
Math 211
10-2-2020

Review Problems for Test 3

These problems are provided to help you study. The presence of a problem on this handout does not
imply that there will be a similar problem on the test. And the absence of a topic does not imply that it
won’t appear on the test.

1. In each case, determine whether the series converges or diverges. You should cite the test you’re using by
name (to avoid ambiguity); be sure you verify that the hypotheses of the test apply. Any limits should be
computed exactly and completely.

(a)
∞
∑

k=2

2

k2 − 1
.

(b)
∞
∑

k=1

(

k + 1

k2 + 2

)2

.

(c)
∞
∑

k=1

(

sin
1

k

)2

.

(d)
∞
∑

k=1

2k

3k + 2
.

(e)

∞
∑

i=1

3i

i3
.

(f)

∞
∑

k=1

(

2k + 2

2k − 1

)k2

.

(g)

∞
∑

k=1

(k!)2

(2k + 1)!
.

(h)

∞
∑

n=2

(

1− 5

n

)2n2

.

(i)

∞
∑

n=3

5 + 3 sinn√
n− 1

.

(j)

∞
∑

n=2

n!(2n+ 1)!

(3n)!
.

2. Show that the Ratio Test always fails for a p-series

∞
∑

k=1

1

kp
, where p > 0.

3. (a) Use the Alternating Series Test to show that the series

∞
∑

k=2

(−1)k
1

ln k
converges.
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(b) Estimate the error incurred in using

100
∑

k=2

(−1)k
1

ln k
to approximate the sum of the series.

(c) Use the 5th and 6th partial sums to bound the sum s of the series.

4. What is the smallest number of terms of the series
∞
∑

n=1

(−1)n+1

4
√
n+ 5

needed to estimate the sum with an error

of no more than 10−4?

5. What is the smallest value of n for which

n
∑

k=2

(−1)k3k

k!
approximates the actual sum

∞
∑

k=2

(−1)k3k

k!
with an

error of no more than 10−3?

6. Determine whether the series

∞
∑

k=1

(−1)k+1 k
3

3k
converges absolutely, converges conditionally, or diverges.

7. Determine whether the series

∞
∑

k=1

1

1− e−k
converges absolutely, converges conditionally, or diverges.

8. Determine whether the series

∞
∑

k=2

(−1)k
1

3
√
k( 3
√
k − 1)

converges absolutely, converges conditionally, or

diverges.

9. Does the following series converge or diverge?

∞
∑

k=1

sin k cos k

k2 + 1

10. Does the following series converge or diverge?

∞
∑

k=1

cos 3k

k3/2

11. Determine the interval of convergence for the power series

∞
∑

n=1

2n

n!
(x+ 5)n.

12. Determine the interval of convergence for the power series
∞
∑

n=0

(−1)n
x2n

(n!)222n
.

13. Determine the interval of convergence for the power series

∞
∑

n=1

(nx)n.

14. Determine the interval of convergence for the power series

∞
∑

n=1

(−1)n+1 xn

√
n2n

.

15. Determine the interval of convergence for the power series

∞
∑

n=0

n2(x− 3)n

5n
.

16. Find the Taylor series at c = 2 for f(x) =
3

7− 2x
, and find its interval of convergence.
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17. Find the Taylor series at c = −1 for f(x) =
1

8 + 3x
, and find its interval of convergence.

18. Find the Taylor series at c = 1 for f(x) = e−3x, and find its interval of convergence.

19. The angle addition formula for cosine is

cos(a+ b) = cos a cos b− sin a sin b.

Use this formula to find the Taylor series for cosx expanded at c = 2.

20. (a) Find the Taylor series at c = 0 for
1

10− x
.

(b) Find the Taylor series at c = 0 for f(x) =
1

(10− x)2
by differentiating the series in (a).

21. (a) Find the Taylor series at c = 0 for
1

1 + x4
.

(b) Find the Taylor series at c = 0 for f(x) =
x3

(1 + x4)2
by differentiating the series in (a).

