
Math 345
10-1-2020

Review Problems for Test 3

These problems are provided to help you study. The presence of a problem on this handout does not
imply that there will be a similar problem on the test. And the absence of a topic does not imply that it
won’t appear on the test.

1. (a) List the elements of the subgroup of Z4 × Z6 generated by (2, 4).

(b) List the cosets of the subgroup 〈(2, 4)〉 of Z4 × Z6. For each coset, list the elements of the coset.

(c) Construct an addition table for the quotient group
Z4 × Z6

〈(2, 4)〉 . Is the quotient group isomorphic to Z2×Z2

or to Z4?

2. (a) List the elements of U16.

(b) List the elements of 〈9〉 in U16.

(c) List the elements of each left coset of 〈9〉 in U16.

(d) Find the order of each coset in
U16

〈9〉 . Use this information to find the primary decomposition of
U16

〈9〉 .

3. G = {0, 2, 4, 6, 8, 10, 12, 14, 16} is a group under addition mod 18.

(a) List the elements of the subgroup 〈6〉.

(b) List the cosets of 〈6〉 in G. For each coset, list the elements of the coset.

(c) Construct an addition table for G/〈6〉. What familiar group is isomorphic to G/〈6〉?

4. (a) U28 is the group of elements of Z28 which are relatively prime to 28, under multiplication mod 28.
List the elements of U28.

(b) List the elements of the subgroup 〈9〉 of U28.

(c) List the cosets of 〈9〉 in U28. For each coset, list the elements of the coset.

(d) Construct a multiplication table for the quotient group
U28

〈9〉 . Use this information to find the primary

decomposition of
U28

〈9〉 .

5. (a) Let f : G → H be a group map. Show that if x ∈ G has finite order n, then the order of f(x) divides
n.

(b) Show that if H is a normal subgroup of G, then the order of xH divides the order of x.

6. (a) List the elements of the cosets of the subgroup 〈(0, 2)〉 of Z4 × Z6.

(b) Find the primary decomposition of the quotient group
Z4 × Z6

〈(0, 2)〉 .

7. GL(2,Z2) denotes the group of 2× 2 invertible matrices with entries in Z2 = {0, 1}:
[

1 0
0 1

]

,

[

0 1
1 0

]

,

[

1 1
0 1

]

,

[

1 0
1 1

]

,

[

1 1
1 0

]

,

[

0 1
1 1

]

.
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The operation in GL(2,Z2) is matrix multiplication, but all the arithmetic is done in Z2 — so multiples
of 2 equal 0.

(a) List the elements of the cyclic subgroup generated by

[

1 1
0 1

]

.

(b) Is the cyclic subgroup generated by

[

1 1
0 1

]

a normal subgroup? Why or why not?

(c) Is GL(2,Z2) abelian? Why or why not?

8. Here is the multiplication table for D5, the group of symmetries of a regular pentagon:

1 b b2 b3 b4 a ab ab2 ab3 ab4

1 1 b b2 b3 b4 a ab ab2 ab3 ab4

b b b2 b3 b4 1 ab4 a ab ab2 ab3

b2 b2 b3 b4 1 b ab3 ab4 a ab ab2

b3 b3 b4 1 b b2 ab2 ab3 ab4 a ab

b4 b4 1 b b2 b3 ab ab2 ab3 ab4 a

a a ab ab2 ab3 ab4 1 b b2 b3 b4

ab ab ab2 ab3 ab4 a b4 1 b b2 b3

ab2 ab2 ab3 ab4 a ab b3 b4 1 b b2

ab3 ab3 ab4 a ab ab2 b2 b3 b4 1 b

ab4 ab4 a ab ab2 ab3 b b2 b3 b4 1

(a) Prove by specific example that the subgroup {1, a} is not normal.

(b) Explain why the subgroup {1, b, b2, b3, b4} is normal.

9. Consider the group U15 consisting of elements of Z15 which are relatively prime to 15, with the operation
being multiplication mod 15:

U15 = {1, 2, 4, 7, 8, 11, 13, 14}.

* 1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14

2 2 4 8 14 1 7 11 13

4 4 8 1 13 2 14 7 11

7 7 14 13 4 11 2 1 8

8 8 1 2 11 4 13 14 7

11 11 7 14 2 13 1 8 4

13 13 11 7 1 14 8 4 2

14 14 13 11 8 7 4 2 1

(a) U15 is an abelian group of order 8. Find its primary decomposition.

(b) List the elements of the quotient group U15/〈14〉.

(c)
U15

〈14〉 is an abelian group of order 4. Find its primary decomposition.
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10. Let H and K be subgroups of a group G. Suppose that H is normal. Let

HK = {hk | h ∈ H, k ∈ K}.

Prove that HK is a subgroup of G.

11. Use the First Isomorphism Theorem to prove that

Z× Z

〈(4,−5)〉 ≈ Z.

12. Use the First Isomorphism Theorem to prove that

Z× Z× Z

〈(2, 1,−3)〉 ≈ Z× Z.

13. Let
H = {x · (5,−

√
3) | x ∈ R}.

Prove that
R× R

H
≈ R.

14. Consider the quotient group
Z× Z

〈(6, 8)〉 .

(a) Prove that
Z× Z

〈(6, 8)〉 is infinite by showing that the cosets (n, 0) + 〈(6, 8)〉 for n ∈ Z are distinct.

(b) Define f : Z× Z → Z by
f(x, y) = 8x− 6y.

Use the Universal Property of the Quotient to show that f induces a function f ′ :
Z× Z

〈(6, 8)〉 → Z whose image

is 2Z. Use this to give an alternate proof that
Z× Z

〈(6, 8)〉 is infinite.

15. Use the Universal Property of the Quotient to show that the function f : Z → Z

12Z
defined by f(x) =

8x+ 12Z induces a group map f̃ :
Z

3Z
→ Z

12Z
. What is the definition of f̃?

16. (a) Give an example of a noncommutative ring. You don’t need to verify any of the ring axioms, but
you should produce two elements of the ring which do not commute (and you should show that they do not
commute).

(b) Is GL(2,R) a ring under matrix addition and multiplication? Why or why not?

