
Math 161
10-4-2020

Review Problems for Test 3

These problems are provided to help you study. The presence of a problem on this handout does not
imply that there will be a similar problem on the test. And the absence of a topic does not imply that it
won’t appear on the test.

1. Find the point(s) on y =
√
x closest to the point (1, 0).

2. Calvin Butterball wants to fence in two equal-size rectangular pens in his yard for his pet fish. (Calvin
does not have much luck with pets, for some reason.) As shown in the picture below, one side of each pen
will be bounded by an existing stone wall (and will therefore not require any fence).

wall

pen peny y

x x

If Calvin has 300 feet of fence, what should the dimensions of the pens be to maximize the total area?

3. A rectangular box with a bottom and a top consists of two identical partitions which share a common
wall. Each partition has a square bottom. If the total volume of the box (i.e the sum of the volumes of the
two partitions) is 6272 cubic inches, what dimensions give the box which has the smallest total surface area?

4. A cylindrical can with a top and a bottom is to have a volume of 180π cubic inches. The material for
the top and bottom costs 10 cents per square inch, while the material for the sides costs 3 cents per square
inch. What dimensions yield a can which costs the least?

5. Calvin Butterball sits in his rowboat 9 miles from a long straight shore. Phoebe Small waits in a car at a
point on shore 15 miles from the point on the shore closest to Calvin. Calvin rows to a point on the shore,
then runs down the shore to the car.

(Then they drive to the shopping mall, where they purchase two rolls of duct tape,a tub of margarine,
a Led Zeppelin T-shirt, two cans of Red Bull, a copy of Mother Earth News, a bowling ball, a metric hex
key set, an ionic air purifier, three Cinnabons, leather pants, a 120 mm case fan, curly fries, and a bazooka.)

If Calvin can row at 4 miles per hour and run at 5 miles per hour, at what point on shore should he
land in order to minimize his total travel time to the car?

6. A rectangular box with a square bottom and no top is made with 972 square inches of cardboard. What
values of the length x of a side of the bottom and the height y give the box with the largest volume?

7. A rectangular poster has a total area of 288 square inches. The poster consists of a rectangular printed
region, surrounded by margins 1 inch wide on the top and bottom and 2 inches wide on the left and right.
What dimensions for the printed region maximize the area of the printed region?

8. Compute

∫
(

2x5 − 1

x3
+

1√
x

)

dx.

9. Compute

∫
(

x+
1

x

)2

dx.
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10. Compute

∫

1

(cosx)2
dx.

11. Compute

∫

(

1

x
+ 1

)7

x2
dx.

12. Compute

∫

x− 2

(x2 − 4x+ 5)4
dx.

13. Compute

∫

1√
x(
√
x+ 1)3

dx.

14. Compute

∫

x

(x+ 1)1/5
dx.

15. Compute

∫

e2x

e2x + 1
dx.

16. Compute

∫

x3

x4 + 42
dx.

17. Compute

∫

(cscx)5 cotx dx.

18. Compute

∫

sinx

(cosx+ 1)2
dx.

19. Compute

∫

(x2 + 1) 3
√
x+ 1 dx.

20. Compute

∫

tan 5x dx.

21. Compute

∫

csc(7x+ 11) cot(7x+ 11) dx.

22. Compute

∫

(

3x7 + 3 · 7x + 3 · 77
)

dx.

23. Compute

∫

(x2 − 1)(x2 + 3) dx.

24. Compute

∫

(2x− 1)2

x
dx.

25. Compute

∫

(7x− 5)43 dx.

26. Compute

∫

e3x + e−3x

e3x − e−3x
dx.

27. Compute

∫

(

(sin 5x)4 − 6 sin 5x+ 11
)

cos 5x dx.

28. Compute

∫

f ′(x) ln f(x)

f(x)
dx.

29. Compute

∫

(f(x)g′(x) + g(x)f ′(x)) dx.
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30. Compute

∫

(3x+ 10)(x− 4)20 dx.

31. Compute

∫

(x+ 1)2√
x+ 3

dx.

32. Compute

∫

x− 3√
x2 − 6x+ 5

dx.

33. Compute

∫

7

e5x
dx.

34. Compute

∫

3

secx
dx.

35. Compute

∫

5

e4x + 7
dx.

36. Compute

∫

xex
2

e(e
x
2

) dx.

37. Compute

∫

(

(cos 7x)2 − (sin 7x)2
)

dx.

38. Compute

∫

(

sec
1

x2

)2

x3
dx.

39. Compute

∫

(e3x − 2e−x)(4e5x + e3x) dx.

40. Compute

∫

(

x cos(x2 + 4)− 5x2 sin(x3 + 2)
)

dx.

41. Use a calculating device to approximate the following sum to at least three decimal places:

1

3 + 12
+

2

3 + 22
+

3

3 + 32
+ · · ·+ 47

3 + 472

42. Write the series in summation form:

(a)
2

5
+

3

52
+

4

53
+ · · ·+ 100

599
.

(b)
√
3 · sin 4 +

√
4 · sin 9 +

√
5 · sin 16 + · · ·+

√
100 · sin(992).

43. (a) Express the following sum in terms of n:
n
∑

k=1

(2 − 5k + 7k2).

(b) Find the exact value of

1000
∑

n=1

(n2 + 5n− 7).

44. (a) Verify that
1

k2 − k
=

1

k − 1
− 1

k
.

(b) Use the result of (a) to evaluate

1000
∑

k=2

1

k2 − k
.
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45. Approximate

∫ 5

1

sinx

x
dx using 10 rectangles of equal width and using the left-hand endpoint of each

subinterval to obtain the rectangles’ heights.

46. Approximate

∫ 5

1

sinx

x
dx using 10 rectangles of equal width and using the right-hand endpoint of each

subinterval to obtain the rectangles’ heights.

47. Approximate

∫ 5

1

sinx

x
dx using 10 rectangles of equal width and using the midpoint of each subinterval

to obtain the rectangles’ heights.

