Review Problems for Test 2

These problems are provided to help you study. The presence of a problem on this sheet does not imply that a similar problem will appear on the test. And the absence of a problem from this sheet does not imply that the test will not have a similar problem.

1. Find the area of the region bounded by the graphs of $y=x^{2}-3 x$ and $y=15-x$.
2. Find the area of the region between $y=x^{2}-x$ and $y=x+8$ from $x=0$ to $x=5$.
3. Find the area of the region bounded by $y=x^{2}-2 x-8$ and $y=-x^{2}+4 x+12$.
4. Find the area of the region bounded by $x=\cos y$ and $x=\sin y$, between the first two intersections of the curves for which $y>0$.
5. The region bounded by $y=4 x-x^{2}$ and the x-axis is revolved about the x-axis. Find the volume of the solid that is generated.
6. Consider the region in the $\mathrm{x}-\mathrm{y}$ plane bounded by $y=e^{x}$, the line $y=1$, and the line $x=1$. Find the volume generated by revolving the region:
(a) About the line $y=1$.
(b) About the line $x=2$.
(c) About the line $y=e$.
7. The base of a solid is the region in the $x-y$ plane bounded by the curves $y=x^{2}$ and $y=x+2$. The cross-sections of the solid perpendicular to the $x-y$ plane and the x-axis are isosceles right triangles with one leg in the $x-y$ plane. Find the volume of the solid.
8. The base of a solid is the region in the x - y-plane bounded above by the line $y=1$ and below by the parabola $y=x^{2}$. The cross-sections in planes perpendicular to the y-axis are squares having one edge in the $x-y$-plane. Find the volume of the solid.
9. The region which lies above the x-axis and below the graph of $y=\frac{1}{x^{2}+1},-\infty<x<\infty$, is revolved about the x-axis. Find the volume of the solid which is generated.

Hint:

$$
\int \frac{1}{\left(x^{2}+1\right)^{2}} d x=\frac{1}{2} \frac{x}{x^{2}+1}+\frac{1}{2} \tan ^{-1} x+C
$$

10. A force of 8 pounds is required to extend a spring 2 feet beyond its unstretched length.
(a) Find the spring constant k.
(b) Find the work done in stretching the spring from 2 feet beyond its unstretched length to 3 feet beyond its unstretched length.
11. The base of a rectangular tank is 2 feet long and 3 feet wide; the tank is 6 feet high. Find the work done in pumping all the water out of the top of the tank.
12. Write a formula for the n-th term of the sequence, assuming that the terms continue in the "obvious" way.
(a) $7,11,15,19,23,27, \ldots$
(b) $\frac{2}{8}, \frac{4}{13}, \frac{6}{18}, \frac{8}{23}, \ldots$.
13. A sequence is defined recursively by

$$
a_{n+1}=3 a_{n}+5 \quad \text { for } \quad n \geq 0 \quad \text { and } \quad a_{0}=1
$$

Write down the first 5 terms of the sequence.
14. Determine whether the sequence $a_{n}=\frac{e^{n}}{n+1}$ for $n \geq 1$ eventually increases, decreases, or neither increases nor decreases.
15. Determine whether the sequence $a_{n}=\cos (\pi n)$ for $n \geq 0$ eventually increases, decreases, or neither increases nor decreases.
16. Is the following sequence bounded? Why or why not?

$$
1,1,1,2,1,3 \ldots 1, n, \ldots
$$

17. Determine whether the sequence converges or diverges; if it converges, find the limit.
(a) $\left\{1.0001^{n}\right\}$.
(b) $\left\{\frac{e^{n}+3^{n}}{2^{n}+\pi^{n}}\right\}$.
(c) $\left\{\frac{2 n^{3}-5 n+7}{7 n^{2}-13 n^{3}}\right\}$.
(d) $\left\{\left(\tan ^{-1} n\right)^{2}\right\}$.
(e) $\left\{\frac{\sin n}{n^{2}}\right\}$.
(f) $\left\{\left(\frac{4 n+1}{9 n+17}+e^{-n^{2}}\right)^{n}\right\}$.
18. A sequence is defined recursively by

$$
a_{1}=5, \quad a_{n+1}=\sqrt{6 a_{n}+27} \quad \text { for } \quad n \geq 1
$$

Find $\lim _{n \rightarrow \infty} a_{n}$.
19. If the series converges, find the exact value of its sum; if it diverges, explain why.
(a) $\sum_{n=1}^{\infty}\left(-\frac{1}{5}\right)^{n}$.
(b) $\sum_{n=1}^{\infty}(-1.021)^{n}$.
(c)

$$
\frac{3}{5^{3}}+\frac{3}{5^{4}}+\frac{3}{5^{5}}+\cdots+\frac{3}{5^{n}}+\cdots
$$