(c) Find nonzero 2 × 2 matrices A and B with real entries such that AB = A, but B is not the identity
matrix. Why doesn’t this contradict the definition of a multiplicative identity?

17. Let R be a ring, r, s ∈ R. Use the ring axioms to prove that

(−r)(−s) = rs.

18. Let R be a ring, and let r ∈ R. If n is a positive integer, prove that

(−r)n =
{

rn if n is even
−rn if n is odd

.
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19. Multiply the quaternions:
(3 + 2i− j + k) · (1 + i− 2j + k).

20. The characteristic of a ring with unity R is the smallest positive integer n such that

n · r = 0 for all r ∈ R.

If no such n exists, the ring has characteristic 0.

(a) What is the characteristic of R? Of Z57?

(b) Give an example of an infinite integral domain with characteristic 2.

21. (a) Find the units in the ring Z3 × Z6.

(b) Find the zero divisors in the ring Z3 × Z6.

22. Let R be a ring. Let e ∈ R be idempotent; that is, e2 = e.

(a) Let

eRe =
{

ere
∣

∣

∣
r ∈ R

}

.

Show that eRe is a subring of R.

(b) Show that e is an identity element for eRe.

23. Give an example of a ring R and nonzero elements r, s ∈ R such that r2 + s2 = 0.

24. Let R be a finite commutative ring with no zero divisors. Prove that R has a multiplicative identity.

25. Let
{. . . ,−4,−1, 0, 1, 4, . . .}.

It consists of squares of integers and their negatives, and it is not a subring of Z. What is the smallest
subring of Z which contains this set?

26. Let x and y be elements in a ring R. Let

I = {ax+ by | a, b ∈ R}.

Prove that I is a left ideal in R.

27. (a) Prove that the following set is an ideal in Z:

I = {4x+ 14y + 16z | x, y, z ∈ Z}.

(b) Find an integer n such that I = 〈n〉 (and prove that your n works).

28. Prove that the following set is a subring in Z3 × Z3, but not an ideal:

A = {(0, 0), (1, 1), (2, 2)}.

29. Z×Z is a ring under componentwise addition and multiplication. Consider the following subset of Z×Z:

S = {(a, b) | 2 | a or 2 | b}.

Check each axiom for an ideal. If the axiom holds, prove it. If the axiom does not hold, give a specific
counterexample.
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30. Define f : Z → Z by
f(x) = |x|.

Check each axiom for a ring map. If the axiom holds, prove it. If the axiom doesn’t hold, give a specific
counterexample.

31. Define f : R3 → R
2 by

φ(x, y, z) = (2x− y, 2y − z).

Check each axiom for a ring map. If the axiom holds, prove it. If the axiom doesn’t hold, give a specific
counterexample.

Solutions to the Review Problems for Test 3

1. (a) List the elements of the subgroup of Z4 × Z6 generated by (2, 4).

(b) List the cosets of the subgroup 〈(2, 4)〉 of Z4 × Z6. For each coset, list the elements of the coset.

(c) Construct an addition table for the quotient group
Z4 × Z6

〈(2, 4)〉 . Is the quotient group isomorphic to Z2×Z2

or to Z4?

(a)
〈(2, 4)〉 = {(0, 0), (2, 4), (0, 2), (2, 0), (0, 4), (2, 2)}.

(b)
〈(2, 4)〉 = {(0, 0), (2, 4), (0, 2), (2, 0), (0, 4), (2, 2)},

(0, 1) + 〈(2, 4)〉 = {(0, 1), (2, 5), (0, 3), (2, 1), (0, 5), (2, 3)},
(1, 0) + 〈(2, 4)〉 = {(1, 0), (3, 4), (1, 2), (3, 0), (1, 4), (3, 2)},
(1, 1) + 〈(2, 4)〉 = {(1, 1), (3, 5), (1, 3), (3, 1), (1, 5), (3, 3)}.

(c) I’ll use the representatives (0, 0), (1, 0), (0, 1), and (1, 1) to stand for their cosets.

+ (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 1) (0, 1) (0, 0) (1, 1) (1, 0)

(1, 0) (1, 0) (1, 1) (0, 0) (0, 1)

(1, 1) (1, 1) (1, 0) (0, 1) (0, 0)

Since every element has order 1 or 2, the quotient group is isomorphic to Z2 × Z2.

2. (a) List the elements of U16.

(b) List the elements of 〈9〉 in U16.

(c) List the elements of each left coset of 〈9〉 in U16.

(d) Find the order of each coset in
U16

〈9〉 . Use this information to find the primary decomposition of
U16

〈9〉 .

(a) This is the group of elements of Z16 which are relatively prime to 16. The operation is multiplication
mod 16.

U16 = {1, 3, 5, 7, 9, 11, 13, 15}.
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(b) Since 92 = 81 = 1 (mod 16), I have
〈9〉 = {1, 9}.

(c) I list the elements of the original subgroup. Then I multiply the elements of the subgroup by other
elements of the group, “crossing out” elements that have already been listed, until every element of the
group has been listed exactly once.

〈9〉 = {1, 9}
3 · 〈9〉 = {3, 11}
5 · 〈9〉 = {5, 13}
7 · 〈9〉 = {7, 15}

(d) Since
U16

〈9〉 has order 4, it’s isomorphic to Z4 or to Z2 × Z2.

coset order
{3, 11} 2
{5, 13} 2
{7, 15} 2

For example,
{5, 13}2 = (5 · {1, 9})2 = 52 · {1, 9} = 9 · {1, 9} = {1, 9}.

Since every element has order 1 or 2, the quotient group is isomorphic to Z2 × Z2.

3. G = {0, 2, 4, 6, 8, 10, 12, 14, 16} is a group under addition mod 18.

(a) List the elements of the subgroup 〈6〉.

(b) List the cosets of 〈6〉 in G. For each coset, list the elements of the coset.

(c) Construct an addition table for G/〈6〉. What familiar group is isomorphic to G/〈6〉?

(a)
〈6〉 = {0, 6, 12}.

(b) Reminder: The operation is addition mod 18, and the group is {0, 2, 4, 6, 8, 10, 12, 14, 16}. So (for
instance) elements like 1 or 9 in Z18 don’t come into this problem.