48. Some values for a function y = f(x) are shown below.

x f(x)

0 1.00

0.2 1.30

0.4 1.58

0.6 1.86

0.8 2.14

1.0 2.41

1.2 2.68

1.4 2.95

1.6 3.21

1.8 3.47

2.0 3.73

(a) Approximate

∫ 2

0

f(x) dx using 5 rectangles of equal width and using the left-hand endpoints to obtain

the rectangle heights.

(b) Approximate

∫ 2

0

f(x) dx using 10 rectangles of equal width and using the right-hand endpoints to obtain

the rectangle heights.

49. Compute

∫ 4

2

(2x+ 3) dx by writing the integral as the limit of a rectangle sum.

50. (a) Given that
d

dx

x2 − 2x+ 5

x2 − 4x+ 5
=

2(5− x)2

(x2 − 4x+ 5)2
, what is

∫

2(5− x)2

(x2 − 4x+ 5)2
dx?

(b) Compute

∫
(

d

dx

√

x4 + x2 + 1

)

dx.

51. Compute

∫ 2

−1

(x2 + 1)2 dx.

52. Compute

∫ 1

0

2x3 + x

x4 + x2 + 3
dx.

53. Compute

∫ 2

1

x+ 2

(x2 + 4x+ 1)2
dx.
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54. Suppose that f ′′(x) = 12x+ 6, f ′(0) = 3, and f(1) = 5. Find f(x).

55. Find functions f(x) and g(x) such that the antiderivative of f(x) · g(x) is not equal to the antiderivative
of f(x) times the antiderivative of g(x).

56. Compute

∫ 1

−1

(1− |x|) dx.

57. Compute the exact value of

∫ 10

−10

(5 +
√

100− x2) dx.

58. Compute the exact value of

∫ 7

−1

√

7 + 6x− x2 dx.

Hint: Complete the square in x.

59. Find the total area of the region bounded by y = x(x − 2)(x− 4) and the x-axis.

60. Find the area of the region bounded by

x = y2 − 9 and x = 2y + 6.

61. Find the area of the region in the first quadrant bounded on the left by y = 1 − x2, on the right by

y = 1− x2

2
, and below by the x-axis.

62. Find the area of the region bounded by the graphs of y = 1− x2 and y = −1− x.

63. Find the area of the region between y = −x2 and y = x− 6, from x = 0 to x = 3.

64. (a) Compute
d

dx

∫ x

−17

cos t

t4 + 1
dt.

(b) Compute
d

dx

∫ sin x

42

√

t2 + 2 dt.

(c) Compute
d

dx

∫ 13

ex

t

2 + sin t
dt.

65. (a) Prove that

∫ 0.5

0

x2

x2 + 1
dx ≤ 0.5.

(b) Use the Integral Mean Value Theorem to estimate

∫ 1

0

ex
4

dx.

Solutions to the Review Problems for Test 3

1. Find the point(s) on y =
√
x closest to the point (1, 0).
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Draw a picture. Label the things that are relevant to the problem.

y

x
(1, 0)

(x,  x)

Write down an expression for the thing you’re trying to maximize or minimize.

The distance from (1, 0) to (x,
√
x) is

d =

√

(x− 1)2 + (
√
x− 0)2 =

√

(x− 1)2 + x.

A distance is smallest exactly when its square is smallest. So we can work with the square of the distance
instead:

D = (x− 1)2 + x.

This has the advantage of removing the square root and making it easier to differentiate.
Look at the extreme cases to determine any endpoints.

x can be as small as 0, but it can be arbitrarily large. That is, 0 ≤ x < ∞.
Therefore,

dD

dx
= 2(x− 1) + 1,

d2D

dx2
= 2.

dD

dx
= 2(x− 1) + 1 = 0 for x =

1

2
.

x 0
1

2

D 1
3

4

The minimum does not occur at x = 0. To show that x =
1

2
is an absolute min, notice that

d2D

dx2
= 2 > 0.

Therefore, x = 1 is a local min. It is the only critical point, so it is an absolute min.

The closest point to (1, 0) on the curve y =
√
x is the point

(

1

2
,

√

1

2

)

.

2. Calvin Butterball wants to fence in two equal-size rectangular pens in his yard for his pet fish. (Calvin
does not have much luck with pets, for some reason.) As shown in the picture below, one side of each pen
will be bounded by an existing stone wall (and will therefore not require any fence).

wall

pen peny y

x x
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If Calvin has 300 feet of fence, what should the dimensions of the pens be to maximize the total area?

The area is A = 2xy. The amount of fence is 300 = 2x+ 3y, so 2x = 300− 3y. Therefore,

A = (300− 3y)y = 300y − 3y2.

The endpoints are y = 0 and y = 100 (i.e. 0 ≤ y ≤ 100).
The derivative is

dA

dy
= 300− 6y.

dA

dy
= 0 for y = 50.

y 0 50 100

A 0 7500 0

y = 50 gives the absolute max; x =
1

2
(300− 3y) = 75.

3. A rectangular box with a bottom and a top consists of two identical partitions which share a common
wall. Each partition has a square bottom. If the total volume of the box (i.e the sum of the volumes of the
two partitions) is 6272 cubic inches, what dimensions give the box which has the smallest total surface area?

x x

x

y

Suppose the square base of a partition has sides of length x, and let y be the height of the box.
The total surface area is

A = (bottom and top) + (back and front) + (sides and middle) = 4x2 + 4xy + 3xy = 4x2 + 7xy.

The volume is

6272 = 2x2y, so y =
6272

2x2
=

3136

x2
.

Plug this into A and simplify:

A = 4x2 + 7x · 3136
x2

= 4x2 +
21952

x
.

The only restriction on x is x > 0.
The derivatives are

A′ = 8x− 21952

x2
, A′′ = 8 +

43904

x3
.

A′ is defined for all x > 0. Set A′ = 0 and solve:

8x− 21952

x2
= 0

8x =
21952

x2

x3 = 2744

x = 14
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The corresponding value for y is y = 16.

A′′(14) = 8 +
43904

143
= 24 > 0.

Hence, x = 14 is a local min. Since it’s the only critical point, it’s an absolute min.