22. Suppose that
f(1) = 5, f ′(1) = 2, f ′′(1) = −2, f (3)(1) = 3.

Use the 3rd degree Taylor polynomial p3(x; 1) to approximate f(1.2).

23. Find the Taylor series at c = 0 for f(x) =
ex

ex + 1
up to the term of degree 2.

24. The first four terms of the Taylor series at c = 0 for f(t) = sec t tan t are

sec t tan t = t+
5

6
t3 +

61

120
t5 +

277

1008
t7 + · · · .

Find the first five terms of the Taylor series for secx at c = 0.

25. If f(x) = sinx3, what is f (600)(0) ?

26. Estimate the error made in using the 3rd degree Taylor polynomial p3(x; 0) to approximate f(x) = xex

if 0 ≤ x ≤ 0.5.

27. How large an interval about
π

3
may be taken if the values of cosx are to be approximated using the first

three terms of the Taylor series at a =
π

3
and if the error is to be no greater than 0.0001 ?

28. Suppose 0 ≤ x ≤ 0.2. What is the smallest value of n for which the nth degree Taylor polynomial
pn(x; 0) of f(x) = e−3x at c = 0 approximates f(x) to an accuracy of at least 10−6?

29. (a) Find the Taylor series for
ln(1 + x2)

x
at a = 0.

(b) Express the series using summation notation.

(c) Calvin Butterball is bothered by parts (a) and (b). “How can you define the Taylor series for f(x) =
ln(1 + x2)

x
when

ln(1 + x2)

x
isn’t defined at x = 0?”, he whines.

Actually, he has a valid point. Use the series of part (a) to compute

lim
x→0

ln(1 + x2)

x
.
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Then use the result to redefine f so that it’s at least continuous at x = 0.

(d) Find f (91)(0).

(e) Use the series of part (a) to approximate the following integral to within 0.01:

∫ 1

0

ln(1 + x2)

x
dx

Justify the accuracy of your approximation using the error estimate for alternating series.

30. Find parametric equations for the curve y = x3 + x+ 1.

31. Find parametric equations for the curve x = 9− 8y − y2.

32. Find parametric equations for the segment from P (8,−5) to Q(3, 11). Find a parameter range for which
the segment is traced out exactly once.

33. Find parametric equations for the circle with center (5,−4) and radius 2.

34. Find an x-y equation for the curve whose parametric equations are

x = t+ 2, y = t2 + 5.

35. Find an x-y equation for the curve whose parametric equations are

x = 2 cos t+ 6, y = 3 sin t+ 5.

36. x = et and y = e2t +1 is a parametrization of part of the curve y = x2 +1, but it does not represent the
whole curve. Why not?

37. Find the value(s) of t for which the following curve has horizontal tangents, and the value(s) for which
it has vertical tangents:

x = (t+ 1)2, y = t3 − 6t2 − 36t+ 5.

38. Find the points at which the following parametric curves intersect:

{

x = s

y = s2 + s+ 1
and

{

x = t+ 1
y = 2t+ 5

39. Consider the parametric curve

x = t2 + t+ 1, y = t3 − 5t+ 2.

(a) Find the equation of the tangent line at t = 1.

(b) Find
d2y

dx2
at t = 1.

40. Find
d2y

dx2
at t = 2 for the parametric curve

x = t2 + 2t+ 2, y = t3 + 1.

Solutions to the Review Problems for Test 3
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1. In each case, determine whether the series converges or diverges. You should cite the test you’re using by
name (to avoid ambiguity); be sure you verify that the hypotheses of the test apply. Any limits should be
computed exactly and completely.

(a)

∞
∑

k=2

2

k2 − 1
.

(b)
∞
∑

k=1

(

k + 1

k2 + 2

)2

.

(c)

∞
∑

k=1

(

sin
1

k

)2

.

(d)

∞
∑

k=1

2k

3k + 2
.

(e)

∞
∑

i=1

3i

i3
.

(f)

∞
∑

k=1

(

2k + 2

2k − 1

)k2

.

