
Math 211
10-2-2020

Review Problems for the Final

These problems are provided to help you study. The presence of a problem on this handout does not
imply that there will be a similar problem on the test. And the absence of a topic does not imply that it
won’t appear on the test.

1. Compute the following integrals.

(a)

∫

ex cos 2x dx.

(b)

∫

x2

√
4− x2

dx.

(c)

∫

5x2 − 6x− 5

(x− 1)2(x+ 2)
dx.

(d)

∫

(sin 4x)3(cos 4x)2 dx.

(e)

∫

(sin 4x)2(cos 4x)2 dx.

(f)

∫

1

(−3− 4x− x2)3/2
dx.

(g)

∫ −3x2 + 7x+ 1

(x+ 2)(x2 + 1)
dx.

(h)

∫

(x + 1)2e5x dx.

(i)

∫

x1/2 − x1/4

x1/2 + x1/4
dx.

2. Determine whether the integral

∫ 1

−1

1

x
dx converges or diverges. Find the value of the integral if it

converges.

3. Prove by comparison that

∫ ∞

1

1

x4 + 1
dx converges.

4. The region between the x-axis and y = x2 from x = −1 to x = 1 is revolved about the line x = −4. Find
the volume generated.

5. Let R be the region bounded above by y = x+ 2, bounded below by y = −x2, and bounded on the sides
by x = −2 and by the y-axis. Find the volume of the solid generated by revolving R about the line x = 1.

6. Find the area of the region which lies between the graphs of y = x2 and y = x+ 2, from x = 1 to x = 3.

7. Find the area of the region between y = x+ 3 and y = 7− x from x = 0 to x = 3.

8. The base of a solid is the region in the x-y-plane bounded above by the curve y = ex, below by the x-axis,
and on the sides by the lines x = 0 and x = 1. The cross-sections in planes perpendicular to the x-axis are
squares with one side in the x-y-plane. Find the volume of the solid.
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9. A tank built in the shape of the bottom half of a sphere of radius 2 feet is filled with water. Find the
work done in pumping all the water out of the top of the tank.
10. Does the following series converge absolutely, converge conditionally, or diverge?

1

2
− 4

23 + 1
+

9

33 + 1
− 16

43 + 1
+ · · ·

11. Determine whether the series

∞
∑

n=1

(−1)n+1

√
n+ 1

n2 + 1
converges absolutely, converges conditionally, or di-

verges.

12. Does the series
∞
∑

n=1

(−1)n+1

(

1√
n+ 1

)3

converge absolutely, converge conditionally, or diverge?

13. Find the sum of the series
5

9
− 5

27
+

5

81
− 5

243
+ · · · .

14. In each case, determine whether the series converges or diverges.

(a)
∞
∑

n=2

1

n(lnn)4/3
.

(b)
2

1
+

2 · 5
1 · 5 + · · ·+ 2 · 5 · · · · · (3n− 1)

1 · 5 · · · · · (4n− 3)
.

(c)

∞
∑

n=1

(

1 +
1

n

)−n2

.

(d)
2

3
− 5

8
+

8

13
− 11

18
+ · · ·.

(e)
∞
∑

n=1

3n2 + 4n+ 2√
n5 + 16

.

(f)
∞
∑

n=1

5 + cos(en)

n
.

(g)
∞
∑

n=1

ne−2n.

(h)

∞
∑

k=2

k +
√
k

k3 + (−1)k
.

15. Find the values of x for which the following series converges absolutely.

∞
∑

n=1

(n!)2

(2n)!
(x− 5)n

16. The series
∞
∑

k=1

(−1)k+1 1

k1/3 + 2
converges by the Alternating Series Test. Determine the smallest value

of n for which the partial sum

n
∑

k=1

(−1)k+1 1

k1/3 + 2
approximates the actual sum to within 0.01.
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17. (a) Find the Taylor expansion at c = 1 for e2x.

(b) Find the Taylor expansion at c = 1 for
1

3 + x
. What is the interval of convergence?

18. (a) Use the Binomial Series to write out the first three nonzero terms of the series for
1√

1− t2
=

(1− t2)−1/2.

(b) Find the first three terms of the Taylor series at c = 0 for sin−1 x by integrating the series you got in (a)
from t = 0 to x = x.

19. Use the Remainder Term to find the minimum number of terms of the Taylor series at c = 0 for
f(x) = e5x needed to approximate f(x) on the interval 0 ≤ x ≤ 0.3 to within 0.00001 = 10−5.

20. Determine the interval of convergence of the power series

∞
∑

n=1

(x− 3)n

n · 7n .

21. Find the interval of convergence of the power series

∞
∑

n=1

(x− 3)n

n(2n)3
.

22. If x = t+ et and y = t+ t3, find
dy

dx
and

d2y

dx2
at t = 1.

23. Consider the parametric curve

x = t2 + t+ 1, y = t3 − 5t+ 2.

(a) Find the equation of the tangent line at t = 1.

(b) Find
d2y

dx2
at t = 1.

24. Find the length of the loop of the curve

x = t2, y = t− t3

3
.

25. Find the length of the curve y =
1

2
x2 + 2 for 0 ≤ x ≤ 1.

26. Let

x =

√
3

2
t2, y = t− 1

4
t3.

Find the length of the arc of the curve from t = −2 to t = 2.

27. Find the area of the surface generated by revolving y =
2

3
x3/2 − 1

2
x1/2, 1 ≤ x ≤ 4, about the x-axis.

28. Find the area of the surface generated by revolving y =
1

3
x3, 0 ≤ x ≤ 2, about the x-axis.

29. (a) Convert (x− 3)2 + (y + 4)2 = 25 to polar and simplify.

(b) Convert r = 4 cos θ − 6 sin θ to rectangular and describe the graph.

30. Find the slope of the tangent line to the polar curve r = sin 2θ at θ =
π

6
.

31. Find the slope of the tangent line to r = 2 + cos θ at θ =
π

6
.
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32. Find the values of θ in the interval [0, 2π] for which the polar curve r = cos 2θ − sin 2θ passes through
the origin.

33. Find the length of the cardioid r = 1 + sin θ.

34. Find the area of the intersection of the interiors of the circles

x2 + (y − 1)2 = 1 and (x−
√
3)2 + y2 = 3.