4. A cylindrical can with a top and a bottom is to have a volume of 180π cubic inches. The material for
the top and bottom costs 10 cents per square inch, while the material for the sides costs 3 cents per square
inch. What dimensions yield a can which costs the least?

r

h

Let r be the radius of the can, and let h be the height.
The total cost is the cost of the sides plus the cost of the top and bottom:

C = (3)(2πrh) + (10)(2πr2) = 6πrh+ 20πr2.

The volume is 180π, so

180π = πr2h, and h =
180

r2
.

Plug h =
180

r2
into C and simplify:

C = 6πr · 180
r2

+ 20πr2 =
1080π

r
+ 20πr2.

The only restriction on r is that r > 0. Since I don’t have two endpoints, I’ll use the Second Derivative
Test. Differentiate:

C′ = −1080π

r2
+ 40πr, C′′ =

2160π

r3
+ 40π.

Find the critical points:

−1080π

r2
+ 40πr = 0

40πr =
1080π

r2

r3 = 27

r = 3

This gives h =
180

9
= 20. Now

C′′(3) =
2160π

27
+ 40π = 120π > 0.
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Hence, r = 3 is a local min. Since it’s the only critical point, it must give an absolute min.

5. Calvin Butterball sits in his rowboat 9 miles from a long straight shore. Phoebe Small waits in a car at a
point on shore 15 miles from the point on the shore closest to Calvin. Calvin rows to a point on the shore,
then runs down the shore to the car.

(Then they drive to the shopping mall, where they purchase two rolls of duct tape,a tub of margarine,
a Led Zeppelin T-shirt, two cans of Red Bull, a copy of Mother Earth News, a bowling ball, a metric hex
key set, an ionic air purifier, three Cinnabons, leather pants, a 120 mm case fan, curly fries, and a bazooka.)

If Calvin can row at 4 miles per hour and run at 5 miles per hour, at what point on shore should he
land in order to minimize his total travel time to the car?

x 15 - x

15

9

Calvin

Phoebe

X  + 812

Let x be the distance from the point on shore closest to Calvin to the point where he lands. The distance
that he rows is

√
x2 + 81, and the distance that he runs is 15 − x. Since the time elapsed is equal to the

distance divided by the speed, his total travel time is

T =

√
x2 + 81

4
+

15− x

5
.

(The first term is his rowing distance divided by his rowing speed, and the second term is his running
distance divided by his running speed.)

The endpoints are x = 0 (where he rows to the nearest point on the shore) and x = 15 (where he rows
directly to Phoebe).

Differentiate:

T ′ =
1

4
· 1
2
(x2 + 81)−1/2(2x)− 1

5
=

x

4
√
x2 + 81

− 1

5
.

Find the critical points by setting T ′ = 0:

x

4
√
x2 + 81

− 1

5
= 0

x

4
√
x2 + 81

=
1

5

5x = 4
√

x2 + 81

25x2 = 16(x2 + 81)

25x2 = 16x2 + 1296

9x2 = 1296

x2 = 144

x = 12

(I omitted x = −12 because it isn’t in the interval 0 ≤ x ≤ 15.)
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Test the critical point and the end points:

x 0 12 15

T 5.25 4.35 ≈ 4.37321

He should row to a point 12 miles from the point closest to shore to minimize his travel time.

6. A rectangular box with a square bottom and no top is made with 972 square inches of cardboard. What
values of the length x of a side of the bottom and the height y give the box with the largest volume?

x

x

y

The volume is
V = x2y.

The area of the 4 sides is 4xy, and the area of the bottom is x2. So

972 = 4xy + x2.

Solving for y gives

y =
972− x2

4x
.

Plug this into V and simplify:

V = x2 · 972− x2

4x
=

1

4
x(972− x2) =

1

4
(972x− x3).

Note that x 6= 0, since x = 0 plugged into 972 = 4xy + x2 gives 972 = 0 a contradiction. So the only
restriction on x is that x > 0.

Since x is not restricted to a closed interval [a, b], I’ll use the Second Derivative Test.
Compute the derivatives:

V ′ =
1

4
(972− 3x2).

V ′′ =
1

4
· (−6x) = −3

2
x.

Find the critical points:
1

4
(972− 3x2) = 0

972− 3x2 = 0

3x2 = 972

x2 = 324

x = ±18
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Since x is a length, it must be positive, so x = 18. This gives

y =
972− 324

72
= 9.

Plug x = k into the Second Derivative:

V ′′(k) = −3

2
· 18 = −27 < 0.

x = 18 is a local max, but it’s the only critical point, so it’s an absolute max.

7. A rectangular poster has a total area of 288 square inches. The poster consists of a rectangular printed
region, surrounded by margins 1 inch wide on the top and bottom and 2 inches wide on the left and right.
What dimensions for the printed region maximize the area of the printed region?

The x be the width of the printed region, and let y be the height. The area of the printed region is

A = xy.

x

x+4

y+2 2 2

1

1

y

The total area of the poster is 288. The width is x+ 4 and the height is y + 2, so

(x+ 4)(y + 2) = 288

y + 2 =
288

x+ 4

y =
288

x+ 4
− 2

Substituting this in A, I get

A = x

(

288

x+ 4
− 2

)

A =
288x

x+ 4
− 2x

The extreme cases are x = 0 and y = 0; plugging y = 0 into (x+ 4)(y + 2) = 288 gives x = 140. So the
endpoints are x = 0 and x = 140.

A′ = 288 · (x+ 4)(1)− (x)(1)

(x+ 4)2
− 2 =

1152

(x + 4)2
− 2.

Set A′ = 0 and solve for x:
1152

(x+ 4)2
− 2 = 0

1152

(x+ 4)2
= 2

1152 = 2(x+ 4)2

576 = (x+ 4)2

±24 = x+ 4
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−24 = x+ 4 gives x = −28, but a width can’t be negative. 24 = x+ 4 gives x = 20. Plugging this into
(x+ 4)(y + 2) = 288 gives y = 10.

x 0 20 70

A 0 200 0

x = 20 gives an absolute max. The area is maximized when x = 20 and y = 10.

8. Compute

∫
(

2x5 − 1

x3
+

1√
x

)

dx.

∫
(

2x5 − 1

x3
+

1√
x

)

dx =
1

3
x6 +

1

2x2
+ 2

√
x+ C.