(g)

∞
∑

k=1

(k!)2

(2k + 1)!
.

(h)

∞
∑

n=2

(

1− 5

n

)2n2

.

(i)

∞
∑

n=3

5 + 3 sinn√
n− 1

.

(j)

∞
∑

n=2

n!(2n+ 1)!

(3n)!
.

(a)

lim
k→∞

2

k2 − 1
1

k2

= lim
k→∞

2k2

k2 − 1
= 2.

The limit is a finite positive number.

∞
∑

k=2

1

k2
converges, because it’s a p-series with p = 2 > 1. Therefore,

∞
∑

k=2

2

k2 − 1
converges by Limit Comparison.

(b) Rewrite the series as
∞
∑

k=1

(k + 1)2

(k2 + 2)2
.

For large k,
(k + 1)2

(k2 + 2)2
≈ k2

k4
=

1

k2
.
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Use Limit Comparison with the series

∞
∑

k=1

1

k2
. The limiting ratio is

lim
k→∞

(k + 1)2

(k2 + 2)2

1

k2

= lim
k→∞

k2(k + 1)2

(k2 + 2)2
= 1.

The limit is finite and positive. Since

∞
∑

k=1

1

k2
is a convergent p-series (p = 2), the series converges by

Limit Comparison.

(c) I’ll use Limit Comparison with

∞
∑

k=1

1

k2
. Rationale: For θ ≈ 0, sin θ ≈ θ, so

(

sin
1

k

)2

≈ 1

k2
.

lim
k→∞

(

sin
1

k

)2

1

k2

=






lim
k→∞

sin
1

k
1

k







2

=

(

lim
m→0

sinm

m

)2

= 1.

(I set m =
1

k
. As k → ∞, m → 0.)

The limit is a finite, positive number, and the series

∞
∑

k=1

1

k2
is a convergent p-series (p = 2). Therefore,

the series converges, by Limit Comparison.

(d) Since making the bottom of a fraction smaller makes the fraction larger,

2k

3k + 2
<

2k

3k
.

The series

∞
∑

k=1

2k

3k
is geometric with ratio r =

2

3
, so it converges. Therefore, the series

∞
∑

k=1

2k

3k + 2

converges by direct comparison.

(e) Apply the Ratio Test:

lim
i→∞

ai+1

ai
= lim

i→∞

3i+1

(i+ 1)3

3i

i3

= lim
i→∞

3i+1

3i
· i3

(i + 1)3
= lim

i→∞

3 ·
(

i

i+ 1

)3

= 3.

Since the limit is larger than 1, the series diverges by the Ratio Test.

(f) The kth root of the kth term is

a
1/k
k =

(

2k + 2

2k − 1

)k

.

To compute the limit as k → ∞, let y =

(

2k + 2

2k − 1

)k

. Then

ln y = ln

(

2k + 2

2k − 1

)k

= k ln
2k + 2

2k − 1
.
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Therefore,

lim
k→∞

ln y = lim
k→∞

k ln
2k + 2

2k − 1
= lim

k→∞

ln
2k + 2

2k − 1
1

k

= lim
k→∞

2k − 1

2k + 2
· −6

(2k − 1)2

−1

k2

=

6 lim
k→∞

(2k − 1)(k2)

(2k + 2)(2k − 1)2
=

6

4
=

3

2
.

Therefore, lim
k→∞

y = e3/2.

Since e3/2 > 1, the series diverges by the Root Test.

(g) Apply the Ratio Test:

lim
k→∞

ak+1

ak
= lim

k→∞

((k + 1)!)2

(2k + 3)!

(k!)2

(2k + 1)!

= lim
k→∞

(

(k + 1)!

k!

)2

· (2k + 1)!

(2k + 3)!
= lim

k→∞

(k + 1)2

(2k + 2)(2k + 3)
=

1

4
.

Since the limit is less than 1, the series converges by the Ratio Test.

(h) Apply the Root Test and compute the limit:

lim
n→∞

[

(

1− 5

n

)2n2
]1/n

= lim
n→∞

(

1− 5

n

)2n

.

