3 can’t be
isomorphic to the direct product of two of its proper subgroups.

44. Suppose A, B, C, and D are groups, all with the operation denoted by multiplication. Suppose that
f : A → C and g : B → D are group maps. Define f × g : A×B → C ×D by

(f × g)(a, b) = (f(a), g(b)).

(a) Prove that f × g is a group map.

(b) Prove that

ker(f × g) = {(a, b) ∈ A×B | a ∈ ker f and b ∈ ker g}.

flushpar (a) Let (a, b), (c, d) ∈ A×B. Then

(f × g) [(a, b) · (c, d)] = (f × g)(ac, bd) = (f(ac), g(bd)) = (f(a)f(c), g(b)g(d)) =

(f(a), g(b)) · (f(c), g(d)) = (f × g)(a, b) · (f × g)(c, d).

Therefore, f × g is a group map.

(b) Let (a, b) ∈ ker(f × g). By definition,

(f × g)(a, b) = (1, 1), so (f(a), g(b)) = (1, 1), hence f(a) = 1 and g(b) = 1.

f(a) = 1 means a ∈ ker f and g(b) = 1 means b ∈ ker g. Therefore,

(a, b) ∈ {(a, b) ∈ A×B | a ∈ ker f and b ∈ ker g}.

Conversely, suppose

(a, b) ∈ {(a, b) ∈ A×B | a ∈ ker f and b ∈ ker g}.
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a ∈ ker f means f(a) = 1, and b ∈ kerg means g(b) = 1. Therefore,

(f(a), g(b)) = (1, 1), so (f × g)(a, b) = (1, 1).

Hence, (a, b) ∈ ker(f × g).
Since each of the sets is contained in the other, it follows that

ker(f × g) = {(a, b) ∈ A×B | a ∈ ker f and b ∈ ker g}.

45. (a) Explain why Z2 × Z3 and Z3 × Z2 are not identical as sets.

(b) Show that if G and H are groups, then G×H ≈ H ×G.

(a) Z2 × Z3 consists of ordered pairs (x, y), where x ∈ Z2 and y ∈ Z3. Z3 × Z2 consists of ordered pairs
(x, y), where x ∈ Z3 and y ∈ Z2.

Thus, for example, an element (x, y) ∈ Z2 × Z3 can’t be an element of Z3 × Z2: x is an element of Z2,
but to be in Z3 × Z2 it should be an element of Z3.

(b) Define f : G×H → H ×G by

f(g, h) = (h, g) for g ∈ G, h ∈ H.

f is a group map: If a, c ∈ G and b, d ∈ H , then

f ((a, b)(c, d)) = f (ac, bd) = (bd, ac) = (b, a)(d, c) = f(a, b)f(c, d).

Define g : H ×G → G×H by

g(h, g) = (g, h) for g ∈ G, h ∈ H.

Then
f [g(h, g)] = f(g, h) = (h, g),

g [f(g, h)] = g(h, g) = (g, h).

Therefore, f and g are inverses. Thus, f is bijective, so f is an isomorphism.

46. (a) Suppose a group has 48 elements. What are the possiblities for the order of a subgroup of G?

(b) A subgroup of a group contains 7 elements. The subgroup has 3 left cosets. What is the order of the
group?

(a) By Lagrange’s theorem, the order of a subgroup must divide the order of the group. Therefore, a subgroup
of a group of order 48 can have 1, 2, 3, 4, 6, 8, 12, 16, 24, or 48 elements.

(b) By Lagrange’s theorem, the order of a group equals the order of a subgroup times the index of the
subgroup — i.e. the number of left or right cosets. Therefore, the group has order 7 · 3 = 21 elements.

47. List the elements of the cosets of 〈11〉 in U30.

〈11〉 = {1, 11}

7 · 〈11〉 = {7, 17}

13 · 〈11〉 = {13, 23}

19 · 〈11〉 = {19, 29}
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48. List the elements of the cosets of 〈8〉 in Z12.

〈8〉 = {0, 8, 4}

1 + 〈8〉 = {1, 9, 5}

2 + 〈8〉 = {2, 10, 6}

3 + 〈8〉 = {3, 11, 7}

49. List the elements of the cosets of 〈(1, (1 3))〉 in Z3 × S3.

Remember that the operation is addition mod 3 in the first component and permutation multiplication
(right to left) in the second. For example,

(0, (1 2)) · (2, (1 3)) = (0 + 2, (1 2)(1 3)) = (2, (1 3 2)).

The cosets are

〈(1, (1 3))〉 = {(0, id), (1, (1 3)), (2, id), (0, (1 3)), (1, id), (2, (1 3))}

(0, (1 2) · 〈(1, (1 3))〉 = {(0, (1 2)), (1, (1 3 2)), (2, (1 2)), (0, (1 3 2)), (1, (1 2)), (2, (1 3 2))}

(0, (2 3) · 〈(1, (1 3))〉 = {(0, (2 3)), (1, (1 2 3)), (2, (2 3)), (0, (1 2 3)), (1, (2 3)), (2, (1 2 3))}

50. (a) List the cosets of the subgroup 4Z of Z.

(b) What coset of 4Z contains 771?

(a)
4Z = {. . . ,−8,−4, 0, 4, 8, . . .},

1 + 4Z = {. . . ,−7,−3, 1, 5, 9, . . .},

2 + 4Z = {. . . ,−6,−2, 2, 6, 10, . . .},

3 + 4Z = {. . . ,−5,−1, 3, 7, 11, . . .}.

(b) Since 771 = 3 (mod 4), I have 771 ∈ 3 + 4Z.

We are all special cases. - Albert Camus
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