35. Find the area of the region inside the cardioid r = 1 + cos θ and outside the circle r = 3 cos θ.

36. Let A be the region inside r = sin θ and let B be the region inside r =
√
3 cos θ. Find the area of the

intersection of A and B — that is, the area of the region common to A and B.

Solutions to the Review Problems for the Final

1. Compute the following integrals.

(a)

∫

ex cos 2x dx.

(b)

∫

x2

√
4− x2

dx.

(c)

∫

5x2 − 6x− 5

(x− 1)2(x+ 2)
dx.

(d)

∫

(sin 4x)3(cos 4x)2 dx.

(e)

∫

(sin 4x)2(cos 4x)2 dx.

(f)

∫

1

(−3− 4x− x2)3/2
dx.

(g)

∫ −3x2 + 7x+ 1

(x+ 2)(x2 + 1)
dx.

(h)

∫

(x + 1)2e5x dx.

(i)

∫

x1/2 − x1/4

x1/2 + x1/4
dx.

(a)
d

dx

∫

dx

+ ex cos 2x
ց

− ex
1

2
sin 2x

ց
+ ex → −1

4
cos 2x
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∫

ex cos 2x dx =
1

2
ex sin 2x+

1

4
ex cos 2x− 1

4

∫

ex cos 2x dx,

5

4

∫

ex cos 2x dx =
1

2
ex sin 2x+

1

4
ex cos 2x,

∫

ex cos 2x dx =
2

5
ex sin 2x+

1

5
ex cos 2x+ C.

(b)
∫

x2

√
4− x2

dx =

∫

4(sin θ)2
√

4− 4(sin θ)2
2 cos θ dθ =

∫

4(sin θ)2
√

4(cos θ)2
2 cos θ dθ = 4

∫

(sin θ)2 dθ =

[x = 2 sin θ, dx = 2 cos θ dθ]
x

q

2

4 - x2

2

∫

(1 − cos 2θ) dθ = 2

(

θ − 1

2
sin 2θ

)

+ C = 2 (θ − sin θ cos θ) + C = 2 sin−1 x

2
− 1

2
x
√

4− x2 + C.

(c)
5x2 − 6x− 5

(x− 1)2(x+ 2)
=

a

x− 1
+

b

(x− 1)2
+

c

x+ 2
,

5x2 − 6x− 5 = a(x− 1)(x+ 2) + b(x+ 2) + c(x− 1)2.

Setting x = 1 gives −6 = 3b, so b = −2.
Setting x = −2 gives 27 = 9c, so c = 3.
Therefore,

5x2 − 6x− 5 = a(x− 1)(x+ 2)− 2(x+ 2) + 3(x− 1)2.

Setting x = 0 gives −5 = −2a− 4 + 3, so a = 2.
Thus,

∫

5x2 − 6x− 5

(x− 1)2(x+ 2)
dx =

∫
(

2

x− 1
− 2

(x− 1)2
+

3

x+ 2

)

dx = 2 ln |x− 1|+ 2

x− 1
+ 3 ln |x+ 2|+ C.

(d)

∫

(sin 4x)3(cos 4x)2 dx =

∫

(sin 4x)2(cos 4x)2(sin 4x dx) =

∫

(

1− (cos 4x)2
)

(cos 4x)2(sin 4x dx) =

[

u = cos 4x, du = −4 sin 4x dx, dx =
du

−4 sin4x

]

∫

(1− u2)u2(sin 4x)

(

du

−4 sin 4x

)

=
1

4

∫

(u4 − u2) du =
1

4

(

1

5
u5 − 1

3
u3

)

+ C =

1

4

(

1

5
(cos 4x)5 − 1

3
(cos 4x)3

)

+ C.

(e)

∫

(sin 4x)2(cos 4x)2 dx =

∫

1

2
(1− cos 8x) · 1

2
(1 + cos 8x) dx =

1

4

∫

(

1− (cos 8x)2
)

dx =
1

4

∫

(sin 8x)2 dx =
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1

8

∫

(1− cos 16x) dx =
1

8

(

x− 1

16
sin 16x

)

+ C.

(f) I need to complete the square. Note that
−4

2
= −2 and (−2)2 = 4. Then

−3− 4x− x2 = −(x2 + 4x+ 3) = −(x2 + 4x+ 4− 1) = −
[

(x+ 2)2 − 1
]

= 1− (x+ 2)2.

So
∫

1

(−3− 4x− x2)3/2
dx =

∫

1

(1− (x+ 2)2)3/2
dx =

∫

1

(1− (sin θ)2)3/2
(cos θ dθ) =

∫

1

(cos θ)3
(cos θ dθ) =

[x+ 2 = sin θ, dx = cos θ dθ]
x + 2

1

1 - (x + 2)2

q

∫

1

(cos θ)2
dθ =

∫

(sec θ)2 dθ = tan θ + C =
x+ 2√

−3− 4x− x2
+ C.

(g)
−3x2 + 7x+ 1

(x+ 2)(x2 + 1)
=

a

x+ 2
+

bx+ c

x2 + 1

−3x2 + 7x+ 1 = a(x2 + 1) + (bx+ c)(x+ 2)

Let x = −2. I get
−12− 14 + 1 = 5a, −25 = 5a, so a = −5.

Then
−3x2 + 7x+ 1 = −5(x2 + 1) + (bx+ c)(x+ 2).

Let x = 0. I get
0 + 0 + 1 = −5 + 2c, 6 = 2c, so c = 3.

Then
−3x2 + 7x+ 1 = −5(x2 + 1) + (bx+ 3)(x+ 2).

Let x = 1. I get

−3 + 7 + 1 = −10 + (b+ 3)(3), 5 = −10 + 3b+ 9, 6 = 3b, so b = 2.

Thus,

∫ −3x2 + 7x+ 1

(x + 2)(x2 + 1)
dx =

∫
( −5

x+ 2
+

2x

x2 + 1
+

3

x2 + 1

)

dx = −5 ln |x+ 2|+ ln(x2 + 1) + 3 tan−1 x+ C.

(h)
d

dx

∫

dx

+ (x+ 1)2 e5x

− 2(x+ 1)
1

5
e5x

+ 2
1

25
e5x

− 0
1

125
e5x
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∫

(x + 2)2e5x dx =
1

5
(x+ 1)2e5x − 2

25
(x+ 1)e5x +

2

125
e5x + C.