(d) $\sum_{n=2}^{\infty}\left(\frac{6^{n}}{7^{n}}+2 \cdot \frac{(-1)^{n}}{4^{n}}\right)$.
(e) $\sum_{n=3}^{\infty}\left(\frac{5^{n}}{4^{n}}+\frac{4^{n}}{5^{n}}\right)$.
(f) $\sum_{n=3}^{\infty} \ln \frac{n}{n+1}$.
20. (a) Find the partial fractions decomposition of $\frac{2}{(2 k+1)(2 k+3)}$.
(b) Use (a) to find the sum of the series

$$
\sum_{k=1}^{\infty} \frac{2}{(2 k+1)(2 k+3)}
$$

21. Find series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ such that both series diverge, and:
(a) $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ diverges.
(b) $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ converges.
22. Calvin Butterball notes that $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$, and concludes that the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges by the Zero Limit Test. What's wrong with his reasoning?
23. If the series $\sum_{k=17}^{\infty} a_{k}$, converges, does the series $\sum_{k=1}^{\infty} a_{k}$ converge?
24. Does the series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{2 k+1}{4 k+3}$ converge?
25. Determine whether the series converges or diverges: $\sum_{k=1}^{\infty} \frac{3^{k}+2^{k}}{6^{k}}$.
26. Determine whether the series converges or diverges: $\sum_{k=3}^{\infty} \frac{k^{2}-3 k+2}{k^{4}}$.
27. Determine whether the series converges or diverges: $\sum_{k=1}^{\infty} \sqrt{\tan ^{-1} k}$.
28. Determine whether the series converges or diverges: $\sum_{k=1}^{\infty} \frac{1}{k^{1.05}}$.
29. Determine whether the series converges or diverges: $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{2}}$.
30. Determine whether the series converges or diverges: $\sum_{k=1}^{\infty} \frac{2}{3 k+5}$.
31. Determine whether the series converges or diverges: $\sum_{k=1}^{\infty} \frac{e^{x}}{e^{2 x}+1}$.

Solutions to the Review Problems for Test 2

1. Find the area of the region bounded by the graphs of $y=x^{2}-3 x$ and $y=15-x$.

The curves intersect at $x=-3$ and at $x=5$:

$$
\begin{aligned}
x^{2}-3 x & =15-x \\
x^{2}-2 x-15 & =0 \\
(x-5)(x+3) & =0 \\
x=5 & \text { or } \quad x=-3
\end{aligned}
$$

$y=15-x$ is the top curve and $y=x^{2}-3 x$ is the bottom curve. Hence, the area is

$$
\int_{-3}^{5}\left((15-x)-\left(x^{2}-3 x\right)\right) d x=\int_{-3}^{5}\left(15+2 x-x^{2}\right) d x=\left[15 x+x^{2}-\frac{1}{3} x^{3}\right]_{-3}^{5}=\frac{256}{3}
$$

2. Find the area of the region between $y=x^{2}-x$ and $y=x+8$ from $x=0$ to $x=5$.

The curves intersect at $x=4$ and $x=-2$:

$$
\begin{aligned}
x^{2}-x & =x+8 \\
x^{2}-2 x-8 & =0 \\
(x-4)(x+2) & =0 \\
x=4 & \text { or } \quad x=-2
\end{aligned}
$$

Since the curves cross between 0 and 5 , I will need two integrals. On the left-hand piece, the top curve is $y=x+8$ and the bottom curve is $y=x^{2}-x$. On the right-hand piece, the top curve is $y=x^{2}-x$ and the bottom curve is $y=x+8$. The area is

$$
\begin{gathered}
\int_{0}^{4}\left((x+8)-\left(x^{2}-x\right)\right) d x+\int_{4}^{5}\left(\left(x^{2}-x\right)-(x+8)\right) d x=\int_{0}^{4}\left(-x^{2}+2 x+8\right) d x+\int_{4}^{5}\left(x^{2}-2 x-8\right) d x= \\
\\
{\left[-\frac{1}{3} x^{3}+x^{2}+8 x\right]_{0}^{4}+\left[\frac{1}{3} x^{3}-x^{2}-8 x\right]_{4}^{5}=30}
\end{gathered}
$$

3. Find the area of the region bounded by $y=x^{2}-2 x-8$ and $y=-x^{2}+4 x+12$.

$$
\begin{aligned}
& 20 \\
& x^{2}-2 x-8=-x^{2}+4 x+12 \\
& 2 x^{2}-6 x-20=0 \\
& x^{2}-3 x-10=0 \\
& (x-5)(x+2)=0
\end{aligned}
$$

The curves intersect at $x=5$ and $x=-2$. The top curve is $y=-x^{2}+4 x+12$ and the bottom curve is $y=x^{2}-2 x-8$. The area is

$$
\begin{aligned}
\int_{-2}^{5}\left(\left(-x^{2}+4 x+12\right)-\left(x^{2}-2 x-8\right)\right) d x & =\int_{-2}^{5}\left(-2 x^{2}+6 x+20\right) d x=\left[-\frac{2}{3} x^{3}+3 x^{2}+20 x\right]_{-2}^{5}= \\
\frac{343}{3} & =114.33333 \ldots
\end{aligned}
$$

4. Find the area of the region bounded by $x=\cos y$ and $x=\sin y$, between the first two intersections of the curves for which $y>0$.