9. Compute

∫
(

x+
1

x

)2

dx.

∫
(

x+
1

x

)2

dx =

∫
(

x2 + 2 +
1

x2

)

dx =
1

3
x3 + 2x− 1

x
+ C.

10. Compute

∫

1

(cosx)2
dx.

∫

1

(cos x)2
dx =

∫

(secx)2 dx = tanx+ C.

11. Compute

∫

(

1

x
+ 1

)7

x2
dx.

∫

(

1

x
+ 1

)7

x2
dx = −

∫

u7 du = −1

8
u8 + C = −1

8

(

1

x
+ 1

)8

+ C.

[

u =
1

x
+ 1 du = − 1

x2
dx, dx = −x2 du

]

12. Compute

∫

x− 2

(x2 − 4x+ 5)4
dx.

∫

x− 2

(x2 − 4x+ 5)4
dx =

1

2

∫

u−4 du = −1

6
u−3 + C = −1

6

1

(x2 − 4x+ 5)3
+ C.

[

u = x2 − 4x+ 5 du = (2x− 4) dx = 2(x− 2) dx, dx =
du

2(x− 2)

]

12



13. Compute

∫

1√
x(
√
x+ 1)3

dx.

∫

1√
x(
√
x+ 1)3

dx = 2

∫

u−3 du = −u−2 + C = − 1

(
√
x+ 1)2

+ C.

[

u =
√
x+ 1 du =

1

2
√
x
dx, dx = 2

√
x du

]

14. Compute

∫

x

(x+ 1)1/5
dx.

∫

x

(x + 1)1/5
dx =

∫

u− 1

u1/5
du =

[u = x+ 1 du = dx]
∫

(u4/5 − u−1/5) du =
5

9
u9/5 − 5

4
u4/5 + C =

5

9
(x+ 1)9/5 − 5

4
(x+ 1)4/5 + C.

15. Compute

∫

e2x

e2x + 1
dx.

∫

e2x

e2x + 1
dx =

1

2

∫

du

u
=

1

2
ln |u|+ C =

1

2
ln |e2x + 1|+ C.

[

u = e2x + 1, du = 2e2x dx, dx =
du

2e2x

]

16. Compute

∫

x3

x4 + 42
dx.

∫

x3

x4 + 42
dx =

1

4

∫

du

u
=

1

4
ln |u|+ C =

1

4
ln |x4 + 42|+ C.

[

u = x4 + 42, du = 4x3 dx, dx =
du

4x3

]

17. Compute

∫

(cscx)5 cotx dx.

∫

(cscx)5 cotx dx = −
∫

u4 du = −1

5
u5 + C = −1

5
(cscx)5 + C.

[

u = cscx du = − cscx cotx dx, dx = − du

cscx cotx

]

18. Compute

∫

sinx

(cosx+ 1)2
dx.

∫

sinx

(cosx+ 1)2
dx =

∫

sinx

u2
· du

− sinx
= −

∫

du

u2
=

1

u
+ C =

1

cosx+ 1
+ C.
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[

u = cosx+ 1, du = − sinx dx, dx =
du

− sinx

]

19. Compute

∫

(x2 + 1) 3
√
x+ 1 dx.

∫

(x2 + 1) 3
√
x+ 1 dx

∫

(

(u − 1)2 + 1
)

3
√
udu =

∫

(u2 − 2u+ 2)u1/3 du =

∫

(u7/3 − 2u4/3 + 2u1/3) du =

[u = x+ 1, du = dx; x = u− 1]

3

10
u10/3 − 6

7
u7/3 +

3

2
u4/3 + C =

3

10
(x+ 1)10/3 − 6

7
(x+ 1)7/3 +

3

2
(x + 1)4/3 + C.

20. Compute

∫

tan 5x dx.

∫

tan 5x dx =

∫

sin 5x

cos 5x
dx =

∫

sin 5x

u
· du

−5 sin 5x
= −1

5

∫

du

u
= −1

5
ln |u|+ C = −1

5
ln | cos 5x|+ C.

[

u = cos 5x, du = −5 sin 5x dx, dx =
du

−5 sin5x

]

21. Compute

∫

csc(7x+ 11) cot(7x+ 11) dx.

∫

csc(7x+11) cot(7x+11) dx =

∫

cscu cotu· du
7

=
1

7

∫

cscu cotu du = −1

7
cscu+C = −1

7
csc(7x+11)+C.

[

u = 7x+ 11, du = 7 dx, dx =
du

7

]

22. Compute

∫

(

3x7 + 3 · 7x + 3 · 77
)

dx.

∫

(

3x7 + 3 · 7x + 3 · 77
)

dx =
3

8
x8 +

3

ln 7
7x + (3 · 77)x+ C.

23. Compute

∫

(x2 − 1)(x2 + 3) dx.

∫

(x2 − 1)(x2 + 3) dx =

∫

(x4 + 2x2 − 3) dx =
1

5
x5 +

2

3
x3 − 3x+ C.

24. Compute

∫

(2x− 1)2

x
dx.
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∫

(2x− 1)2

x
dx =

∫

4x2 − 4x+ 1

x
dx =

∫
(

4x− 4 +
1

x

)

dx = 2x2 − 4x+ ln |x|+ C.

25. Compute

∫

(7x− 5)43 dx.

∫

(7x− 5)43 dx =
1

7

∫

u43 du =
1

308
u44 + C =

1

308
(7x− 5)44 + C.

[

u = 7x− 5 du = 7 dx, dx =
du

7

]

26. Compute

∫

e3x + e−3x

e3x − e−3x
dx.

∫

e3x + e−3x

e3x − e−3x
dx =

∫

e3x + e−3x

u
· du

3(e3x + e−3x) dx
=

1

3

∫

du

u
=

1

3
ln |u|+ C =

1

3
ln |e3x − e−3x|+ C.

[

u = e3x − e−3x, du = (3e3x + 3e−3x) dx = 3(e3x + e−3x) dx, dx =
du

3(e3x + e−3x) dx

]

27. Compute

∫

(

(sin 5x)4 − 6 sin 5x+ 11
)

cos 5x dx.