There are 9 elements in G and 3 elements in the subgroup, so by Lagrange’s theorem there are
9

3
= 3

cosets.
I start with the original subgroup. I take an element that isn’t in the subgroup and add it to the

subgroup (mod 18) to get a coset:

{0, 6, 12}, 2 + {0, 6, 12} = {2, 8, 14}.
Next, I take an element which isn’t in either of the first two cosets and add it to the original subgroup:

4 + {0, 6, 12} = {4, 10, 16}.
I have three distinct cosets, so that must be all of them. They are

{0, 6, 12}, {2, 8, 14}, {4, 10, 16}.
(c)

+ {0, 6, 12} {2, 8, 14} {4, 10, 16}
{0, 6, 12} {0, 6, 12} {2, 8, 14} {4, 10, 16}
{2, 8, 14} {2, 8, 14} {4, 10, 16} {0, 6, 12}
{4, 10, 16} {4, 10, 16} {0, 6, 12} {2, 8, 14}
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Here’s an example which shows how I constructed the table. To find {2, 8, 14} + {4, 10, 16}, I take
representatives from each coset. It doesn’t matter which elements I use; I’ll take 2 from {2, 8, 14} and 10
from {4, 10, 16}. Now 2 + 10 = 12, and 12 ∈ {0, 6, 12}. Therefore,

{2, 8, 14}+ {4, 10, 16} = {0, 6, 12}.

The rest of the table is constructed in the same way.
G/〈6〉 is a group of order 3. The only group of order 3 is Z3, so it must be isomorphic to Z3.

4. (a) U28 is the group of elements of Z28 which are relatively prime to 28, under multiplication mod 28.
List the elements of U28.

(b) List the elements of the subgroup 〈9〉 of U28.

(c) List the cosets of 〈9〉 in U28. For each coset, list the elements of the coset.

(d) Construct a multiplication table for the quotient group
U28

〈9〉 . Use this information to find the primary

decomposition of
U28

〈9〉 .

(a)
U28 = {1, 3, 5, 9, 11, 13, 15, 17, 19, 23, 25, 27}.

(b)
〈9〉 = {1, 9, 25}.

(c) First, since |U28| = 12 and |〈9〉| = 3, there are
12

3
= 4 cosets by Lagrange’s theorem. They are

〈9〉 = {1, 9, 25}
3 · {1, 9, 25} = {3, 19, 27}
5 · {1, 9, 25} = {5, 13, 17}
11 · {1, 9, 25} = {11, 15, 23}

(d)

+ {1, 9, 25} {3, 19, 27} {5, 13, 17} {11, 15, 23}
{1, 9, 25} {1, 9, 25} {3, 19, 27} {5, 13, 17} {11, 15, 23}
{3, 19, 27} {3, 19, 27} {1, 9, 25} {11, 15, 23} {5, 13, 17}
{5, 13, 17} {5, 13, 17} {11, 15, 23} {1, 9, 25} {3, 19, 27}
{11, 15, 23} {11, 15, 23} {5, 13, 17} {3, 19, 27} {1, 9, 25}

Here’s an example to show how the table was constructed. To find {5, 13, 17} · {11, 15, 23}, I take
representatives from each coset. I’ll take 5 from {5, 13, 17} and 11 from {11, 15, 23}; it doesn’t matter which
elements I choose. Now 5 · 11 = 55 = 27 (mod 28), and 27 ∈ {3, 19, 27}. Therefore,

{5, 13, 17} · {11, 15, 23} = {3, 19, 27}.

The rest of the table is constructed in the same way.
The quotient group has order 4, and every element other than the identity has order 2 — notice the

identity {1, 9, 25} in each spot on the main diagonal. Therefore, the quotient group is isomorphic to Z2×Z2.
It can’t be Z4, the other group of order 4, because there is no element of order 4.
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5. (a) Let f : G → H be a group map. Show that if x ∈ G has finite order n, then the order of f(x) divides
n.

(b) Show that if H is a normal subgroup of G and x ∈ G has finite order, then the order of xH divides the
order of x.

(a) Since x has order n, I have xn = 1. Then

f(xn) = f(1) = 1, so f(x)n = 1.

This implies that the order of f(x) divides n.

(b) The quotient map π : G → G

H
satisfies π(x) = xH . Hence, the result follows immediately from (a).

Expressed in words, this says that the order of a coset divides the order of its representative.

6. (a) List the elements of the cosets of the subgroup 〈(0, 2)〉 of Z4 × Z6.

(b) Find the primary decomposition of the quotient group
Z4 × Z6

〈(0, 2)〉 .

(a)

〈(0, 2)〉 = {(0, 0), (0, 2), (0, 4)}
(1, 0) + 〈(0, 2)〉 = {(1, 0), (1, 2), (1, 4)}
(2, 0) + 〈(0, 2)〉 = {(2, 0), (2, 2), (2, 4)}
(3, 0) + 〈(0, 2)〉 = {(3, 0), (3, 2), (3, 4)}
(0, 1) + 〈(0, 2)〉 = {(0, 1), (0, 3), (0, 5)}
(1, 1) + 〈(0, 2)〉 = {(1, 1), (1, 3), (1, 5)}
(2, 1) + 〈(0, 2)〉 = {(2, 1), (2, 3), (2, 5)}
(3, 1) + 〈(0, 2)〉 = {(3, 1), (3, 3), (3, 5)}

(b) The possible primary decompositions are

Z8, Z2 × Z4, Z2 × Z2 × Z2.

Note that (1, 0) + 〈(0, 2)〉 has order 4:

2 · (1, 0) + 〈(0, 2)〉 = (2, 0) + 〈(0, 2)〉,

3 · (1, 0) + 〈(0, 2)〉 = (3, 0) + 〈(0, 2)〉,

4 · (1, 0) + 〈(0, 2)〉 = (0, 0) + 〈(0, 2)〉.

This rules out Z2 × Z2 × Z2.
On the other hand, the original group Z4 × Z6 has no elements of order 8. If (a, b) ∈ Z4 × Z6, then the

order of (a, b) is [m,n], where m is the order of a and n is the order of b. But m | 4, so m = 1, 2, 4, and n | 6,
so n = 1, 2, 3, 6. No combination of these numbers will give [m,n] = 8.