(i)
∫

x1/2 − x1/4

x1/2 + x1/4
dx =

∫

u2 − u

u2 + u
· (4u3 du) = 4

∫

u− 1

u+ 1
· u3 du = 4

∫

u4 − u3

u+ 1
du.

[

x = u4, dx = 4u3 du
]

Use long division to divide u4 − u3 by u+ 1:

u+1 u  - u44 3

u  - 2u  + 2u - 23 2

u  + u44 3-

-2u3

-2u  - 2u3 2
-

2u2

2u  + 2u2
-

-2u
-2u - 2-

2

Thus,

4

∫

u4 − u3

u+ 1
du = 4

∫
(

u3 − 2u2 + 2u− 2 +
2

u+ 1

)

du =

4

(

1

4
u4 − 2

3
u3 + u2 − 2u+ 2 ln |u+ 1|

)

+ C =

4

(

1

4
x− 2

3
x3/4 + x1/2 − 2x1/4 + 2 ln |x1/4 + 1|

)

+ C.

2. Determine whether the integral

∫ 1

−1

1

x
dx converges or diverges. Find the value of the integral if it

converges.

∫ 1

−1

1

x
dx =

∫ 0

−1

1

x
dx+

∫ 1

0

1

x
dx = lim

a→0−

∫ a

−1

1

x
dx+ lim

b→0+

∫ 1

b

1

x
dx =

lim
a→0−

[ln |x|]a−1 + lim
b→0+

[ln |x|]1b = lim
a→0−

(ln |a| − ln 1) + lim
b→0+

(ln 1− ln |b|) = lim
a→0−

ln |a|+ lim
b→0+

(− ln |b|).

lim
a→0−

ln |a| = −∞ and lim
b→0+

(− ln |b|) = +∞, so the integral diverges.

3. Prove by comparison that

∫ ∞

1

1

x4 + 1
dx converges.

Since 0 ≤ 1

x4 + 1
≤ 1

x4
for x ≥ 1,

0 ≤
∫ ∞

1

1

x4 + 1
dx ≤

∫ ∞

1

1

x4
dx = lim

a→∞

∫ a

1

1

x4
dx = lim

a→∞

[

− 1

3x3

]a

1

= lim
a→∞

(

− 1

3a3
+

1

3

)

=
1

3
.

Since

∫ ∞

1

1

x4
dx converges, the original integral converges as well.
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4. The region between the x-axis and y = x2 from x = −1 to x = 1 is revolved about the line x = −4. Find
the volume generated.

Use shells. The height of a shell is h = x2, and the radius is r = 4 + x. The volume is

∫ 1

−1

2π(4 + x)(x2) dx = 2π

∫ 1

−1

(4x2 + x3) dx = 2π

[

4

3
x3 +

1

4
x4

]1

−1

=
16π

3
≈ 16.75516.

5. Let R be the region bounded above by y = x+ 2, bounded below by y = −x2, and bounded on the sides
by x = −2 and by the y-axis. Find the volume of the solid generated by revolving R about the line x = 1.

dx

r = 1 - x

-x 1

x = 1

h

h = (x + 2) + x2

Most of the things in the picture are easy to understand — but why is r = 1− x?

Notice that the distance from the y-axis to the side of the shell is −x, not x. Reason: x-values to the
left of the y-axis are negative, but distances are always positive. Thus, I must use −x to get a positive value
for the distance.

As usual, r is the distance from the axis of revolution x = 1 to the side of the shell, which is 1+ (−x) =
1− x.

The left-hand cross-section extends from x = −2 to x = 0. You can check that if you plug x’s between
−2 and 0 into r = 1− x, you get the correct distance from the side of the shell to the axis x = 1.

The volume is

V =

∫ 0

−2

2π(1− x)((x + 2) + x2) dx = 4π =

∫ 0

−2

2π
(

2− x− x3
)

dx = 2π

[

2x− 1

2
x2 − 1

4
x4

]0

−2

=

20π ≈ 62.83185.

6. Find the area of the region which lies between the graphs of y = x2 and y = x+ 2, from x = 1 to x = 3.
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1 2 3 4

2

4

6

8

10

2

4

6

8

As the picture shows, the curves intersect. Find the intersection point:

x2 = x+ 2, x2 − x− 2 = 0, (x− 2)(x+ 1) = 0, x = 2 or x = −1.

On the interval 1 ≤ x ≤ 3, the curves cross at x = 2. I’ll use vertical rectangles. From x = 1 to x = 2,
the top curve is y = x + 2 and the bottom curve is y = x2. From x = 2 to x = 3, the top curve is y = x2

and the bottom curve is y = x+ 2. The area is

A =

∫ 2

1

(

(x + 2)− x2
)

dx+

∫ 3

2

(

x2 − (x+ 2)
)

dx = 3.

7. Find the area of the region between y = x+ 3 and y = 7− x from x = 0 to x = 3.

-1 1 2 3 4

3

4

5

6

7

3

4

5

6

7

As the picture shows, the curves intersect. Find the intersection point:

x+ 3 = 7− x, 2x = 4, x = 2.

I’ll use vertical rectangles. From x = 0 to x = 2, the top curve is y = 7 − x and the bottom curve is
y = x+ 3. From x = 2 to x = 3, the top curve is y = x+ 3 and the bottom curve is y = 7− x. The area is

∫ 2

0

((7− x)− (x + 3)) dx +

∫ 3

2

((x+ 3)− (7 − x)) dx =

∫ 2

0

(4− 2x) dx+

∫ 3

2

(2x− 4) dx =

[

4x− x2
]2

0
+
[

x2 − 4x
]3

2
= 4 + 1 = 5.
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8. The base of a solid is the region in the x-y-plane bounded above by the curve y = ex, below by the x-axis,
and on the sides by the lines x = 0 and x = 1. The cross-sections in planes perpendicular to the x-axis are
squares with one side in the x-y-plane. Find the volume of the solid.

y

(0,0)
x

The volume is

V =

∫ 1

0

(ex)2 dx =

∫ 1

0

e2x dx =

[

1

2
e2x
]1

0

=
1

2
(e2 − 1) ≈ 3.19453.