Solve the curve equations simultaneously:

$$
\begin{aligned}
\sin y & =\cos y \\
\tan y & =1 \\
y & =\frac{\pi}{4}, \frac{5 \pi}{4}
\end{aligned}
$$

Break the region up into horizontal rectangles. The length of a typical rectangle is $\sin y-\cos y$. The area is

$$
\int_{\pi / 4}^{5 \pi / 4}(\sin y-\cos y) d y=[-\cos y-\sin y]_{\pi / 4}^{5 \pi / 4}=2 \sqrt{2}=2.82842 \ldots
$$

5. The region bounded by $y=4 x-x^{2}$ and the x-axis is revolved about the x-axis. Find the volume of the solid that is generated.

The region extends from $x=0$ to $x=4$. I'll use circular slices. The radius of a typical slice is $r=y=4 x-x^{2}$. The area of a typical slice is

$$
\pi r^{2}=\pi\left(4 x-x^{2}\right)^{2}=\pi\left(16 x^{2}-8 x^{3}+x^{4}\right)
$$

The volume generated is

$$
V=\int_{0}^{4} \pi\left(16 x^{2}-8 x^{3}+x^{4}\right) d x=\pi\left[\frac{16}{3} x^{3}-2 x^{4}+\frac{1}{5} x^{5}\right]_{0}^{4}=\frac{512 \pi}{15}=107.23302 \ldots
$$

6. Consider the region in the $\mathrm{x}-\mathrm{y}$ plane bounded by $y=e^{x}$, the line $y=1$, and the line $x=1$. Find the volume generated by revolving the region:
(a) About the line $y=1$.
(b) About the line $x=2$.
(c) About the line $y=e$.
(a)

Since the solid has no "holes" or "gaps" in its interior, I can use circular slices. The radius of a slice is $r=e^{x}-1$, so the volume is
$V=\int_{0}^{1} \pi\left(e^{x}-1\right)^{2} d x=\pi \int_{0}^{1}\left(e^{2 x}-2 e^{x}+1\right) d x=\pi\left[\frac{1}{2} e^{2 x}-2 e^{x}+x\right]_{0}^{1}=\frac{\pi e^{2}}{2}-2 \pi e+\frac{5 \pi}{2}=2.38121 \ldots$
(b)

I'll use cylindrical shells. The height is $h=e^{x}-1$, and the radius is $r=2-x$. The volume is

$$
\begin{gathered}
V=\int_{0}^{1} 2 \pi\left(e^{x}-1\right)(2-x) d x=2 \pi \int_{0}^{1}\left(2 e^{x}-2-x e^{x}+x\right) d x=2 \pi\left[2 e^{x}-2 x-x e^{x}+e^{x}+\frac{1}{2} x^{2}\right]_{0}^{1}= \\
4 \pi e-9 \pi=5.88460 \ldots
\end{gathered}
$$

Here's the work for part of the integral:

$$
\begin{array}{rccc}
& \frac{d}{d x} & & \\
+ & x & & e^{x} \\
- & 1 & & e^{x} \\
+ & 0 & \searrow & e^{x} \\
& & & \\
\int x e^{x} d x= & x e^{x}-e^{x}+C .
\end{array}
$$

(c)

I'll use cylindrical shells. Since $y=e^{x}$ gives $x=\ln y$, the height is $h=1-x=1-\ln y$, and the radius is $r=e-y$. The vertical limits on the region are $y=1$ and $y=e$. The volume is

$$
\begin{gathered}
V=\int_{1}^{e} 2 \pi(1-\ln y)(e-y) d y=2 \pi \int_{1}^{e}(e-e \ln y-y+y \ln y) d y= \\
2 \pi\left[e y-e y \ln y+e y-\frac{1}{2} y^{2}+\frac{1}{2} y^{2} \ln y-\frac{1}{4} y^{2}\right]_{1}^{e}=\frac{3 \pi e^{2}}{2}-4 \pi e+\frac{3 \pi}{2}=5.37355 \ldots
\end{gathered}
$$

Here is how I did two of the pieces of the integral:

$$
\begin{aligned}
& \frac{d}{d y} \quad \int d y \\
& +\ln y \quad 1 \\
& -\frac{1}{y} \xrightarrow{\searrow} y \\
& \int \ln y d y=y \ln y-\int d y=y \ln y-y+C . \\
& \frac{d}{d y} \quad \int d y \\
& +\ln y \text { } \quad y \\
& -\frac{1}{y} \xrightarrow{\searrow} \frac{1}{2} y^{2} \\
& \int y \ln y d y=\frac{1}{2} y^{2} \ln y-\frac{1}{2} \int y d y=\frac{1}{2} y^{2} \ln y-\frac{1}{4} y^{2}+C .
\end{aligned}
$$

7. The base of a solid is the region in the $x-y$ plane bounded by the curves $y=x^{2}$ and $y=x+2$. The cross-sections of the solid perpendicular to the $x-y$ plane and the x-axis are isosceles right triangles with one leg in the $x-y$ plane. Find the volume of the solid.