Moreover, the largest order of an element of Z4 × Z6 is [4, 6] = 12.
If (a, b) + 〈(0, 2)〉 had order 8, then the order of (a, b) would divide 8. Since no element of Z4 × Z6 has

order greater than 12, this means that (a, b) has order 8, which I ruled out above.
Thus, the quotient group has no elements of order 8, and it can’t be Z8.
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Therefore,
Z4 × Z6

〈(0, 2)〉 ≈ Z2 × Z4.

7. GL(2,Z2) denotes the group of 2× 2 invertible matrices with entries in Z2 = {0, 1}:
[

1 0
0 1

]

,

[

0 1
1 0

]

,

[

1 1
0 1

]

,

[

1 0
1 1

]

,

[

1 1
1 0

]

,

[

0 1
1 1

]

.

The operation in GL(2,Z2) is matrix multiplication, but all the arithmetic is done in Z2 — so multiples of
2 equal 0.

(a) List the elements of the cyclic subgroup generated by

[

1 1
0 1

]

.

(b) Is the cyclic subgroup generated by

[

1 1
0 1

]

a normal subgroup? Why or why not?

(c) Is GL(2,Z2) abelian? Why or why not?

(a)
[

1 1
0 1

]2

=

[

1 0
0 1

]

.

Hence, the cyclic subgroup is
{[

1 0
0 1

]

,

[

1 1
0 1

]}

.

(b) I’ll show that the subgroup isn’t normal. Let H denote the subgroup.

Use the formula
[

a b
c d

]

−1

=
1

ad− bc

[

d −b
−c a

]

.

This gives
[

1 1
1 0

]

−1

=

[

0 1
1 1

]

.

(Remember that −1 = 1 in Z2.) Then

[

1 1
1 0

] [

1 1
0 1

] [

1 1
1 0

]

−1

=

[

1 1
1 0

] [

1 1
0 1

] [

0 1
1 1

]

=

[

0 1
1 0

]

/∈ H.

Hence, the subgroup isn’t normal.

(c) If GL(2,Z2) were abelian, then every subgroup would be normal. Since I found a non-normal subgroup
in (a) and (b), GL(2,Z2) can’t be abelian.

A specific counterexample:

[

1 1
0 1

] [

1 1
1 0

]

=

[

0 1
1 0

]

but

[

1 1
1 0

] [

1 1
0 1

]

=

[

1 0
1 1

]

.

Hence, GL(2,Z2) is not abelian.
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8. Here is the multiplication table for D5, the group of symmetries of a regular pentagon:

1 b b2 b3 b4 a ab ab2 ab3 ab4

1 1 b b2 b3 b4 a ab ab2 ab3 ab4

b b b2 b3 b4 1 ab4 a ab ab2 ab3

b2 b2 b3 b4 1 b ab3 ab4 a ab ab2

b3 b3 b4 1 b b2 ab2 ab3 ab4 a ab

b4 b4 1 b b2 b3 ab ab2 ab3 ab4 a

a a ab ab2 ab3 ab4 1 b b2 b3 b4

ab ab ab2 ab3 ab4 a b4 1 b b2 b3

ab2 ab2 ab3 ab4 a ab b3 b4 1 b b2

ab3 ab3 ab4 a ab ab2 b2 b3 b4 1 b

ab4 ab4 a ab ab2 ab3 b b2 b3 b4 1

(a) Prove by specific example that the subgroup {1, a} is not normal.

(b) Explain why the subgroup {1, b, b2, b3, b4} is normal.

(a)
(ab){1, a}(ab)−1 = (ab){1, a}(ab) = {1, ab2} 6= {1, a}.

Therefore, {1, a} is not normal.

(b) The group has 10 elements, and the subgroup {1, b, b2, b3, b4} has 5 elements. Therefore, the subgroup
has index 2, and any subgroup of index 2 is normal.

9. Consider the group U15 consisting of elements of Z15 which are relatively prime to 15, with the operation
being multiplication mod 15:

U15 = {1, 2, 4, 7, 8, 11, 13, 14}.

* 1 2 4 7 8 11 13 14

1 1 2 4 7 8 11 13 14

2 2 4 8 14 1 7 11 13

4 4 8 1 13 2 14 7 11

7 7 14 13 4 11 2 1 8

8 8 1 2 11 4 13 14 7

11 11 7 14 2 13 1 8 4

13 13 11 7 1 14 8 4 2

14 14 13 11 8 7 4 2 1

(a) U15 is an abelian group of order 8. Find its primary decomposition.

(b) List the elements of the quotient group U15/〈14〉.

(c)
U15

〈14〉 is an abelian group of order 4. Find its primary decomposition.

(a) The three abelian groups of order 8 are Z8, Z2 × Z4, and Z2 × Z2 × Z2.
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U15 has no elements of order 8. This is clear from the multiplication table. 1 has order 1, while 4, 11,
and 14 square to 1, and hence have order 2. The remaining elements square to 4, which squares to 1, so the
remaining elements have order 4.

Since there are no elements of order 8, U15 can’t be Z8.
On the other hand, every element of Z2 × Z2 × Z2 has order 2. whereas I’ve just shown that U15 has

elements of order 4. Therefore, Z2 × Z2 × Z2 is ruled out, and hence U15 ≈ Z2 × Z4.

(b) 〈14〉 = {1, 14}, so the quotient group has 4 elements.
They are

〈14〉 = {1, 14}
2〈14〉 = {2, 13}
4〈14〉 = {4, 11}
7〈14〉 = {7, 8}

(c) There are two groups of order 4: Z4 and Z2 × Z2. Here’s the multiplication table for U15/〈14〉:

* {1, 14} {2, 13} {4, 11} {7, 8}
{1, 14} {1, 14} {2, 13} {4, 11} {7, 8}
{2, 13} {2, 13} {4, 11} {7, 8} {1, 14}
{4, 11} {4, 11} {7, 8} {1, 14} {2, 13}
{7, 8} {7, 8} {1, 14} {2, 13} {4, 11}

The table shows that two elements don’t square to the identity ({1, 14}) — that is, two elements do not

have order 2. Since every element of Z2 × Z2 has order 2,
U15

〈14〉 can’t be Z2 × Z2.