9. A tank built in the shape of the bottom half of a sphere of radius 2 feet is filled with water. Find the
work done in pumping all the water out of the top of the tank.

x

y

y 2

r

-2

dy

I’ve drawn the tank in cross-section as a semicircle of radius 2 extending from y = −2 to y = 0.
Divide the volume of water up into circular slices. The radius of a slice is r =

√

4− y2, so the volume of
a slice is dV = πr2 dy = π(4− y2) dy. The weight of a slice is 62.4π(4− y2) dy, where I’m using 62.4 pounds
per cubic foot as the density of water.

To pump a slice out of the top of the tank, it must be raised a distance of −y feet. (The “-” is necessary
to make y positive, since y is going from −2 to 0.)

The work done is

W =

∫ 0

−2

62.4π(−y)(4− y2) dy = 62.4π

∫ 0

−2

(y3 − 4y) dy = 62.4π

[

1

4
y4 − 2y2

]0

−2

=

249.6π ≈ 784.14153 foot− pounds.
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10. Does the following series converge absolutely, converge conditionally, or diverge?

1

2
− 4

23 + 1
+

9

33 + 1
− 16

43 + 1
+ · · ·

1

2
− 4

23 + 1
+

9

33 + 1
− 16

43 + 1
+ · · · =

∞
∑

n=1

(−1)n+1 n2

n3 + 1
.

The absolute value series is
∞
∑

n=1

n2

n3 + 1
.

Note that when n is large,
n2

n3 + 1
≈ 1

n
.

Hence, I’ll compare the series to
∑∞

n=1

1

n
.

lim
n→∞

n2

n3 + 1
1

n

= lim
n→∞

n3

n3 + 1
= 1.

The limit is finite (6= ∞) and positive (> 0). The harmonic series
∑∞

n=1

1

n
diverges. By Limit Compar-

ison, the series
∑∞

n=1

n2

n3 + 1
diverges. Hence, the original series does not converge absolutely.

Returning to the original series, note that it alternates, and

lim
n→∞

n2

n3 + 1
= 0.

Let f(n) =
n2

n3 + 1
. Then

f ′(n) =
n(2− n3)

(1 + n3)2
< 0 for n > 1.

Therefore, the terms of the series decrease for n ≥ 2, and I can apply the Alternating Series Rule to
conclude that the series converges. Since it doesn’t converge absolutely, but it does converge, it converges
conditionally.

11. Determine whether the series

∞
∑

n=1

(−1)n+1

√
n+ 1

n2 + 1
converges absolutely, converges conditionally, or di-

verges.

The absolute value series is
∞
∑

n=1

√
n+ 1

n2 + 1
.

lim
n→∞

√
n+ 1

n2 + 1
1

n3/2

= lim
n→∞

n2 + n3/2

n2 + 1
= 1.
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∞
∑

n=1

1

n3/2
converges because it’s a p-series with p =

3

2
> 1.

The absolute value series converges by limit comparison.
The original series converges absolutely.

12. Does the series

∞
∑

n=1

(−1)n+1

(

1√
n+ 1

)3

converge absolutely, converge conditionally, or diverge?

Consider the absolute value series
∞
∑

n=1

(

1√
n+ 1

)3

.

lim
n→∞

(

1√
n+ 1

)3

1

n3/2

= lim
n→∞

n3/2 ·
(

1√
n+ 1

)3

= lim
n→∞

(n1/2)3 ·
(

1√
n+ 1

)3

= lim
n→∞

(

n1/2

n1/2 + 1

)3

= 13 = 1.

∞
∑

n=1

1

n3/2
converges, because it’s a p-series with p =

3

2
> 1. Hence, the absolute value series converges

by Limit Comparison.
Therefore, the original series converges absolutely.

13. Find the sum of the series
5

9
− 5

27
+

5

81
− 5

243
+ · · · .

5

9
− 5

27
+

5

81
− 5

243
+ · · · = 5

9

(

1− 1

3
+

1

9
− 1

27
+ · · ·

)

=
5

9
· 1

1−
(

−1

3

) =
5

9
· 3
4
=

5

12
.

14. In each case, determine whether the series converges or diverges.

(a)

∞
∑

n=2

1

n(lnn)4/3
.

(b)
2

1
+

2 · 5
1 · 5 + · · ·+ 2 · 5 · · · · · (3n− 1)

1 · 5 · · · · · (4n− 3)
.

(c)
∞
∑

n=1

(

1 +
1

n

)−n2

.

(d)
2

3
− 5

8
+

8

13
− 11

18
+ · · ·.

(e)

∞
∑

n=1

3n2 + 4n+ 2√
n5 + 16

.

(f)

∞
∑

n=1

5 + cos(en)

n
.

12



(g)

∞
∑

n=1

ne−2n.

(h)

∞
∑

k=2

k +
√
k

k3 + (−1)k
.

(a) Apply the Integral Test. The function f(n) =
1

n(lnn)4/3
is positive and continuous on the interval

[2,+∞).
Note that

f ′(n) = − 4

3n2(lnn)7/3
− 1

n2(lnn)4/3
.

It follows that f ′(n) < 0 for n ≥ 2. Hence, f decreases on the interval [2,+∞). The hypotheses of the
Integral Test are satisfied.

Compute the integral:

∫ ∞

2

1

n(lnn)4/3
dn = lim

p→∞

∫ p

2

1

n(lnn)4/3
dn =

lim
p→∞

[

−3
1

(lnn)1/3

]p

2

= −3 lim
p→∞

(

1

(ln p)1/3
− 1

(ln 2)1/3

)

=
3

(ln 2)1/3
.

(To do the integral, I substituted u = lnn, so du =
1

n
dn.)

Since the integral converges, the series converges by the Integral Test.

(b) Apply the Ratio Test. The nth term of the series is

an =
2 · 5 · · · · · (3n− 1)

1 · 5 · · · · · (4n− 3)
.

Hence, the (n+ 1)-st term is

an+1 =
2 · 5 · · · · · (3n− 1) · (3(n+ 1)− 1)

1 · 5 · · · · · (4n− 3) · (4(n+ 1)− 3)
.

Hence,

an+1

an
=

2 · 5 · · · · · (3n− 1) · (3(n+ 1)− 1)

1 · 5 · · · · · (4n− 3) · (4(n+ 1)− 3)
· 1 · 5 · · · · · (4n− 3)

2 · 5 · · · · · (3n− 1)
=

3(n+ 1)− 1)

4(n+ 1)− 3)
=

3n+ 2

4n+ 1
.

The limiting ratio is

lim
n→∞

3n+ 2

4n+ 1
=

3

4
.