The first picture shows the base of the solid. The second picture shows three typical triangular slices standing on the base.

$$
\begin{aligned}
& x^{2}=x+2 \\
& x^{2}-x-2=0 \\
&(x-2)(x+1)=0 \\
& x=2 \text { or } \quad x=-1
\end{aligned}
$$

Therefore, the base of the solid extends from $x=-1$ to $x=2$.
The leg of a triangular slice has length $x+2-x^{2}$. Hence, the area of a triangular slice is $\frac{1}{2}\left(x+2-x^{2}\right)^{2}$. The volume is

$$
\begin{gathered}
V=\int_{-1}^{2} \frac{1}{2}\left(x+2-x^{2}\right)^{2} d x=\frac{1}{2} \int_{-1}^{2}\left(x^{4}-2 x^{3}-3 x^{2}+4 x+4\right) d x= \\
\frac{1}{2}\left[\frac{1}{5} x^{5}-\frac{1}{2} x^{4}-x^{3}+2 x^{2}+4 x\right]_{-1}^{2}=\frac{81}{20}=4.05 .
\end{gathered}
$$

8. The base of a solid is the region in the x - y-plane bounded above by the line $y=1$ and below by the parabola $y=x^{2}$. The cross-sections in planes perpendicular to the y-axis are squares having one edge in the $x-y$-plane. Find the volume of the solid.

The first picture shows the base of the solid. The second picture shows three typical square slices standing on the base.

The thickness of a typical slice is in the y-direction, so I'll use y as my variable. Solving $y=x^{2}$ for x gives $x= \pm \sqrt{y}$.

The side of a square slice extends from $x=-\sqrt{y}$ to $x=\sqrt{y}$, so its length is $\sqrt{y}-(-\sqrt{y})=2 \sqrt{y}$. The area of a typical square slice is $(2 \sqrt{y})^{2}=4 y$. Hence, the volume is

$$
\int_{0}^{1} 4 y d y=\left[2 y^{2}\right]_{0}^{1}=2
$$

9. The region which lies above the x-axis and below the graph of $y=\frac{1}{x^{2}+1},-\infty<x<\infty$, is revolved about the x-axis. Find the volume of the solid which is generated.

Chop the solid up into circular slices perpendicular to the x-axis. The thickness of a typical slice is $d x$. The radius of a slice is $r=\frac{1}{x^{2}+1}$. The volume is

$$
V=\int_{-\infty}^{\infty} \pi \cdot \frac{1}{\left(x^{2}+1\right)^{2}} d x=\int_{0}^{\infty} \pi \cdot \frac{1}{\left(x^{2}+1\right)^{2}} d x+\int_{-\infty}^{0} \pi \cdot \frac{1}{\left(x^{2}+1\right)^{2}} d x
$$

Compute the first integral:

$$
\begin{gathered}
\int_{0}^{\infty} \pi \cdot \frac{1}{\left(x^{2}+1\right)^{2}} d x=\lim _{a \rightarrow+\infty} \int_{0}^{a} \pi \cdot \frac{1}{\left(x^{2}+1\right)^{2}} d x=\pi \cdot \lim _{a \rightarrow+\infty}\left[\frac{1}{2} \frac{x}{x^{2}+1}+\frac{1}{2} \tan ^{-1} x\right]_{0}^{a}= \\
\frac{\pi}{2} \lim _{a \rightarrow+\infty}\left(\frac{a}{a^{2}+1}+\tan ^{-1} a\right)=\frac{\pi^{2}}{4}
\end{gathered}
$$

(I used the fact that $\lim _{a \rightarrow+\infty} \tan ^{-1} a=\frac{\pi}{2}$.)
Similarly,

$$
\int_{-\infty}^{0} \pi \cdot \frac{1}{\left(x^{2}+1\right)^{2}} d x=\frac{\pi^{2}}{4}
$$

The volume is $\frac{\pi^{2}}{4}+\frac{\pi^{2}}{4}=\frac{\pi^{2}}{2}$.
10. A force of 8 pounds is required to extend a spring 2 feet beyond its unstretched length.
(a) Find the spring constant k.
(b) Find the work done in stretching the spring from 2 feet beyond its unstretched length to 3 feet beyond its unstretched length.
(a)

$$
\begin{aligned}
F & =-k x \\
8 & =-2 k \\
k & =-4
\end{aligned}
$$

(b) Since $k=-4$, I have $F=4 x$. Hence, the work done is

$$
\int_{2}^{3} 4 x d x=\left[2 x^{2}\right]_{2}^{3}=10 \text { foot-pounds. }
$$

11. The base of a rectangular tank is 2 feet long and 3 feet wide; the tank is 6 feet high. Find the work done in pumping all the water out of the top of the tank.