Thus,
U15

〈14〉 ≈ Z4.

10. Let H and K be subgroups of a group G. Suppose that H is normal. Let

HK = {hk | h ∈ H, k ∈ K}.

Prove that HK is a subgroup of G.

Remember that since H is normal,

(anything) · (something in H) · (anything)−1 ∈ H.

I’ll need to use this twice in the proof.
Since 1 ∈ H and 1 ∈ K, 1 = 1 · 1 ∈ HK. This proves that the identity is in HK.
Let h ∈ H , k ∈ K. Then hk ∈ HK, and

(hk)−1 = k−1h−1 = (k−1h−1k)k−1 ∈ HK.

Reason: h−1 ∈ H , and H is normal, so k−1h−1k ∈ H . Obviously, k−1 ∈ K. Therefore, (k−1h−1k)k−1

is something in H times something in K.
Thus, HK is closed under taking inverses.
Finally, let h1, h2 ∈ H , k1, k2 ∈ K, so h1k1, h2k2 ∈ HK. Then

(h1k1)(h2k2) = [h1(k1h2k
−1

1
)][k1k2] ∈ HK.

Reason: h2 ∈ H , so k1h2k
−1

1
∈ H , because H is normal. Therefore, h1(k1h2k

−1

1
) ∈ H . Obviously,

k1k2 ∈ K. Therefore, [h1(k1h2k
−1

1
)][k1k2] is something in H times something in K.

11



This shows that HK is closed under products.
Hence, HK is a subgroup.

11. Use the First Isomorphism Theorem to prove that

Z× Z

〈(4,−5)〉 ≈ Z.

Define f : Z× Z → Z by
f(x, y) = 5x+ 4y.

(Note how this definition relates to the subgroup 〈(4,−5)〉.)
If (a, b), (c, d) ∈ Z× Z, then

f [(a, b) + (c, d)] = f(a+ c, b+ d) = 5(a+ c) + 4(b+ d) = (5a+ 4b) + (5c+ 4d) = f(a, b) + f(c, d).

Therefore, f is a group map.
An element of 〈(4,−5)〉 has the form k(4,−5) = (4k,−5k). Now

f(4k,−5k) = 5 · 4k + 4 · (−5k) = 0.

Therefore, 〈(4,−5)〉 ⊂ ker f .
Conversely, suppose f(x, y) = 0, so 5x+ 4y = 0 or 5x = −4y. Now 5 divides 5x, so it divides −4y; 5 is

relatively prime to 4, so it must divide y. Say y = 5k. Substituting this into 5x = −4y, I get 5x = −20k, or
x = −4k. Therefore,

(x, y) = (−4k, 5k) = (−k)(4,−5) ∈ 〈(4,−5)〉.

Hence, ker f ⊂ 〈(4,−5)〉, and so ker f = 〈(4,−5)〉.
Let z ∈ Z. Then

f(z,−z) = 5z − 4z = z.

Hence, f is surjective, i.e. im f = Z.
Finally,

Z× Z

〈(4,−5)〉 =
Z× Z

ker f
≈ im f = Z.

The first equality follows from ker f = 〈(4,−5)〉. The isomorphism is given by the First Isomorphism
Theorem. And the last equality follows from the fact that f is surjective.

12. Use the First Isomorphism Theorem to prove that

Z× Z× Z

〈(2, 1,−3)〉 ≈ Z× Z.

I need a group map Z×Z×Z → Z×Z; I want it to be surjective, and I want the kernel to be 〈(2, 1,−3)〉.
Define f(x, y, z) = (x − 2y, 3y + z). (I chose x− 2y and 3y + z so that (2, 1,−3) will give (0, 0). I also

want to make sure that two components are “independent” — i.e. not multiples of one another.)
First,

f [(x, y, z) + (x′, y′, z′)] = f(x+ x′, y + y′, z + z′) = ((x + x′)− 2(y + y′), 3(y + y′) + (z + z′)) =

(x− 2y, 3y + z) + (x′ − 2y′, 3y′ + z′) = f(x, y, z) + f(x′, y′, z′).

12



Therefore, f is a group map.
Let k(2, 1,−3) ∈ 〈(2, 1,−3)〉. Then

f(k(2, 1,−3)) = f(2k, k,−3k) = (2k − 2k, 3k − 3k) = (0, 0).

Hence, k(2, 1,−3) ∈ ker f , so 〈(2, 1,−3)〉 ⊂ ker f .
Suppose (x, y, z) ∈ ker f . Then

f(x, y, z) = (0, 0), so (x − 2y, 3y+ z) = (0, 0).

Equating corresponding components, I get x− 2y = 0 and 3y+ z = 0. Therefore, x = 2y and z = −3y.
Hence,

(x, y, z) = (2y, y,−3y) = y · (2, 1,−3) ∈ 〈(2, 1,−3)〉.

It follows that ker f ⊂ 〈(2, 1,−3)〉, so 〈(2, 1,−3)〉 = ker f .
Next, I’ll show that f is surjective. Let (a, b) ∈ Z× Z. I need to find (x, y, z) so that f(x, y, z) = (a, b),

or (x− 2y, 3y + z) = (a, b).
I have three variables and two equations, so I just juggle the numbers till I find a combination that

works. And in fact, if x = a, y = 0, and z = b, I get

f(a, 0, b) = (a, b).

Therefore, f is surjective.
By the First Isomorphism Theorem,

Z× Z× Z

〈(2, 1,−3)〉 =
Z× Z× Z

ker f
≈ im f = Z× Z.

13. Let
H = {x · (5,−

√
3) | x ∈ R}.

Prove that
R× R

H
≈ R.

Define f : R× R → R by
f(x, y) =

√
3x+ 5y.

f is a group map:

f ((x1, y1) + (x2, y2)) = f(x1 + x2, y1 + y2) =
√
3(x1 + x2) + 5(y1 + y2) =

(
√
3x1 + 5y1) + (

√
3x2 + 5y2) = f(x1, y1) + f(x2, y2).

Next, I’ll show that H = ker f .
First, let x · (5,−

√
3) ∈ H . Then

f
(

x · (5,−
√
3)
)

= f
(

5x,−
√
3x
)

=
√
3(5x) + 5(−

√
3x) = 0.