The limit is less than 1, so the series converges, by the Ratio Test.

(c) Apply the Root Test.

a1/nn =

(

1 +
1

n

)−n

.

The limit is

lim
n→∞

(

1 +
1

n

)−n

= lim
n→∞

{(

1 +
1

n

)n}−1

=

{

lim
n→∞

(

1 +
1

n

)n}−1

= e−1.

Since e−1 =
1

e
< 1, the series converges, by the Root Test.

13



(d) Note that

lim
n→∞

2 + 3n

3 + 5n
=

3

5
.

It follows that limn→∞ an is undefined — the values oscillate, approaching ±3

5
. Since, in particular, the

limit is nonzero, the series diverges, by the Zero Limit Test.

(e) Apply Limit Comparison:

lim
n→∞

3n2 + 4n+ 2√
n5 + 16
1√
n

= lim
n→∞

3n5/2 + 4n3/2 + 2n1/2

√
n5 + 16

= 3.

The limit is finite and positive. The series

∞
∑

n=1

1√
n

diverges, because it’s a p-series with p =
1

2
< 1.

Therefore, the original series diverges by Limit Comparison.

(f)
−1 ≤ cos(en) ≤ 1
4 ≤ 5 + cos(en) ≤ 6
4

n
≤ 5 + cos(en)

n
≤ 6

n
∞
∑

n=1

4

n
diverges, because it’s 4 times the harmonic series. Therefore,

∞
∑

n=1

5 + cos(en)

n
diverges by Direct

Comparison.

(g) The series has positive terms.
f(x) = xe−2x is continuous for x ≥ 1.
Compute the derivative:

f ′(x) = −2xe−2x + e−2x = (1− 2x)e−2x.

e−2x > 0 for all x, and 1 − 2x < 0 for x ≥ 1. Therefore, f ′(x) < 0 for x ≥ 1. Hence, f(x) decreases for
x ≥ 1.

The three conditions for applying the Integral Test are satisfied. Compute the integral:

∫ ∞

1

xe−2x dx = lim
a→∞

∫ a

1

xe−2x dx = lim
a→∞

[

−1

2
xe−2x − 1

4
e−2x

]a

1

=

lim
a→∞

(

−1

2
ae−2a − 1

4
e−2a +

1

2
e−2 +

1

4
e−2

)

= 0− 0 +
3

4
e−2 =

3

4
e−2.

Here’s the work for the integral:
d

dx

∫

dx

+ x e−2x

ց
− 1 −1

2
e−2x

ց
+ 0

1

4
e−2x

∫

xe−2x dx = −1

2
xe−2x − 1

4
e−2x + C.

14



Here’s the work for the two limits. I used L’Hôpital’s Rule to compute the first limit.

lim
a→∞

−1

2
ae−2a = −1

2
lim
a→∞

a

e2a
= −1

2
lim
a→∞

1

2e2a
= 0.

lim
a→∞

1

4
e−2a =

1

4
lim
a→∞

1

e2a
= 0.

Since the integral converges, the series converges by the Integral Test.

(h) This is not an alternating series, even though it contains a (−1)k!

The series looks like
1

k2
for large k; use Limit Comparison. The limiting ratio is

lim
k→∞

k +
√
k

k3 + (−1)k

1

k2

= lim
k→∞

k3 + k5/2

k3 + (−1)k
= 1.

The limit is nonzero and finite.

∞
∑

k=2

1

k2
converges, because it’s a p-series with p = 2 > 1. Therefore,

∞
∑

k=2

k +
√
k

k3 + (−1)k
converges by Limit Comparison.

15. Find the values of x for which the following series converges absolutely.

∞
∑

n=1

(n!)2

(2n)!
(x− 5)n

Apply the Ratio Test:

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=

((n+ 1)!)2

(2(n+ 1))!
|x− 5|n+1

(n!)2

(2n)!
|x− 5|n

=

(

(n+ 1)!

n!

)2
(2n)!

(2n+ 2)!

|x− 5|n+1

|x− 5|n =
(n+ 1)2

(2n+ 1)(2n+ 2)
|x− 5|.

The limiting ratio is

lim
n→∞

(n+ 1)2

(2n+ 1)(2n+ 2)
|x− 5| = 1

4
|x− 5|.

The series converges absolutely for
1

4
|x − 5| < 1, i.e. for 1 < x < 9. The series diverges for x < 1 and

for x > 9.
You’ll probably find it difficult to determine what is happening at the endpoints! However, if you

experiment — compute some terms of the series for x = 9, for instance — you’ll see that the individual
terms are growing larger, so the series at x = 1 and at x = 9 diverge, by the Zero Limit Test.

16. The series
∞
∑

k=1

(−1)k+1 1

k1/3 + 2
converges by the Alternating Series Test. Determine the smallest value

of n for which the partial sum

n
∑

k=1

(−1)k+1 1

k1/3 + 2
approximates the actual sum to within 0.01.
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The error in approximating the exact value of the sum by

n
∑

k=1

(−1)k+1 1

k1/3 + 2
is less than the (n+1)st

term, which is
1

(n+ 1)1/3 + 2
. So I want

1

(n+ 1)1/3 + 2
< 0.01

100 < (n+ 1)1/3 + 2

98 < (n+ 1)1/3

941192 < n+ 1

941191 < n

Take n = 941192.

17. (a) Find the Taylor expansion at c = 1 for e2x.

(b) Find the Taylor expansion at c = 1 for
1

3 + x
. What is the interval of convergence?

(a)

e2x = e2(x−1)+2 = e2e2(x−1) = e2
(

1 + 2(x− 1) +
22(x− 1)2

2!
+

23(x− 1)3

3!
+ · · ·

)

.

(b)
1

3 + x
=

1

4 + (x− 1)
=

1

4
· 1

1 +
x− 1

4

=
1

4
· 1

1−
(

−x− 1

4

) =

1

4

(

1− x− 1

4
+

(

x− 1

4

)2

−
(

x− 1

4

)3

+ · · ·
)

.

The series converges for −1 <
x− 1

4
< 1, i.e. for −3 < x < 5.

18. (a) Use the Binomial Series to write out the first three nonzero terms of the series for
1√

1− t2
=

(1− t2)−1/2.

(b) Find the first three terms of the Taylor series at c = 0 for sin−1 x by integrating the series you got in (a)
from t = 0 to x = x.