Divide the water up into rectangular slabs parallel to the base. Let y denote the height of a slab above the base.

The volume of a typical slab is $(2)(3) d y=6 d y$, so the weight is $62.4 \cdot 6 d y$. (The density of water is 62.4 pounds per cubic foot.)

A slab at height y must be lifted a distance of $6-y$ to get to the top of the tank. Therefore, the work done in lifting the slab is $62.4 \cdot 6(6-y) d y$. The total work is

$$
\int_{0}^{6} 62.4 \cdot 6(6-y) d y=62.4 \cdot 6\left[6 y-\frac{1}{2} y^{2}\right]_{0}^{6}=6739.2 \text { foot-pounds. }
$$

12. Write a formula for the n-th term of the sequence, assuming that the terms continue in the "obvious" way.
(a) $7,11,15,19,23,27, \ldots$..
(b) $\frac{2}{8}, \frac{4}{13}, \frac{6}{18}, \frac{8}{23}, \ldots$.
(a)

$$
a_{n}=7+4 n \quad \text { for } \quad n=0,1,2, \ldots
$$

(b)

$$
a_{n}=\frac{2 n}{3+5 n} \quad \text { for } \quad n=1,2,3, \ldots
$$

13. A sequence is defined recursively by

$$
a_{n+1}=3 a_{n}+5 \quad \text { for } \quad n \geq 0 \quad \text { and } \quad a_{0}=1
$$

Write down the first 5 terms of the sequence.

$$
a_{0}=1, \quad a_{1}=8, \quad a_{2}=29, \quad a_{3}=92, \quad a_{4}=281
$$

14. Determine whether the sequence $a_{n}=\frac{e^{n}}{n+1}$ for $n \geq 1$ eventually increases, decreases, or neither increases nor decreases.

Let $f(x)=\frac{e^{x}}{x+1}$. Then

$$
f^{\prime}(x)=\frac{(x+1) e^{x}-e^{x}}{(x+1)^{2}}=\frac{x e^{x}}{(x+1)^{2}}>0 \quad \text { for } \quad x \geq 1
$$

Hence, the sequence increases. $\quad \square$
15. Determine whether the sequence $a_{n}=\cos (\pi n)$ for $n \geq 0$ eventually increases, decreases, or neither increases nor decreases.

The terms are

$$
1,-1,1,-1, \ldots
$$

In fact, $\cos (\pi n)=(-1)^{n}$. Hence, the sequence neither increases nor decreases.
16. Is the following sequence bounded? Why or why not?

$$
1,1,1,2,1,3 \ldots 1, n, \ldots
$$

The even-numbered terms have the form n for $n \geq 1$, and $\lim _{n \rightarrow \infty} n=\infty$. Hence, the sequence is not bounded. \quad ■
17. Determine whether the sequence converges or diverges; if it converges, find the limit.
(a) $\left\{1.0001^{n}\right\}$
(b) $\left\{\frac{e^{n}+3^{n}}{2^{n}+\pi^{n}}\right\}$
(c) $\left\{\frac{2 n^{3}-5 n+7}{7 n^{2}-13 n^{3}}\right\}$
(d) $\left\{\left(\tan ^{-1} n\right)^{2}\right\}$
(e) $\left\{\frac{\sin n}{n^{2}}\right\}$.
(f) $\left\{\left(\frac{4 n+1}{9 n+17}+e^{-n^{2}}\right)^{n}\right\}$.
(a) Since $\left\{1.0001^{n}\right\}$ is a geometric sequence with ratio $r=1.0001>1$,

$$
\lim _{n \rightarrow \infty} 1.0001^{n}=+\infty
$$

(b) Divide the top and bottom by π^{n} (since π^{n} is the biggest exponential in the fraction):

$$
\lim _{n \rightarrow \infty} \frac{e^{n}+3^{n}}{2^{n}+\pi^{n}}=\lim _{n \rightarrow \infty} \frac{\frac{e^{n}}{p i^{n}}+\frac{3^{n}}{\pi^{n}}}{\frac{2^{n}}{\pi^{n}}+1}=\frac{0+0}{0+1}=0 .
$$

I computed the limit using the fact that the following are geometric sequences:

$$
\frac{e^{n}}{p i^{n}}=\left(\frac{e}{\pi}\right)^{n}, \quad \frac{3^{n}}{\pi^{n}}=\left(\frac{3}{\pi}\right)^{n}, \quad \text { and } \quad \frac{2^{n}}{\pi^{n}}=\left(\frac{2}{\pi}\right)^{n}
$$

Their ratios are all less than 1 , so they go to 0 as $n \rightarrow \infty$.
(c)

$$
\lim _{n \rightarrow \infty} \frac{2 n^{3}-5 n+7}{7 n^{2}-13 n^{3}}=-\frac{2}{13} .
$$