Therefore, x · (5,−
√
3) ∈ ker f . Hence, H ⊂ ker f .

Next, let (x, y) ∈ ker f . Then f(x, y) = 0, so

√
3x+ 5y = 0, and y = −

√
3

5
x.
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Hence,

(x, y) =

(

x,−
√
3

5
x

)

=
1

5
x · (5,−

√
3) ∈ H.

Thus, ker f ⊂ H , and so H = ker f .
Next, I’ll show that im f = R. Let z ∈ R. I need an input (x, y) ∈ R×R such that f(x, y) = z, i.e. such

that
√
3x+ 5y = z. I can choose x and y as I please, as long as this equation is satisfied. So I’ll set x = 0;

then 5y = z, and y =
1

5
z. Check it:

f

(

0,
1

5
z

)

=
√
3(0) + 5

(

1

5
z

)

= z.

Therefore, im f = R.
Finally, by the First Isomorphism Theorem, I have

R× R

H
=

R× R

ker f
≈ im f = R.

14. Consider the quotient group
Z× Z

〈(6, 8)〉 .

(a) Prove that
Z× Z

〈(6, 8)〉 is infinite by showing that the cosets (n, 0) + 〈(6, 8)〉 for n ∈ Z are distinct.

(b) Define f : Z× Z → Z by
f(x, y) = 8x− 6y.

Use the Universal Property of the Quotient to show that f induces a function f ′ :
Z× Z

〈(6, 8)〉 → Z whose image

is 2Z. Use this to give an alternate proof that
Z× Z

〈(6, 8)〉 is infinite.

(a) Suppose
(m, 0) + 〈(6, 8)〉 = (n, 0) + 〈(6, 8)〉.

Then (m, 0)− (n, 0) ∈ 〈(6, 8)〉, so

(m, 0)− (n, 0) = k · (6, 8)
(m− n, 0) = (6k, 8k)

Equating the second components, I get 8k = 0, or k = 0. Then equating the first components, I have
m − n = 6k = 0, so m = n. This shows that that the cosets (n, 0) + 〈(6, 8)〉 for n ∈ Z are distinct. Since

there are an infinite number of these cosets, the quotient group
Z× Z

〈(6, 8)〉 is infinite.

(b) f is a group map, since

f [(a, b) + (c, d) = f(a+ c, b+ d) = 8(a+ c)− 6(b+ d) = (8a− 6b) + (8c− 6d) = f(a, b) + f(c, d).

Let k · (6, 8) ∈ 〈(6, 8)〉. Then

f [k · (6, 8)] = f(6k, 8k) = 8(6k)− 6(8k) = 0.

Thus, 〈(6, 8)〉 ⊂ ker f . By the Universal Property of the Quotient, f induces a function f ′ :
Z× Z

〈(6, 8)〉 → Z

given by
f ′[(x, y) + 〈(6, 8)〉] = 8x− 6y.

14



Since 8x− 6y = 2(4x− 3y) ∈ 2Z, it follows that im f ′ ⊂ 2Z. Conversely, suppose 2n ∈ 2Z. Then

2 = 8− 6

2n = 8n− 6n

2n = f ′[(n, n) + 〈(6, 8)〉]

This shows that 2Z ⊂ im f ′. Hence, 2Z = im f ′.

But 2Z is infinite. Hence,
Z× Z

〈(6, 8)〉 must be infinite, because a function can’t take a finite set onto an

infinite set.

15. Use the Universal Property of the Quotient to show that the function f : Z → Z

12Z
defined by f(x) =

8x+ 12Z induces a group map f̃ :
Z

3Z
→ Z

12Z
. What is the definition of f̃?

First,

f(x+ y) = 8(x+ y) + 12Z = 8x+ 8y + 12Z = (8x+ 12Z) + (8y + 12Z) = f(x) + f(y).

Hence, f is a group map.
Next, if 3n ∈ 3Z, then

f(3n) = 24n+ 12Z = 12Z.

This follows from the fact that 24n ∈ 12Z.

By the Universal Property of the Quotient, f induces induces a group map f̃ :
Z

3Z
to

Z

12Z
. f̃ is given by

f̃(x+ 3Z) = f(x) = 8x+ 12Z.

16. (a) Give an example of a noncommutative ring. You don’t need to verify any of the ring axioms, but
you should produce two elements of the ring which do not commute (and you should show that they do not
commute).

(b) Is GL(2,R) a ring under matrix addition and multiplication? Why or why not?

(c) Find nonzero 2 × 2 matrices A and B with real entries such that AB = A, but B is not the identity
matrix. Why doesn’t this contradict the definition of a multiplicative identity?

(a) The standard examples of noncommutative rings are rings of matrices. For example, take M(2,R), the
ring of 2× 2 matrices with real entries.

[

1 −1
0 2

] [

1 0
0 0

]

=

[

1 0
0 0

]

but

[

1 0
0 0

] [

1 −1
0 2

]

=

[

1 −1
0 0

]

.

(b) GL(2,R) is the invertible 2 × 2 matrices with real entries. It is not a ring under matrix addition and
multiplication.

You could give several reasons; for instance, it is not closed under matrix addition. As a specific example
of this,

[

1 0
0 1

]

is invertible,

[

−1 0
0 −1

]

is invertible,

15



but

[

1 0
0 1

]

+

[

−1 0
0 −1

]

=

[

0 0
0 0

]

is not invertible.

(c) No. For example,
[

1 1
0 0

] [

0 0
1 1

]

=

[

1 1
0 0

]

, but

[

0 0
1 1

]

6= I.

This does not contradict the definition of a multiplicative identity for two reasons. First, AB = A works
for the particular matrix A, whereas an identity I must satisfy XI = X for all X . Second, multiplication
is not necessarily commutative, so there’s no reason to suppose that AB = A implies BA = A. In fact, it
doesn’t even work for this particular matrix A.

17. Let R be a ring, r, s ∈ R. Use the ring axioms to prove that

(−r)(−s) = rs.

(−r)(−s) + (−r)s = (−r)(s + (−s)) = (−r)(0) = 0.