(a)

(1− t2)−1/2 = 1 +
1

2
t2 +

3

8
t4 + · · · .

(b)

sin−1 x =

∫ x

0

(1 − t2)−1/2 dt =

∫ x

0

(

1 +
1

2
t2 +

3

8
t4 + · · ·

)

dt = x+
1

6
x3 +

3

40
x5 + · · · .

19. Use the Remainder Term to find the minimum number of terms of the Taylor series at c = 0 for
f(x) = e5x needed to approximate f(x) on the interval 0 ≤ x ≤ 0.3 to within 0.00001 = 10−5.
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First, I’ll find the Remainder Term.

f ′(x) = 5e5x, f ′′(x) = 52e5x, . . . , f (n)(x) = 5ne5x.

Hence, for some z between 0 and x,

Rn(x; 0) =
5n+1e5z

(n+ 1)!
xn+1.

I want |Rn(x; 0)| < 10−5.
Since 0 ≤ x ≤ 0.3, I have

|x|n+1 ≤ 0.3n+1.

Moreover, since z is between 0 and x and 0 ≤ x ≤ 0.3, I also have 0 ≤ z ≤ 0.3. So

0 ≤ z ≤ 0.3

0 ≤ 5z ≤ 1.5

e0 ≤ e5z ≤ e1.5

Therefore,

|Rn(x; 0)| =
5n+1e5z

(n+ 1)!
|x|n+1 ≤ 5n+1e1.5

(n+ 1)!
(0.3)n+1.

Therefore, I want the smallest value of n such that

5n+1e1.5

(n+ 1)!
(0.3)n+1 < 10−5.

This inequality can’t be solved algebraically, due to the factorial in the denominator. So I have to do
this by trial and error.

n
5n+1e1.5

(n+ 1)!
(0.3)n+1

7 .00284 . . .

8 4.74788 . . . · 10−4

9 7.12182 . . . · 10−5

10 9.71157 . . . · 10−6

The smallest value of n that works is n = 10.

20. Determine the interval of convergence of the power series

∞
∑

n=1

(x− 3)n

n · 7n .

lim
n→∞

|x− 3|n+1

(n+ 1) · 7n+1

|x− 3|n
n · 7n

= lim
n→∞

1

7
· n

n+ 1
|x− 3| = 1

7
|x− 3|.

By the Ratio Test, the series converges for
1

7
|x− 3| < 1. Hence, the base interval is : −4 < x < 10.

At x = 10, the series is

∞
∑

n=1

1

n
. It diverges, because it’s harmonic.
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At x = −4, the series is

∞
∑

n=1

(−1)n

n
. It converges, because it’s alternating harmonic.

The interval of convergence is −4 ≤ x < 10.

21. Find the interval of convergence of the power series

∞
∑

n=1

(x− 3)n

n(2n)3
.

Apply the Ratio Test to the absolute value series:

lim
n→∞

|x− 3|n+1

(n+ 1)(2n+1)3

|x− 3|n
n(2n)3

= lim
n→∞

n

n+ 1

(

2n

2n+1

)3 |x− 3|n+1

|x− 3|n = lim
n→∞

n

n+ 1
· 1
8
|x− 3| = 1

8
|x− 3|.

The series converges for
1

8
|x− 3| < 1, i.e. for −5 < x < 11.

At x = 11, the series is
∞
∑

n=1

8n

n(2n)3
=

∞
∑

n=1

1

n
.

It’s harmonic, so it diverges.
At x = −5, the series is

∞
∑

n=1

(−8)n

n(2n)3
=

∞
∑

n=1

(−1)n

n
.

This is the alternating harmonic series, so it converges.
Therefore, the power series converges for −5 ≤ x < 11, and diverges elsewhere.

22. If x = t+ et and y = t+ t3, find
dy

dx
and

d2y

dx2
at t = 1.

dy

dx
=

dy

dt
dx

dt

=
1 + 3t2

1 + et
.

When t = 1,
dy

dx
=

4

1 + e
.

d2y

dx2
=

d

dx

(

dy

dx

)

=

(

dt

dx

)(

d

dt

(

dy

dx

))

=

d

dt

(

dy

dx

)

dx

dt

=

d

dt

1 + 3t2

1 + et

1 + et
=

(1 + et)(6t)− (1 + 3t2)(et)

(1 + et)2

1 + et
=

(1 + et)(6t)− (1 + 3t2)(et)

(1 + et)3
.

When t = 1,
d2y

dx2
=

6 + 2e

(1 + e)3
.

23. Consider the parametric curve

x = t2 + t+ 1, y = t3 − 5t+ 2.
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(a) Find the equation of the tangent line at t = 1.

(b) Find
d2y

dx2
at t = 1.

(a)

dy

dx
=

dy

dt
dx

dt

=
3t2 − 5

2t+ 1
.

When t = 1, x = 3, y = −2, and
dy

dx
= −2

3
. The equation of the tangent line is

y + 2 = −2

3
(x− 3).

(b)

d2y

dx2
=

d

dt

(

dy

dx

)

dx

dt

=

d

dt

(

3t2 − 5

2t+ 1

)

2t+ 1
=

(2t+ 1)(6t)− (3t2 − 5)(2)

(2t+ 1)2

2t+ 1
=

6t2 + 6t+ 10

(2t+ 1)3
.

When t = 1,
d2y

dx2
=

22

27
.

24. Find the length of the loop of the curve

x = t2, y = t− t3

3
.

1 2 3 4

-0.6

-0.4

-0.2

0.2

0.4

0.6

I’ll do the easy part first, which is to find the integrand for the arc length. It is

√

(

dx

dt

)2

+

(

dy

dt

)2

=
√

(2t)2 + (1 − t2)2 =
√

4t2 + (t4 − 2t2 + 1) =
√

1 + 2t2 + t4 =
√

(1 + t2)2 = 1 + t2.

(Note that since (t2 − 1)2 = t4 − 2t2 + 1, you know that t4 + 2t2 + 1 = (t2 + 1)2.)
To find the limits of integration, I have to find two values of t which give the same values of x and y.

The loop is traced out between these limits.