∫

(

(sin 5x)4 − 6 sin 5x+ 11
)

cos 5x dx =

∫

(

u4 − 6u+ 11
)

(cos 5x) · du

5 cos 5x
=

1

5

∫

(u4 − 6u+ 11) du =

[

u = sin 5x, du = 5 cos 5x dx, dx =
du

5 cos 5x

]

1

5

(

1

5
u5 − 3u2 + 11u

)

+ C =
1

5

(

1

5
(sin 5x)5 − 3(sin 5x)2 + 11(sin 5x)

)

+ C.

28. Compute

∫

f ′(x) ln f(x)

f(x)
dx.

∫

f ′(x) ln f(x)

f(x)
dx =

∫

f ′(x) · u
f(x)

· f(x)

f ′(x)
du =

∫

u du =
1

2
u2 + C =

1

2
(ln f(x))2 + C.

[

u = ln f(x), du =
f ′(x)

f(x)
dx, dx =

f(x)

f ′(x)
du

]

29. Compute

∫

(f(x)g′(x) + g(x)f ′(x)) dx.

The Product Rule says that

d

dx
f(x)g(x) = f(x)g′(x) + g(x)f ′(x).
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Hence,
∫

(f(x)g′(x) + g(x)f ′(x)) dx = f(x)g(x) + C.

30. Compute

∫

(3x+ 10)(x− 4)20 dx.

∫

(3x+ 10)(x− 4)20 dx =

∫

(3(u+ 4) + 10)u20 du =

∫

(3u+ 22)u20 du =

∫

(3u21 + 22u20) du =

[u = x− 4, du = dx, x = u+ 4]

3

22
u22 +

22

21
u21 + C =

3

22
(x − 4)22 +

22

21
(x− 4)21 + C.

31. Compute

∫

(x+ 1)2√
x+ 3

dx.

∫

(x+ 1)2√
x+ 3

dx =

∫

((u − 3) + 1)2√
u

du =

∫

(u− 2)2√
u

du =

∫

u2 − 4u+ 4√
u

du =

[u = x+ 3, du = dx, x = u− 3]
∫

(

u3/2 − 4u1/2 + 4u−1/2
)

du =
2

5
u5/2− 8

3
u3/2+8u1/2+C =

2

5
(x+3)5/2− 8

3
(x+3)3/2+8(x+3)1/2+C.

32. Compute

∫

x− 3√
x2 − 6x+ 5

dx.

∫

x− 3√
x2 − 6x+ 5

dx =

∫

x− 3√
u

· du

2(x− 3)
=

1

2

∫

du√
u
=

1

2
· 2
√
u+ C =

√

x2 − 6x+ 5+ C.

[

u = x2 − 6x+ 5, du = (2x− 6) dx = 2(x− 3) dx, dx =
du

2(x− 3)

]

33. Compute

∫

7

e5x
dx.

∫

7

e5x
dx =

∫

7e−5x dx = −7

5
e−5x + C.

34. Compute

∫

3

secx
dx.

∫

3

secx
dx =

∫

3 cosx dx = 3 sinx+ C.
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35. Compute

∫

5

e4x + 7
dx.

∫

5

e4x + 7
dx = 5

∫

1

e4x + 7
· e

−4x

e−4x
dx = 5

∫

e−4x

1 + 7e−4x
dx = 5

∫

e−4x

u
· du

−28e−4x
= − 5

28

∫

du

u
=

[

u = 1 + 7e−4x, du = −28e−4x dx, dx =
du

−28e−4x

]

− 5

28
ln |u|+ C = − 5

28
ln |1 + 7e−4x|+ C.

36. Compute

∫

xex
2

e(e
x
2

) dx.

∫

xex
2

e(e
x
2

) dx =

∫

xex
2

eu · du

2xex2
=

1

2

∫

eu du =
1

2
eu + C =

1

2
e(e

x
2

) + C.

[

u = ex
2

, du = 2xex
2

dx, dx =
du

2xex2

]

37. Compute

∫

(

(cos 7x)2 − (sin 7x)2
)

dx.

∫

(

(cos 7x)2 − (sin 7x)2
)

dx =

∫

cos 14x dx =

∫

cosu · du
14

=
1

14

∫

cosu du =
1

14
sinu+C =

1

14
sin 14x+C.

[

u = 14x, du = 14 dx, dx =
du

14

]

In the first step, I used the double angle formula

(cos θ)2 − (sin θ)2 = cos 2θ.

38. Compute

∫

(

sec
1

x2

)2

x3
dx.

∫

(

sec
1

x2

)2

x3
dx =

∫

(secu)
2

x3
·
(

−x3

2

)

= −1

2

∫

(secu)2 du = −1

2
tanu+ C = −1

2
tan

1

x2
+ C.

[

u =
1

x2
, du = − 2

x3
dx, dx = −x3

2
du

]

39. Compute

∫

(e3x − 2e−x)(4e5x + e3x) dx.
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I multiply the two terms out, using the rule eaeb = ea+b:

∫

(e3x − 2e−x)(4e5x + e3x) dx =

∫

(4e8x + e6x − 8e4x − 2e2x) dx =
1

2
e8x +

1

6
e6x − 2e4x − e2x + C.

40. Compute

∫

(

x cos(x2 + 4)− 5x2 sin(x3 + 2)
)

dx.

∫

(

x cos(x2 + 4)− 5x2 sin(x3 + 2)
)

dx =

∫

x cos(x2 + 4) dx− 5

∫

x2 sin(x3 + 2) dx =

[

u = x2 + 4, du = 2x dx, dx =
du

2x
; w = x3 + 2, dw = 3x2 dx, dx =

dw

3x2

]

∫

x cosu · du
2x

− 5

∫

x2 sinw · dw
3x2

=
1

2

∫

cosu du− 5

3

∫

sinw dw =

1

2
sinu+

5

3
cosw + C =

1

2
sin(x2 + 4) +

5

3
cos(x3 + 2) + C.

41. Use a calculating device to approximate the following sum to at least three decimal places:

1

3 + 12
+

2

3 + 22
+

3

3 + 32
+ · · ·+ 47

3 + 472

1

3 + 12
+

2

3 + 22
+

3

3 + 32
+ · · ·+ 47

3 + 472
=

47
∑

n=1

n

3 + n2
= 3.28317 . . . .