Therefore, (−r)(−s) is the additive inverse of (−r)s: (−r)(−s) = −[(−r)s].
But

rs+ (−r)s = (r + (−r))s = (0)(s) = 0.

Therefore, rs is the additive inverse of (−r)s: rs = −[(−r)s].
Hence, rs = (−r)(−s).

18. Let R be a ring, and let r ∈ R. If n is a positive integer, prove that

(−r)n =
{

rn if n is even
−rn if n is odd

.

For n = 1, (−r)1 = −r — the result is true.
For n = 2, I want to show that (−r)2 = r2. This follows from Problem 2: (−r)2 = (−r)(−r) = r ·r = r2.
Now take n > 2, and assume the result is true for n− 1.
If n is even, then n− 1 is odd. So

(−r)n = (−r)(−r)n−1 = (−r)(−rn−1) = rrn−1 = rn.

If n is odd, then n− 1 is even. So

(−r)n = (−r)(−r)n−1 = (−r)(rn−1) = −(rrn−1) = −rn.

Therefore, the result is true for all n by induction.

19. Multiply the quaternions:
(3 + 2i− j + k) · (1 + i− 2j + k).

· 1 i −2j k

3 3 3i −6j 3k

2i 2i −2 −4k −2j

−j −j k −2 −i

k k j 2i −1

16



(3 + 2i− j + k) · (1 + i− 2j + k) = −2 + 6i− 8j + k.

20. The characteristic of a ring with unity R is the smallest positive integer n such that

n · r = 0 for all r ∈ R.

If no such n exists, the ring has characteristic 0.

(a) What is the characteristic of R? Of Z57?

(b) Give an example of an infinite integral domain with characteristic 2.

(a) R has characteristic 0: For no positive integer n is n · 1 equal to 0.
Z57 has characteristic 57, since 57 · 1 = 0 in Z57.

(b) Polynomial rings over fields are integral domains, Z2[x] is a domain. Moreover, 2 times anything is 0 in
Z2[x], so Z2[x] has characteristic 2.

21. (a) Find the units in the ring Z3 × Z6.

(b) Find the zero divisors in the ring Z3 × Z6.

(a) The multiplicative identity is (1, 1). To show an element is a unit, I must find an element whose product
with the first element is (1, 1).

(1, 1)(1, 1) = (1, 1), (1, 5)(1, 5) = (1, 1), (2, 1)(2, 1) = (1, 1), (2, 5)(2, 5) = (1, 1).

The units are (1, 1), (1, 5), (2, 1), and (2, 5).

(b) To show an element is a zero divisor, I must find an element whose product with the first element is
(0, 0).

Before starting, I note that Z3 × Z6 has 18 elements. (0, 0) is neither a unit nor a zero divisor, and no
element is both a unit or a zero divisor. Since I found 4 units in part (a), there are at most 18− 1− 4 = 13
zero divisors, and I just need to check the nonunits as possibilities.

(0, 1)(1, 0) = (0, 0), (0, 2)(1, 0) = (0, 0), (0, 3)(1, 0) = (0, 0), (0, 4)(1, 0) = (0, 0), (0, 5)(1, 0) = (0, 0),

(1, 0)(0, 1) = (0, 0), (2, 0)(0, 1) = (0, 0),

(1, 2)(0, 3) = (0, 0), (1, 3)(0, 2) = (0, 0), (1, 4)(0, 3) = (0, 0),

(2, 2)(0, 3) = (0, 0), (2, 3)(0, 2) = (0, 0), (2, 4)(0, 3) = (0, 0).

The 13 elements which are the first elements of each product above are the zero divisors. It turns out
that the elements of Z3 ×Z6 consist of (0, 0), the units, and the zero divisors. (This doesn’t have to happen
in every ring.)

22. Let R be a ring. Let e ∈ R be idempotent; that is, e2 = e.

(a) Let

eRe =
{

ere
∣

∣

∣
r ∈ R

}

.

Show that eRe is a subring of R.
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(b) Show that e is an identity element for eRe.

(a) Let ere, ese ∈ eRe. Then
ere + ese = e(r + s)e ∈ eRe.

Therefore, eRe is closed under addition.
eRe contains the additive identity, since 0 = e · 0 · e ∈ eRe.
Let ere ∈ eRe. Then −(ere) = e(−r)e ∈ eRe, so eRe is closed under taking additive inverses.
Finally, let ere, ese ∈ eRe. Then

ere · ese = e(res)e ∈ eRe.

Therefore, eRe is closed under multiplication.
Hence, eRe is a subring.
Note that the proof didn’t use the fact that e is idempotent. In general if a ∈ R, then aRa is a subring.

(b) Let ere ∈ eRe. Then
e(ere) = e2re = ere and (ere)e = ere2 = ere.

Therefore, e is an identity element for eRe.

23. Give an example of a ring R and nonzero elements r, s ∈ R such that r2 + s2 = 0.

In Z2, 1
2 + 12 = 0.

24. Let R be a finite commutative ring with no zero divisors. Prove that R has a multiplicative identity.

First, if R = {0}, 0 is a multiplicative identity for the ring.
Assume then that R has elements other than 0: Suppose the elements are

R = {0, r1, r2, . . . , rn}.

The first thing I’ll do is find a “candidate” for the identity.
How can I figure out which of the r’s is 1? One way is to multiply everything by an element — say r1

— and see which product is r1. So look at

r1 · 0, r21, r1 · r2, . . . , r1 · rn.

Notice that if r1 · ri = r1 · rj , then cancelling the r1’s — as I can, since there are no zero divisors — I
get ri = rj . This means that all these products are distinct. Since I started with n+ 1 elements and I now
have n+ 1 distinct products, these products must be all the elements in the ring.

In particular, one of the products must be r1. Suppose r1 · r2 = r1. This suggests that r2 might be the
identity (so I have my candidate). Now I’ll try to prove it.

Note first that, by commutativity, r2 · r1 = r1 as well.
Since r2 · 0, I only have to show that r2 · ri = ri for any i. Referring to the list of products above, I

know that r1 · rj = ri for some j. So

r2 · ri = r2 · (r1 · rj) = (r2 · r1) · rj = r1 · rj = ri.