Then

y =

(

1− 5

n

)2n

ln y = 2n ln

(

1− 5

n

)

So

lim
n→∞

2n ln

(

1− 5

n

)

= 2 lim
n→∞

ln

(

1− 5

n

)

1

n

= 2 lim
n→∞







1

1− 5

n







(

5

n2

)

(

− 1

n2

) = −10 lim
n→∞

1

1− 5

n

= −10.

Hence,

lim
n→∞

(

1− 5

n

)2n

= e−10 < 1.

The series converges by the Root Test.

(i) I have

−1 ≤ sinn ≤ 1

−3 ≤ 3 sinn ≤ 3

5 + (−3) ≤ 5 + 3 sinn ≤ 5 + 3

2 ≤ 5 + 3 sinn ≤ 8
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Then taking the first “≤” and dividing by
√
n− 1, I have

2√
n− 1

≤ 5 + 3 sinn√
n− 1

.

If I replace the “n−1” in the bottom on the left with “n”, I’m adding 1, which makes the bottom bigger.
This makes the fraction smaller. So

2√
n
<

2√
n− 1

≤ 5 + 3 sinn√
n− 1

.

∞
∑

n=3

2√
n

is 2 times a p-series with p =
1

2
< 1, so it diverges. Therefore, the original series diverges by

direct comparison.

Question: How would this problem change if the original series had been
∞
∑

n=3

5 + 3 sinn

n3/2
? Work it out

for yourself.
(j) Use the Ratio Test:

lim
n→∞

(n+ 1)!(2n+ 3)!

(3n+ 3)!

n!(2n+ 1)!

(3n)!

= lim
n→∞

(n+ 1)!

n!
· (2n+ 3)!

(2n+ 1)!
· (3n)!

(3n+ 3)!
= lim

n→∞

(n+ 1)(2n+ 2)(2n+ 3)

(3n+ 1)(3n+ 2)(3n+ 3)
=

4

27
< 1.

The series converges by the Ratio Test.

Here’s how I simplified the factorial expressions:

(n+ 1)!

n!
=

1 · 2 · 3 · · ·n(n+ 1)

1 · 2 · 3 · · ·n = n+ 1.

(2n+ 3)!

(2n+ 1)!
=

1 · 2 · 3 · · · (2n+ 1)(2n+ 2)(2n+ 3)

1 · 2 · 3 · · · (2n+ 1)
= (2n+ 2)(2n+ 3).

(3n)!

(3n+ 3)!
=

1 · 2 · 3 · · · (3n)
1 · 2 · 3 · · · (3n)(3n+ 1)(3n+ 2)(3n+ 3)

=
1

(3n+ 1)(3n+ 2)(3n+ 3)
.

2. Show that the Ratio Test always fails for a p-series

∞
∑

k=1

1

kp
, where p > 0.

The ratio of successive terms is

lim
k→∞

ak+1

ak
= lim

k→∞

1

(k + 1)p

1

kp

= lim
k→∞

(

k

k + 1

)p

= 1.

Since the limit is 1, the Ratio Test fails.

Remark. This problem also shows that it’s useless to apply the Ratio Test to series where the k-th term is
a rational function of k.
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For example, it’s useless to apply the Ratio Test to

∞
∑

k=1

k2 + 5

k4 + 3
.

For large k,
k2 + 5

k4 + 3
≈ 1

k2
, and the series is essentially a p-series.

3. (a) Use the Alternating Series Test to show that the series

∞
∑

k=2

(−1)k
1

ln k
converges.

(b) Estimate the error incurred in using

100
∑

k=2

(−1)k
1

ln k
to approximate the sum of the series.

(c) Use the 5th and 6th partial sums to bound the sum s of the series.

(a) The series clearly alternates, and

lim
k→∞

1

ln k
= 0.