42. Write the series in summation form:

(a)
2

5
+

3

52
+

4

53
+ · · ·+ 100

599
.

(b)
√
3 · sin 4 +

√
4 · sin 9 +

√
5 · sin 16 + · · ·+

√
100 · sin(992).

(a)

2

5
+

3

52
+

4

53
+ · · ·+ 100

599
=

99
∑

n=1

n+ 1

5n
.

(b)

√
3 · sin 4 +

√
4 · sin 9 +

√
5 · sin 16 + · · ·+

√
100 · sin(992) =

100
∑

n=3

√
n · sin(n− 1)2.

43. (a) Express the following sum in terms of n:

n
∑

k=1

(2 − 5k + 7k2).

(b) Find the exact value of

1000
∑

n=1

(n2 + 5n− 7).
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(a) Use the formulas
n
∑

k=1

c = nc

n
∑

k=1

k =
n(n+ 1)

2

n
∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

.

Therefore,

n
∑

k=1

(2 − 5k + 7k2) =

n
∑

k=1

2− 5

n
∑

k=1

k + 7

n
∑

k=1

k2 = 2n− 5n(n+ 1)

2
+

7n(n+ 1)(2n+ 1)

6
.

(b)

1000
∑

n=1

(n2+5n−7) =

1000
∑

n=1

n2+5

1000
∑

n=1

n−
1000
∑

n=1

7 =
(1000)(1001)(2001)

6
+5· (1000)(1001)

2
−7·1000 = 336329000.

44. (a) Verify that
1

k2 − k
=

1

k − 1
− 1

k
.

(b) Use the result of (a) to evaluate

1000
∑

k=2

1

k2 − k
.

(a) Adding the fractions on the right over a common denominator, I have

1

k − 1
− 1

k
=

1

k − 1
· k
k
− 1

k
· k − 1

k − 1
=

k

k(k − 1)
− k − 1

(k(k − 1)
=

k − (k − 1)

k(k − 1)
=

1

k2 − k
.

(b)
1000
∑

k=2

1

k2 − k
=

1000
∑

k=2

(

1

k − 1
− 1

k

)

=

(

1

1
− 1

2

)

+

(

1

2
− 1

3

)

+

(

1

3
− 1

4

)

+ · · ·+
(

1

999
− 1

1000

)

= 1− 1

1000
=

999

1000
.

45. Approximate

∫ 5

1

sinx

x
dx using 10 rectangles of equal width and using the left-hand endpoint of each

subinterval to obtain the rectangles’ heights.

The width of a rectangle is
5− 1

10
= 0.4. The left-hand endpoints are

1, 1.4, 1.8, . . . 4.2, 4.6.

To do the sum on a TI calculator, the calculator command is

19



sum(seq((sin(x))/x, x, 1, 4.6, 0.4)) * 0.4

The answer is 0.81579 . . ..

46. Approximate

∫ 5

1

sinx

x
dx using 10 rectangles of equal width and using the right-hand endpoint of each

subinterval to obtain the rectangles’ heights.

The width of a rectangle is
5− 1

10
= 0.4. The left-hand endpoints are

1.4, 1.8, 2.2, . . . 4.2, 4.6, 5.

To do the sum on a TI calculator, the calculator command is

sum(seq((sin(x))/x, x, 1.4, 5, 0.4)) * 0.4

The answer is 0.40249 . . ..

47. Approximate

∫ 5

1

sinx

x
dx using 10 rectangles of equal width and using the midpoint of each subinterval

to obtain the rectangles’ heights.

The width of a rectangle is
5− 1

10
= 0.4. The midpoints are

1.2, 1.6, 2.0, . . .4.4, 4.8.

To do the sum on a TI calculator, the calculator command is

sum(seq((sin(x))/x, x, 1.2, 4.8, 0.4)) * 0.4

The answer is 0.60119 . . ..

48. Some values for a function y = f(x) are shown below.

x f(x)

0 1.00

0.2 1.30

0.4 1.58

0.6 1.86

0.8 2.14

1.0 2.41

1.2 2.68

1.4 2.95

1.6 3.21

1.8 3.47

2.0 3.73
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(a) Approximate

∫ 2

0

f(x) dx using 5 rectangles of equal width and using the left-hand endpoints to obtain

the rectangle heights.

(b) Approximate

∫ 2

0

f(x) dx using 10 rectangles of equal width and using the right-hand endpoints to obtain

the rectangle heights.

(a) ∆x =
2− 0

5
= 0.4, so the approximation is

(0.4)(1 + 1.58 + 2.14 + 2.68 + 3.21) = 4.244.

(b) ∆x =
2− 0

10
= 0.2, so the approximation is

(0.2)(1.30 + 1.58 + 1.86 + 2.14 + 2.41 + 2.68 + 2.95 + 3.21 + 3.47 + 3.73) = 5.06.

49. Compute

∫ 4

2

(2x+ 3) dx by writing the integral as the limit of a rectangle sum.

The width of a typical rectangle is

∆x =
4− 2

n
=

2

n
.

I’ll use the right-hand endpoints of the subintervals. (You could use the left-hand endpoints or the
midpoints; the computation would look different, but the final answer would be the same.)

I’m going from 2 to 4 in steps of size
2

n
. The diagram shows that right-hand endpoints:

2 2 +
2

n
2 +

4

n
2 +

6

n
· · · 2 +

2(n− 1)

n
2 +

2n

n
= 4

↑ ↑ ↑ · · · ↑ ↑

The function is f(x) = 2x+ 3. The rectangle sum is

∆x

(

f

(

2 +
2

n

)

+ f

(

2 +
4

n

)

+ f

(

2 +
6

n

)

+ · · ·+ f

(

2 +
2n

n

))

= ∆x

n
∑

i=1

f

(

2 +
2i

n

)

=

2

n

n
∑

i=1

(

2 ·
(

2 +
2i

n

)

+ 3

)

=
2

n

n
∑

i=1

(

4i

n
+ 7

)

=
8

n2

n
∑

i=1

i+
2

n

n
∑

i=1

7 =

8

n2
· n(n+ 1)

2
+

2

n
· 7n =

4(n+ 1)

n
+ 14.