Note that x = t2 is the same for t and −t, because of the square. Note also that y = t

(

1− t2

3

)

, so

y = 0 for t = 0 and t = ±
√
3. Therefore, the values t = ±

√
3 make y = 0, and since they’re negatives of one

another they give the same x-value. In other words, they give the same point on the curve. Thus, the loop
is traced out from t = −

√
3 to t =

√
3.
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The length is

L =

∫

√
3

−
√
3

(1 + t2) dt =

[

t+
1

3
t3
]

√
3

−
√
3

= 4
√
3 ≈ 6.92820.

25. Find the length of the curve y =
1

2
x2 + 2 for 0 ≤ x ≤ 1.

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

dy

dx
= x,

(

dy

dx

)2

= x2,

1 +

(

dy

dx

)2

= 1 + x2,

√

1 +

(

dy

dx

)2

=
√

1 + x2.

The length is

L =

∫ 1

0

√

1 + x2 dx =

[

1

2
x
√

1 + x2 +
1

2
ln |
√

1 + x2 + x|
]1

0

=

√
2

2
+

1

2
ln(

√
2 + 1) ≈ 1.14779.

Here’s the work for the integral:

∫

√

1 + x2 dx =

∫

√

1 + (tan θ)2(sec θ)2 dθ =

∫

√

(sec θ)2(sec θ)2 dθ =

∫

(sec θ)3 dθ =

[

x = tan θ, dx = (sec θ)2 dθ
] x

1

1 + x2

q

1

2
sec θ tan θ +

1

2
ln | sec θ + tan θ|+ C =

1

2
x
√

1 + x2 +
1

2
ln |
√

1 + x2 + x|+ C.

26. Let

x =

√
3

2
t2, y = t− 1

4
t3.

Find the length of the arc of the curve from t = −2 to t = 2.

dx

dt
=

√
3t and

dy

dt
= 1− 3

4
t2.
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Hence,

(

dx

dt

)2

+

(

dy

dt

)2

= 3t2 +

(

1− 3

4
t2
)2

= 3t2 + 1− 3

2
t2 +

9

16
t4 = 1 +

3

2
t2 +

9

16
t4 =

(

1 +
3

4
t2
)2

.

Therefore,
√

(

dx

dt

)2

+

(

dy

dt

)2

= 1 +
3

4
t2.

The length is
∫ 2

−2

(

1 +
3

4
t2
)

dt =

[

t+
1

4
t3
]2

−2

= 8.

27. Find the area of the surface generated by revolving y =
2

3
x3/2 − 1

2
x1/2, 1 ≤ x ≤ 4, about the x-axis.

1
2

3
4

-4

-2

0

2

4

-4

-2

0

2

4

1
2

y′ = x1/2 − 1

4x1/2
, so (y′)2 = x− 1

2
+

1

16x
.

Hence,

1 + (y′)2 = x+
1

2
+

1

16x
.

Notice that this is just (y′)2 with the sign of the middle term changed. But (y′)2 was x1/2 − 1

4x1/2

squared, so 1 + (y′)2 must be x1/2 +
1

4x1/2
squared:

1 + (y′)2 =

(

x1/2 +
1

4x1/2

)2

.

Thus,
√

1 + (y′)2 = x1/2 +
1

4x1/2
.

The area is

S =

∫ 4

1

2π

(

2

3
x3/2 − 1

2
x1/2

)(

x1/2 +
1

4x1/2

)

dx = 2π

∫ 4

1

(

2

3
x2 − 1

3
x− 1

8

)

dx = 2π

[

2x3

9
− x2

6
− x

8

]4

1

=

89π

4
≈ 69.90044.
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28. Find the area of the surface generated by revolving y =
1

3
x3, 0 ≤ x ≤ 2, about the x-axis.

0
0.5

1
1.5

2

-1

0

-1

0

1

0
0.5

1
1.5

-1

0

The derivative is

dy

dx
= x2, so

√

(

dy

dx

)2

+ 1 =
√

x4 + 1.

The curve is being revolved about the x-axis, so the radius of revolution is R = y =
1

3
x3. The area of

the surface is

S =

∫ 2

0

2π

(

1

3
x3

)

√

x4 + 1 dx =
2π

3

∫ 17

1

u1/2 · x3

(

du

4x3

)

=
π

6

∫ 17

1

u1/2 du =
π

6

[

2

3
u3/2

]17

1

=

[

u = x4 + 1, du = 4x3 dx, dx =
du

4x3
; x = 0, u = 1, x = 2, u = 17

]

π

9

(

173/2 − 1
)

≈ 24.11794.a

29. (a) Convert (x− 3)2 + (y + 4)2 = 25 to polar and simplify.

(b) Convert r = 4 cos θ − 6 sin θ to rectangular and describe the graph.

(a)
(x− 3)2 + (y + 4)2 = 25, x2 − 6x+ 9 + y2 + 8y + 16 = 25, x2 + y2 = 6x− 8y,

r2 = 6r cos θ − 8r sin θ, r = 6 cos θ − 8 sin θ.

(b)
r = 4 cos θ − 6 sin θ, r2 = 4r cos θ − 6r sin θ, x2 + y2 = 4x− 6y, x2 − 4x+ y2 + 6y = 0,

x2 − 4x+ 4 + y2 + 6y + 9 = 13, (x − 2)2 + (y + 3)2 = 13.

-1 1 2 3 4 5

-6

-5

-4

-3

-2

-1
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The graph is a circle of radius
√
13 centered at (2,−3).

30. Find the slope of the tangent line to the polar curve r = sin 2θ at θ =
π

6
.

When θ =
π

6
, r = sin

π

3
=

√
3

2
. Since

dr

dθ
= 2 cos 2θ, when θ =

π

6
,
dr

dθ
= 2 cos

π

3
= 1.

The slope of the tangent line is

dy

dx
=

r cos θ + sin θ
dr

dθ

−r sin θ + cos θ
dr

dθ

=

(√
3

2

)(√
3

2

)

+

(

1

2

)

(1)

(

−
√
3

2

)

(

1

2

)

+

(√
3

2

)

(1)

=
5
√
3

3
≈ 2.88675.

31. Find the slope of the tangent line to r = 2 + cos θ at θ =
π

6
.

First,
dr

dθ
= − sin θ. When θ =

π

6
, r = 2 +

√
3

2
and

dr

dθ
= −1

2
.

Therefore,

dy

dx
=

r cos θ + (sin θ)
dr

dθ

−r sin θ + (cos θ)
dr

dθ

=

(

2 +

√
3

2

)(√
3

2

)

+

(

1

2

)(

−1

2

)

−
(

2 +

√
3

2

)

(

1

2

)

+

(√
3

2

)

(

−1

2

)

= −2
√
3 + 1√
3 + 2

≈ −1.19615.