This shows that r2 is a multiplicative identity.
Incidentally, R is now known to be a commutative ring with identity having no zero divisors — that

is, R is an integral domain. But every finite integral domain is a field, so I’ve actually proved: A finite
commutative ring with no zero divisors is a field.
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25. Let
{. . . ,−4,−1, 0, 1, 4, . . .}.

It consists of squares of integers and their negatives, and it is not a subring of Z. What is the smallest
subring of Z which contains this set?

Let R be the smallest subring of Z which contains the set. Since R is closed under addition, and since
−1, 1 ∈ R, every integer is contained in R (since any integer can be represented as a sum of 1’s or −1’s).
Therefore, R = Z.

26. Let x and y be elements in a ring R. Let

I = {ax+ by | a, b ∈ R}.

Prove that I is a left ideal in R.

First, 0 = a · x+ 0 · y ∈ I.
If ax+ by ∈ I, then −(ax+ by) = (−a)x+ (−b)y ∈ I.
If ax+ by, cx+ dy ∈ I, then

(ax+ by) + (cx+ dy) = (a+ c)x+ (b+ d)y ∈ I.

Finally, if ax+ by ∈ I and r ∈ R, then

r(ax + by) = (ra)x + (rb)y ∈ I.

Therefore, I is a left ideal in R.

27. (a) Prove that the following set is an ideal in Z:

I = {4x+ 14y + 16z | x, y, z ∈ Z}.

(b) Find an integer n such that I = 〈n〉 (and prove that your n works).

(a) First, 0 = 4 · 0 + 14 · 0 + 16 · 0 ∈ I.
If 4x+ 14y + 16z, 4x′ + 14y′ + 16z′ ∈ I, then

(4x+ 14y + 16z) + (4x′ + 14y′ + 16z′) = 4(x+ x′) + 14(y + y′) + 16(z + z′) ∈ I.

If 4x+ 14y + 16z ∈ I, then

−(4x+ 14y + 16z) = 4(−x) + 14(−y) + 16(−z) ∈ I.

Finally, if 4x+ 14y + 16z ∈ I and m ∈ Z, then

m · (4x+ 14y + 16z) = 4(mx) + 14(my) + 16(mz) ∈ I.

Therefore, I is an ideal in Z.

(b) Since (4, 14, 16) = 2, I claim that I = 〈2〉.
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First, if 4x+ 14y + 16z ∈ I, then

4x+ 14y + 16z = 2(2x+ 7z + 8z) ∈ 〈2〉.

Therefore, I ⊂ 〈2〉.
Conversely, I note that by inspection I can write 2 as a linear combination of 4, 14, and 16:

2 = (−1) · 14 + 16.

Thus, if 2n ∈ 〈2〉, then
2n = 4 · 0 + 14 · (−n) + 16 · n ∈ I.

Therefore, 〈2〉 ⊂ I.
Hence, I = 〈2〉.

28. Prove that the following set is a subring in Z3 × Z3, but not an ideal:

A = {(0, 0), (1, 1), (2, 2)}.

{(0, 0), (1, 1), (2, 2)} is 〈(1, 1)〉, the subgroup generated by (1, 1). Therefore, it’s a subgroup under
addition.

Elements of A have the form (x, x), where x ∈ Z3. Now

(x, x) · (y, y) = (xy, xy) ∈ A.

Hence, A is closed under multiplication, and it’s a subring.
It is not an ideal, since (2, 2) ∈ A, (1, 2) ∈ Z3 × Z3, but

(1, 2) · (2, 2) = (2, 1) /∈ A.

29. Z×Z is a ring under componentwise addition and multiplication. Consider the following subset of Z×Z:

S = {(a, b) | 2 | a or 2 | b}.

Check each axiom for an ideal. If the axiom holds, prove it. If the axiom does not hold, give a specific
counterexample.

Since 2 | 0, I have (0, 0) ∈ S. Thus, S contains the zero element.
Suppose (a, b) ∈ S. Then either 2 | a or 2 | b.
If 2 | a, then 2 | −a, so −(a, b) = (−a,−b) ∈ S.
If 2 | b, then 2 | −b, so −(a, b) = (−a,−b) ∈ S.
Thus, S is closed under additive inverses.
Since 2 | 2, I have (2, 1) ∈ S and (1, 2) ∈ S. But

(2, 1) + (1, 2) = (3, 3) /∈ S.

Hence, S is not closed under sums.
Let (a, b) ∈ S and (r, s) ∈ Z× Z. Then

(r, s)(a, b) = (ra, sb).

If 2 | a, then 2 | ra, so (r, s)(a, b) = (ra, sb) ∈ S.

20



If 2 | b, then 2 | sb, so (r, s)(a, b) = (ra, sb) ∈ S.
Thus, S is closed under products by ring elements.

30. Define f : Z → Z by
f(x) = |x|.

Check each axiom for a ring map. If the axiom holds, prove it. If the axiom doesn’t hold, give a specific
counterexample.

The identity axiom holds:
f(1) = |1| = 1.

The addition axiom does not hold:

f [2 + (−1)] = f(1) = |1| = 1, but f(2) + f(−1) = |2|+ | − 1| = 3.

The multiplication axiom holds:

f(xy) = |xy| = |x||y| = f(x)f(y).

31. Define f : R3 → R
2 by

f(x, y, z) = (2x− y, 2y − z).

Check each axiom for a ring map. If the axiom holds, prove it. If the axiom doesn’t hold, give a specific
counterexample.

The identity axiom holds:
f(1, 1, 1) = (2− 1, 2− 1) = (1, 1).

The addition axiom holds:

f [(a, b, c) + (d, e, f)] = f(a+ d, b+ e, c+ f) = (2a+ 2d− b− e, 2b+ 2e− c− f),

f(a, b, c) + f(d, e, f) = (2a− b, 2b− c) + (2d− e, 2e− f) = (2a+ 2d− b− e, 2b+ 2e− c− f).

The multiplication axiom doesn’t hold:

f [(1, 2, 3) · (4, 5, 6)] = f(4, 1018) = (−2, 2),

f(1, 2, 3) · f(4, 5, 6) = (0, 1) · (3, 4) = (0, 4).

To understand a new idea break an old habit. - Jean Toomer
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