I did this by considering the highest powers on the top and bottom; they're both x^{3}, so I just looked at their coefficients. You could also do this by using L'Hôpital's rule, or by dividing the top and the bottom by x^{3} 。
(d)

$$
\lim _{n \rightarrow \infty}\left(\tan ^{-1} n\right)^{2}=\left(\lim _{n \rightarrow \infty} \tan ^{-1} n\right)^{2}=\left(\frac{\pi}{2}\right)^{2}=\frac{\pi^{2}}{4}
$$

(e) Note that $\lim _{n \rightarrow \infty} \sin n$ is undefined, so I can't take the limit of the terms directly. Instead, I'll use the Squeezing Theorem. I have

$$
\begin{aligned}
-1 & \leq \sin n \\
-\frac{1}{n^{2}} & \leq \frac{\sin n}{n^{2}} \leq \frac{1}{n^{2}}
\end{aligned}
$$

Also,

$$
\lim _{n \rightarrow \infty}-\frac{1}{n^{2}}=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0
$$

By the Squeezing Theorem, $\lim _{n \rightarrow \infty} \frac{\sin n}{n^{2}}=0$.
(f) Note that

$$
\lim _{n \rightarrow \infty}\left(\frac{4 n+1}{9 n+17}+e^{-n^{2}}\right)=\frac{4}{9}+0=\frac{4}{9} .
$$

Since $\lim _{n \rightarrow \infty}\left(\frac{4}{9}\right)^{n}=0$, it follows that

$$
\lim _{n \rightarrow \infty}\left(\frac{4 n+1}{9 n+17}+e^{-n^{2}}\right)^{n}=0
$$

18. A sequence is defined recursively by

$$
a_{1}=5, \quad a_{n+1}=\sqrt{6 a_{n}+27} \text { for } n \geq 1 .
$$

Find $\lim _{n \rightarrow \infty} a_{n}$.
Taking the limit on both sides of the recursion equation, I get

$$
\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \sqrt{6 a_{n}+27}=\sqrt{6 \lim _{n \rightarrow \infty} a_{n}+27} .
$$

I'm allowed to move the limit inside the square root by a standard rule for limits.
Now $\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} a_{n}$ because both limits represent what the sequence $\left\{a_{n}\right\}$ is approaching. So let

$$
L=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} a_{n}
$$

Then

$$
\begin{aligned}
L & =\sqrt{6 L+27} \\
L^{2} & =6 L+27 \\
L^{2}-6 L-27 & =0 \\
(L-9)(L+3) & =0 \\
L=9 & \text { or } \quad L=-3
\end{aligned}
$$

Since the sequence consists of positive numbers, it can't have a negative limit. This rules out -3 . Therefore,

$$
\lim _{n \rightarrow \infty} a_{n}=9
$$

19. If the series converges, find the exact value of its sum; if it diverges, explain why.
(a) $\sum_{n=1}^{\infty}\left(-\frac{1}{5}\right)^{n}$.
(b) $\sum_{n=1}^{\infty}(-1.021)^{n}$.
(c)

$$
\frac{3}{5^{3}}+\frac{3}{5^{4}}+\frac{3}{5^{5}}+\cdots+\frac{3}{5^{n}}+\cdots
$$

(d) $\sum_{n=2}^{\infty}\left(\frac{6^{n}}{7^{n}}+2 \cdot \frac{(-1)^{n}}{4^{n}}\right)$.
(e) $\sum_{n=3}^{\infty}\left(\frac{5^{n}}{4^{n}}+\frac{4^{n}}{5^{n}}\right)$.
(f) $\sum_{n=3}^{\infty} \ln \frac{n}{n+1}$.
(a) The series converges, and

$$
\sum_{n=1}^{\infty}\left(-\frac{1}{5}\right)^{n}=\frac{-\frac{1}{5}}{1-\left(-\frac{1}{5}\right)}=-\frac{1}{6}
$$

(b) Since the ratio -1.021 is not in the interval $(-1,1]$, the series diverges. In fact, it diverges by oscillation, as alternate partial sums approach $+\infty$ and $-\infty$.
(c) The series converges, and

$$
\frac{3}{5^{3}}+\frac{3}{5^{4}}+\frac{3}{5^{5}}+\cdots+\frac{3}{5^{n}}+\cdots=\frac{\frac{3}{5^{3}}}{1-\frac{1}{5}}=\frac{3}{100}
$$

(d) The series is the sum of two convergent geometric series, so it converges. First,

$$
\sum_{n=2}^{\infty} \frac{6^{n}}{7^{n}}=\frac{\frac{6^{2}}{7^{2}}}{1-\frac{6}{7}}=\frac{36}{7}
$$

Next,

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{4^{n}}=\frac{\frac{1}{4^{2}}}{1-\left(-\frac{1}{4}\right)}=\frac{1}{20} .
$$

Hence,

$$
\sum_{n=2}^{\infty}\left(\frac{6^{n}}{7^{n}}+2 \cdot \frac{(-1)^{n}}{4^{n}}\right)=\frac{36}{7}+2 \cdot \frac{1}{20}=\frac{367}{70}
$$