Hence,
∫ 4

2

(2x+ 3) dx = lim
n→∞

(

4(n+ 1)

n
+ 14

)

= 4 + 14 = 18.

50. (a) Given that
d

dx

x2 − 2x+ 5

x2 − 4x+ 5
=

2(5− x)2

(x2 − 4x+ 5)2
, what is

∫

2(5− x)2

(x2 − 4x+ 5)2
dx?

(b) Compute

∫
(

d

dx

√

x4 + x2 + 1

)

dx.
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(a)
∫

2(5− x)2

(x2 − 4x+ 5)2
dx =

x2 − 2x+ 5

x2 − 4x+ 5
+ C.

(b)
∫
(

d

dx

√

x4 + x2 + 1

)

dx =
√

x4 + x2 + 1 + C.

51. Compute

∫ 2

−1

(x2 + 1)2 dx.

∫ 2

−1

(x2 + 1)2 dx =

∫ 2

−1

(x4 + 2x2 + 1) dx =

[

1

5
x5 +

2

3
x3 + x

]2

−1

=
78

5
.

52. Compute

∫ 1

0

2x3 + x

x4 + x2 + 3
dx.

∫ 1

0

2x3 + x

x4 + x2 + 3
dx =

∫ 5

3

2x3 + x

u
· du

2(2x3 + x)
=

1

2

∫ 5

3

1

u
du =

1

2
[ln |u|]53 =

1

2
(ln 5− ln 3).

[

u = x4 + x2 + 3, du = (4x3 + 2x) dx = 2(2x3 + x) dx, dx =
du

2(2x3 + x)

x = 0, u = 3; x = 1, u = 5]

53. Compute

∫ 2

1

x+ 2

(x2 + 4x+ 1)2
dx.

∫ 2

1

x+ 2

(x2 + 4x+ 1)2
dx =

∫ 13

6

x+ 2

u2
· du

2(x+ 2)
=

1

2

∫ 13

6

1

u2
du =

1

2

[

− 1

u

]13

6

=
7

156
.

[

u = x2 + 4x+ 1, du = 2(x+ 2) dx, dx =
du

2(x+ 2)
; x = 1, u = 6; x = 2, u = 13

]

54. Suppose that f ′′(x) = 12x+ 6, f ′(0) = 3, and f(1) = 5. Find f(x).

f ′(x) =

∫

f ′′(x) dx =

∫

(12x+ 6) dx = 6x2 + 6x+ c.

Since f ′(0) = 3, I have
3 = f ′(0) = 6 · 02 + 6 · 0 + c, or c = 3.

Thus, f ′(x) = 6x2 + 6x+ 3.

f(x) =

∫

f ′(x) dx =

∫

(6x2 + 6x+ 3) dx = 2x3 + 3x2 + 3x+ d.

Since f(1) = 5, I have

5 = f(1) = 2 · 13 + 3 · 12 + 3 · 1 + d, or d = −3.
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Therefore, f(x) = 2x3 + 3x2 + 3x− 3.

55. Find functions f(x) and g(x) such that the antiderivative of f(x) · g(x) is not equal to the antiderivative
of f(x) times the antiderivative of g(x).

There are lots of possibilities. For example, take f(x) = 1 and g(x) = x. Then

∫

f(x)g(x) dx =

∫

1 · x dx =
1

2
x2 + C.

But
∫

f(x) dx =

∫

1 dx = x+ C and

∫

g(x) dx =

∫

x dx =
1

2
x2 + C.

Obviously,
1

2
x2 6= x · 1

2
x2.

56. Compute

∫ 1

−1

(1− |x|) dx.

Here is the graph of y = 1− |x|.

-2 -1 1 2

-1

-0.5

0.5

-2 -1 1 2

-1

-0.5

0.5

∫ 1

−1(1 − |x|) dx is the area under the graph and above the x-axis, from x = −1 to x = 1. This is the
shaded region in the picture. It is a triangle with height 1 and base 2, so its area is

∫ 1

−1

(1− |x|) dx =
1

2
· 2 · 1 = 1.

57. Compute the exact value of

∫ 10

−10

(5 +
√

100− x2) dx.

First, break the integral up into two pieces:

∫ 10

−10

(5 +
√

100− x2) dx =

∫ 10

−10

5 dx+

∫ 10

−10

√

100− x2 dx.

The first integral can be computed directly:

∫ 10

−10

5 dx = 5[10− (−10)] = 100.
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For the second integral, notice that y =
√
100− x2 is a semicircle:

y =
√

100− x2

y2 = 100− x2

x2 + y2 = 100

The radius is
√
100 = 10, and it’s centered at the origin.

The integral is computing the area of the semicircle, which is half the area of a circle of radius 10:

∫ 10

−10

√

100− x2 dx =
1

2
π102 = 50π.

Therefore,
∫ 10

−10

(5 +
√

100− x2) dx = 100 + 50π.

58. Compute the exact value of

∫ 7

−1

√

7 + 6x− x2 dx.

Hint: Complete the square in x.

You can’t compute this integral directly using techniques you know now.
If y =

√
7 + 6x− x2, then

y2 = 7 + 6x− x2, x2 − 6x+ y2 = 7, x2 − 6x+ 9 + y2 = 7 + 9, (x− 3)2 + y2 = 16.

(I knew to add 9 to both sides, since
1

2
(−6) = −3, then (−3)2 = 9. You should have seen this when you

took algebra; it’s called completing the square.)
The equation represents a circle of radius

√
16 = 4 centered at (3, 0). If I go 4 units to the left and right

of x = 3, I get x = −1, and x = 7, which are the limits on the integral. Finally, y =
√
7 + 6x− x2 represents

the top semicircle of the circle, because
√

always gives the positive square root.

2 4 6

1

2

3
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Putting everything together, I see that the integral represents the area of a semicircle of radius 4. Since
the area of a circle of radius r is πr2,

∫ 7

−1

√

7 + 6x− x2 dx =
1

2
π · 42 = 8π.