32. Find the values of θ in the interval [0, 2π] for which the polar curve r = cos 2θ − sin 2θ passes through
the origin.

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Set r = 0:
cos 2θ − sin 2θ = 0, cos 2θ = sin 2θ, 1 = tan 2θ.

I’ll solve tanu = 1. Since the argument of the equation above is 2θ, I need solutions in the range
0 ≤ u ≤ 2 · 2π = 4π. By basic trigonometry,

tan
π

4
= 1, tan

5π

4
= 1, tan

9π

4
= 1, tan

13π

4
= 1.

Thus, the solutions are

u =
π

4
, u =

5π

4
, u =

9π

4
, u =

13π

4
.

23



Set u = 2θ and solve for θ:

2θ =
π

4
, 2θ =

5π

4
, 2θ =

9π

4
, 2θ =

13π

4
,

θ =
π

8
, θ =

5π

8
, θ =

9π

8
, θ =

13π

8
.

33. Find the length of the cardioid r = 1 + sin θ.

r2 +

(

dr

dθ

)2

= (1 + sin θ)2 + (cos θ)2 = 1 + 2 sin θ + (sin θ)2 + (cos θ)2 = 2 + 2 sin θ.

By the double angle formula,
(

sin
θ

2

)2

=
1

2
(1 + sin θ)

4

(

sin
θ

2

)2

= 2(1 + sin θ)

4

(

sin
θ

2

)2

= 2 + 2 sin θ

Thus,

r2 +

(

dr

dθ

)2

= 4

(

sin
θ

2

)2

√

r2 +

(

dr

dθ

)2

= 2 sin
θ

2

The length is
∫ 2π

0

2 sin
θ

2
dθ =

[

−4 cos
θ

2

]2π

0

= 8.

34. Find the area of the intersection of the interiors of the circles

x2 + (y − 1)2 = 1 and (x−
√
3)2 + y2 = 3.

Convert the two equations to polar:

x2 + y2 − 2y + 1 = 1, x2 + y2 = 2y, r2 = 2r sin θ, r = 2 sin θ.

(x−
√
3)2 + y2 = 3, x2 − 2

√
3x+ 3 + y2 = 3, x2 + y2 = 2

√
3x, r2 = 2

√
3r cos θ, r = 2

√
3 cos θ.

-1 1 2 3

-1.5

-1

-0.5

0.5

1

1.5
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Set the equations equal to solve for the line of intersection:

2 sin θ = 2
√
3 cos θ, tan θ =

√
3, θ =

π

3
.

The region is “orange-slice”-shaped, with the bottom/right half bounded by r = 2 sin θ from θ = 0 to

θ =
π

3
and the top/left half bounded by r = 2

√
3 cos θ from θ =

π

3
to θ =

π

2
. Hence, the area is

A =

∫ π/3

0

1

2
(2 sin θ)2 dθ +

∫ π/2

π/3

1

2
(2
√
3 cos θ)2 dθ = 2

∫ π/3

0

(sin θ)2 dθ + 6

∫ π/2

π/3

(cos θ)2 dθ =

∫ π/3

0

(1− cos 2θ) dθ + 3

∫ π/2

π/3

(1 + cos 2θ) dθ =

[

θ +
1

2
sin 2θ

]π/3

0

+ 3

[

θ +
1

2
sin 2θ

]π/2

π/3

=

5

6
π −

√
3 ≈ 0.88594.

35. Find the area of the region inside the cardioid r = 1 + cos θ and outside the circle r = 3 cos θ.

0.5 1 1.5 2 2.5 3

-1.5

-1

-0.5

0.5

1

1.5

q=p/3

r=1 + cosq

qr=3 cos

Find the intersection points:

3 cos θ = 1 + cos θ, 2 cos θ = 1, cos θ =
1

2
, θ = ±π

3
.

I’ll find the area of the shaded region and double it to get the total. The shaded area is

(

cardioid area from
π

3
to π

)

−
(

circle area from
π

3
to

π

2

)

.

The cardioid area is

∫ π

π/3

1

2
(1 + cos θ)2 dθ =

1

2

∫ π

π/3

(

1 + 2 cos θ + (cos θ)2
)

dθ =
1

2

∫ π

π/3

(

1 + 2 cos θ +
1

2
(1 + cos 2θ)

)

dθ =

1

2

[

θ + 2 sin θ +
1

2

(

θ +
1

2
sin 2θ

)]π

π/3

=
π

2
− 9

16

√
3.

The circle area is

∫ π/2

π/3

1

2
(3 cos θ)2 dθ =

9

4

∫ π/2

π/3

(1 + cos 2θ) dθ =
9

4

[

θ +
1

2
sin 2θ

]π/2

π/3

=
3π

8
− 9

16

√
3.
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Thus, the shaded area is
(

π

2
− 9

16

√
3

)

−
(

3π

8
− 9

16

√
3

)

=
π

8
.

The total area is 2 · π
8
=

π

4
≈ 0.78540.

36. Let A be the region inside r = sin θ and let B be the region inside r =
√
3 cos θ. Find the area of the

intersection of A and B — that is, the area of the region common to A and B.

q = p/3

r = sin q

r =  3 cos q

Find the intersection point:

sin θ =
√
3 cos θ, tan θ =

√
3, θ =

π

3
.

(The circles also intersect at the origin, but they pass through the origin at different values of θ.)

The shaded area is the sum of the area inside r = sin θ from θ = 0 to θ =
π

3
and the area inside

r =
√
3 cos θ from θ =

π

3
to θ =

π

2
:

A =

∫ π/3

0

1

2
(sin θ)2 dθ +

∫ π/2

π/3

1

2
(
√
3 cos θ)2 dθ =

1

2

∫ π/3

0

1

2
(1− cos 2θ) dθ +

3

2

∫ π/2

π/3

1

2
(1 + cos 2θ) dθ =

1

4

[

θ − 1

2
sin 2θ

]π/3

0

+
3

4

[

θ +
1

2
sin 2θ

]π/2

π/3

=
5

24
π − 1

4

√
3 ≈ 0.22149.

The best thing for being sad is to learn something. - Merlyn, in T. H. White’s The Once and Future King
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