(e) The series $\sum_{n=3}^{\infty} \frac{4^{n}}{5^{n}}$ is a convergent geometric series, but $\sum_{n=3}^{\infty} \frac{5^{n}}{4^{n}}$ is a divergent geometric series, since the ratio $\frac{5}{4}$ is greater than 1. Hence, the given series diverges - in fact, it diverges to $+\infty$.
(f) Note that

$$
\sum_{n=3}^{\infty} \ln \frac{n}{n+1}=\sum_{n=3}^{\infty}(\ln n-\ln (n+1)) .
$$

Writing out the first few terms, you can see that the series converges by telescoping:

$$
\sum_{n=3}^{\infty}(\ln n-\ln (n+1))=(\ln 3-\ln 4)+(\ln 4-\ln 5)+(\ln 5-\ln 6)+\cdots=\ln 3 . \quad \square
$$

20. (a) Find the partial fractions decomposition of $\frac{2}{(2 k+1)(2 k+3)}$.
(b) Use (a) to find the sum of the series

$$
\sum_{k=1}^{\infty} \frac{2}{(2 k+1)(2 k+3)}
$$

(a)

$$
\begin{aligned}
\frac{2}{(2 k+1)(2 k+3)} & =\frac{A}{2 k+1}+\frac{B}{2 k+3} \\
2 & =A(2 k+3)+B(2 k+1)
\end{aligned}
$$

Set $x=-\frac{1}{2}:$ I get $2=2 A$, so $A=1$.

Set $x=-\frac{3}{2}$: I get $2=-2 B$, so $B=-1$.
Therefore,

$$
\frac{2}{(2 k+1)(2 k+3)}=\frac{1}{2 k+1}-\frac{1}{2 k+3} .
$$

(b)

$$
\sum_{k=1}^{\infty} \frac{2}{(2 k+1)(2 k+3)}=\sum_{k=1}^{\infty}\left(\frac{1}{2 k+1}-\frac{1}{2 k+3}\right)=\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{9}\right)+\ldots .
$$

The second fraction in each pair cancels with the first fraction in the next pair. The only one that isn't cancelled is the very first one: $\frac{1}{3}$. Therefore,

$$
\sum_{k=1}^{\infty} \frac{2}{(2 k+1)(2 k+3)}=\frac{1}{3}
$$

21. Find series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ such that both series diverge, and:
(a) $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ diverges.
(b) $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ converges.
(a) Let $a_{n}=\frac{1}{n}$ and $b_{n}=\frac{1}{n}$. Then $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ and $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ both diverge, because they're harmonic.

And $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} \frac{2}{n}$ diverges as well, since it's twice the harmonic series.
(b) Let $a_{n}=\frac{1}{n}$ and $b_{n}=-\frac{1}{n}$. Then $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges because it's the harmonic series, and $\sum_{n=1}^{\infty} b_{n}=\sum_{n=1}^{\infty}-\frac{1}{n}$ diverges because it's the negative of the harmonic series.

However, $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} 0$ converges, and its sum is 0.
This problem shows that the term-by-term sum of two divergent series can either converge or diverge.
22. Calvin Butterball notes that $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$, and concludes that the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges by the Zero Limit Test. What's wrong with his reasoning?

The Zero Limit Test says that if the limit of the terms is not 0 , then the series diverges. It does not say that if the limit of the terms is 0 , then the series converges. (The second statement is called the converse of the first; the converse of a statement is not the same as, or equivalent to, the statement.)

In fact, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges, because it's a p-series with $p=\frac{1}{2}<1$.
23. If the series $\sum_{k=17}^{\infty} a_{k}$, converges, does the series $\sum_{k=1}^{\infty} a_{k}$ converge?

If the series $\sum_{k=17}^{\infty} a_{k}$ converges, then the series $\sum_{k=1}^{\infty} a_{k}$ converges. They only differ in the first 16 terms, and a finite number of terms cannot affect the convergence or divergence of an infinite series. \quad u
24. Does the series $\sum_{k=1}^{\infty}(-1)^{k+1} \frac{2 k+1}{4 k+3}$ converge?

The series alternates, but

$$
\lim _{k \rightarrow \infty} \frac{2 k+1}{4 k+3}=\frac{1}{2} .
$$

The $(-1)^{k+1}$ causes the terms to oscillate in sign, so

$$
\lim _{k \rightarrow \infty}(-1)^{k+1} \frac{2 k+1}{4 k+3} \text { is undefined. }
$$

The series diverges by the Zero Limit Test. $\quad \square$
25. Determine whether the series converges or diverges: $\sum_{k=1}^{\infty} \frac{3^{k}+2^{k}}{6^{k}}$.