59. Find the total area of the region bounded by y = x(x − 2)(x− 4) and the x-axis.

-1 1 2 3 4 5

-15

-10

-5

5

10

-1 1 2 3 4 5

-15

-10

-5

5

10

The curve is positive from 0 to 2 and negative from 2 to 4, so the area is

∫ 2

0

x(x − 2)(x− 4) dx+

∫ 4

2

−x(x− 2)(x− 4) dx.

x(x − 2)(x− 4) = x3 − 6x2 + 8x, so

∫

x(x − 2)(x− 4) =

∫

(x3 − 6x2 + 8x) dx =
1

4
x4 − 2x3 + 4x2 + C.

Using this in the integrals above, I find that the area is

∫ 2

0

x(x − 2)(x− 4) dx+

∫ 4

2

−x(x− 2)(x− 4) dx = 8.

60. Find the area of the region bounded by

x = y2 − 9 and x = 2y + 6.

x = y2 − 9 is a parabola opening to the right, and x = 2y + 6 is a line.

-5 5 10 15 20 25

-4

-2

2

4

6
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Find the intersections:
y2 − 9 = 2y + 6

y2 − 2y − 15 = 0

(y − 5)(y + 3) = 0

The curves intersect at y = 5 and y = −3.
Use horizontal rectangles. The right end of a horizontal rectangle is on x = 2y + 6 and the left end is

on x = y2 − 9. So the area is

∫ 5

−3

[(2y + 6)− (y2 − 9)] dy =

∫ 5

−3

(15 + 2y − y2) dy =

[

15y + y2 − 1

3
y3
]5

−3

=
256

3
.

61. Find the area of the region in the first quadrant bounded on the left by y = 1 − x2, on the right by

y = 1− x2

2
, and below by the x-axis.

y = 1 - x2

2y = 1 - x  /2

1

I’ll find the area using horizontal rectangles; vertical rectangles would require two integrals.
The left-hand curve is

y = 1− x2 or x =
√

1− y.

The right-hand curve is

y = 1− x2

2
or x =

√
2
√

1− y.

The region extends from y = 0 to y = 1. The area is

∫ 1

0

(√
2
√

1− y −
√

1− y
)

dy = (
√
2− 1)

∫ 1

0

√

1− y dy =
2

3
(
√
2− 1) = 0.27614 . . . .

62. Find the area of the region bounded by the graphs of y = 1− x2 and y = −1− x.
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Solve simultaneously:

1− x2 = −1− x, x2 − x− 2 = 0, (x − 2)(x+ 1) = 0, x = −1 or x = 2.

The top curve is y = 1− x2 and the bottom curve is y = −1− x. The area is

∫ 2

−1

(

(1− x2)− (−1− x)
)

dx =
9

2
= 4.5.

63. Find the area of the region between y = −x2 and y = x− 6, from x = 0 to x = 3.

Find the intersection points:

−x2 = x− 6, x2 + x− 6 = 0, (x− 2)(x+ 3) = 0, x = 2 or x = −3.

On the interval 0 ≤ x ≤ 3, the curves cross at x = 2.

1 2 3
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I need two integrals to find the area. From x = 0 to x = 2, the top curve is y = −x2 and the bottom
curve is y = x − 6. From x = 2 to x = 3, the top curve is y = x− 6 and the bottom curve is y = −x2. The
area is

∫ 2

0

(

−x2 − (x− 6)
)

dx+

∫ 3

2

(

(x− 6)− (−x2)
)

dx =

∫ 2

0

(

−x2 − x+ 6
)

dx+

∫ 3

2

(

x− 6 + x2)
)

dx =

[

−1

3
x3 − 1

2
x2 + 6x

]2

0

+

[

1

2
x2 − 6x+

1

3
x3

]3

2

=
61

6
.

64. (a) Compute
d

dx

∫ x

−17

cos t

t4 + 1
dt.

(b) Compute
d

dx

∫ sin x

42

√

t2 + 2 dt.

(c) Compute
d

dx

∫ 13

ex

t

2 + sin t
dt.

(a) Using the second form of the Fundamental Theorem of Calculus, I get

d

dx

∫ x

−17

cos t

t4 + 1
dt =

cosx

x4 + 1
.
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(b) In this situation, I’m differentiating with respect to x, but the top limit in the integral is sinx — they
don’t match. In order to apply the second form of the Fundamental Theorem, I need to use the Chain Rule
to “make them match”:

d

dx

∫ sin x

42

√

t2 + 2 dt =

(

d(sinx)

dx

)

· d

d(sinx)

∫ sin x

42

√

t2 + 2 dt = (cosx)
√

(sinx)2 + 2.

(c)

d

dx

∫ 13

ex

t

2 + sin t
dt = − d

dx

∫ ex

13

t

2 + sin t
dt = −dex

dx

d

d(ex)

∫ ex

13

t

2 + sin t
dt = −ex · ex

2 + sin ex
.

65. (a) Prove that

∫ 0.5

0

x2

x2 + 1
dx ≤ 0.5.

(b) Use the Integral Mean Value Theorem to estimate

∫ 1

0

ex
4

dx.

(a) Since x2 + 1 ≥ x2, it follows that 1 ≥ x2

x2 + 1
. Hence,

∫ 0.5

0

1 dx ≥
∫ 0.5

0

x2

x2 + 1
dx, or 0.5 ≥

∫ 0.5

0

x2

x2 + 1
dx.

(b) If f(x) = ex
4

, then f ′(x) = 4x3ex
4

. Note that f ′(x) = 0 for x = 0, and f ′(x) is defined for all x.

x 0 1

f(x) 1 e

The maximum value of f(x) on 0 ≤ x ≤ 1 is e and the minimum value is 1. Thus, 1 ≤ ex
4 ≤ e.

The Integral Mean Value Theorem says that for some c satisfying 0 ≤ c ≤ 1,

∫ 1

0

ex
4

dx = (1− 0)f(c) = ec
4

.

The max-min result I derived above shows that 1 ≤ ec
4 ≤ e. Hence,

1 ≤
∫ 1

0

ex
4

dx ≤ e.

You are all you will ever have for certain. - June Havoc
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