The series is the sum of two convergent geometric series; in fact, its sum is

$$
\sum_{k=1}^{\infty} \frac{3^{k}+2^{k}}{6^{k}}=\sum_{k=1}^{\infty} \frac{3^{k}}{6^{k}}+\sum_{k=1}^{\infty} \frac{2^{k}}{6^{k}}=\sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k}+\sum_{k=1}^{\infty}\left(\frac{1}{3}\right)^{k}=\frac{\frac{1}{2}}{1-\frac{1}{2}}+\frac{\frac{1}{3}}{1-\frac{1}{3}}=1+\frac{1}{2}=\frac{3}{2}
$$

26. Determine whether the series converges or diverges: $\sum_{k=3}^{\infty} \frac{k^{2}-3 k+2}{k^{4}}$.

$$
\sum_{k=3}^{\infty} \frac{k^{2}-3 k+2}{k^{4}}=\sum_{k=3}^{\infty} \frac{1}{k^{2}}-3 \sum_{k=3}^{\infty} \frac{1}{k^{3}}+2 \sum_{k=3}^{\infty} \frac{1}{k^{4}}
$$

The series on the right are convergent p-series. Hence, the original series converges.
27. Determine whether the series converges or diverges: $\sum_{k=1}^{\infty} \sqrt{\tan ^{-1} k}$.

Note that

$$
\lim _{k \rightarrow \infty} \sqrt{\tan ^{-1} k}=\sqrt{\frac{\pi}{2}} \neq 0
$$

Hence, the series diverges by the Zero Limit Test.
28. Determine whether the series converges or diverges: $\sum_{k=1}^{\infty} \frac{1}{k^{1.05}}$.

Since $1.05>1$, the series is a convergent p-series.
29. Determine whether the series converges or diverges: $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{2}}$.

Let $f(x)=\frac{1}{x(\ln x)^{2}}$. It is positive and continuous for $x \geq 2$. The derivative is

$$
f^{\prime}(x)=\frac{-2}{x^{2}(\ln x)^{3}}-\frac{1}{x^{2}(\ln x)^{2}}
$$

$f^{\prime}(x)<0$ for $x \geq 2$, so f decreases for $x \geq 2$. The hypotheses of the Integral Test are satisfied. Compute the integral:

$$
\int_{2}^{\infty} \frac{1}{x(\ln x)^{2}} d x=\lim _{p \rightarrow \infty}\left[-\frac{1}{\ln x}\right]_{2}^{p}=\lim _{p \rightarrow \infty}\left(-\frac{1}{\ln p}+\frac{1}{\ln 2}\right)=\frac{1}{\ln 2}
$$

Since the integral converges, the series converges by the Integral Test.
30. Determine whether the series converges or diverges: $\sum_{k=1}^{\infty} \frac{2}{3 k+5}$.

Let $f(x)=\frac{2}{3 x+5}$. Then f is positive and continuous for $x \geq 1$. The derivative is

$$
f^{\prime}(x)=\frac{-6}{(3 x+5)^{2}}
$$

$f^{\prime}(x)<0$ for $x \geq 1$, so f decreases for $x \geq 1$. The hypotheses of the Integral Test are satisfied. Compute the integral:

$$
\int_{1}^{\infty} \frac{2}{3 x+5} d x=\lim _{p \rightarrow \infty}\left[\frac{2}{3} \ln |3 x+5|\right]_{1}^{p}=\frac{2}{3} \lim _{p \rightarrow \infty}(\ln |3 p+5|-\ln 8)=+\infty
$$

The limit diverges, so the integral diverges. Therefore, the series diverges, by the Integral Test.
31. Determine whether the series converges or diverges: $\sum_{k=1}^{\infty} \frac{e^{x}}{e^{2 x}+1}$.

The terms are positive, and $f(x)=\frac{e^{x}}{e^{2 x}+1}$ is continuous for all x.

$$
f^{\prime}(x)=\frac{\left(e^{2 x}+1\right)\left(e^{x}\right)-\left(e^{x}\right)\left(2 e^{2 x}\right)}{\left(e^{2 x}+1\right)^{2}}=\frac{e^{x}-e^{3 x}}{\left(e^{2 x}+1\right)^{2}}=\frac{e^{x}\left(1-e^{2 x}\right)}{\left(e^{2 x}+1\right)^{2}}<0 \quad \text { for } \quad x \geq 1
$$

Hence, the terms decrease.

$$
\int_{1}^{\infty} \frac{e^{x}}{e^{2 x}+1} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{e^{x}}{e^{2 x}+1} d x=\lim _{b \rightarrow \infty} \int_{e}^{e^{b}} \frac{1}{u^{2}+1} d u=
$$

$$
\begin{gathered}
{\left[u=e^{x}, \quad d u=e^{x} d x, \quad d x=\frac{d u}{e^{x}} ; \quad x=1, \quad u=e ; \quad x=b, \quad u=e^{b}\right]} \\
\lim _{b \rightarrow \infty}\left[\tan ^{-1} u\right]_{e}^{e^{b}}=\lim _{b \rightarrow \infty}\left(\tan ^{-1} e^{b}-\tan ^{-1} e\right)=\frac{\pi}{2}-\tan ^{-1} e .
\end{gathered}
$$

The integral converges, so the series converges by the Integral Test. $\quad \square$

He who has overcome his fears will truly be free. - Aristotle