Let f(k) =
1

ln k
. Then f ′(k) = − 1

k(ln k)2
, so f ′(k) < 0 for k ≥ 2. Hence, the terms of the series

decrease in absolute value. By the Alternating Series Test, the series converges.

(b) If you use

100
∑

k=2

(−1)k
1

ln k
to approximate the sum of the series, the error is no greater than (the absolute

value of) the next term:

error <
1

ln 101
≈ 0.216679.

(c)

6
∑

k=2

(−1)k
1

ln k
≈ 1.19058 and

7
∑

k=2

(−1)k
1

ln k
≈ 0.67668.

The actual sum s is caught between the consecutive partial sums: 0.67668 < s < 1.19058.

4. What is the smallest number of terms of the series

∞
∑

n=1

(−1)n+1

4
√
n+ 5

needed to estimate the sum with an error

of no more than 10−4?

You can check that the series converges by the Alternating Series Test.

Hence, the error in using

k
∑

n=1

(−1)n+1

4
√
n+ 5

to estimate the sum is less than the absolute value of the (k+1)rmst
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term. So I want
1

4
√
k + 1 + 5

< 0.0001

1 < 0.0001(4
√
k + 1 + 5)

1

0.0001
< 4

√
k + 1 + 5

10000 < 4
√
k + 1 + 5

9995 < 4
√
k + 1

9995

4
<

√
k + 1

(

9995

4

)2

< k + 1

6243750.5625<k

Thus, k is the next largest integer, and k = 6243751.

5. What is the smallest value of n for which

n
∑

k=2

(−1)k3k

k!
approximates the actual sum

∞
∑

k=2

(−1)k3k

k!
with an

error of no more than 10−3?

I have
∣

∣

∣

∣

∣

n
∑

k=2

(−1)k3k

k!
− (actual sum)

∣

∣

∣

∣

∣

<
3n+1

(n+ 1)!
.

Hence, I want the smallest n for which

3n+1

(n+ 1)!
< 10−3.

I can’t solve this inequality algebraically, so I have to use trial and error.

n
3n+1

(n+ 1)!

1 4.5

2 4.5

3 3.375

4 2.025

5 1.0125

6 0.43392 . . .

7 0.16272 . . .

8 0.05424 . . .

9 0.01627 . . .

10 0.00443 . . .

11 0.00110 . . .

12 2.56033 . . . · 10−4
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The first n for which the inequality holds is n = 12.

6. Determine whether the series

∞
∑

k=1

(−1)k+1 k
3

3k
converges absolutely, converges conditionally, or diverges.

Consider the the absolute value series

∞
∑

k=1

k3

3k
. Apply the Ratio Test:

lim
k→∞

ak+1

ak
= lim

k→∞

(k + 1)3

3k+1

k3

3k

= lim
k→∞

(

k + 1

k

)3

· 3k

3k+1
= lim

k→∞

1

3

(

k + 1

k

)3

=
1

3
< 1.

The series converges by the Ratio Test. Therefore, the original series converges absolutely.

7. Determine whether the series
∞
∑

k=1

1

1− e−k
converges absolutely, converges conditionally, or diverges.

lim
k→∞

1

1− e−k
= 1 6= 0.

Hence, the series diverges, by the Zero Limit Test.

8. Determine whether the series

∞
∑

k=2

(−1)k
1

3
√
k( 3
√
k − 1)

converges absolutely, converges conditionally, or

diverges.

Consider the absolute value series

∞
∑

k=2

1
3
√
k( 3
√
k − 1)

. Then

1
3
√
k( 3
√
k − 1)

>
1

( 3
√
k)( 3

√
k)

=
1

k2/3
.

The series

∞
∑

k=2

1

k2/3
is a divergent p-series (p =

2

3
< 1). Therefore, the series

∑

∞

k=2

1
3
√
k( 3
√
k − 1)

diverges

by comparison, and the original series does not converge absolutely.

Go back to the original series

∞
∑

k=2

(−1)k
1

( 3
√
k)( 3

√
k − 1)

. The series clearly alternates, and

lim
k→∞

1

( 3
√
k)( 3

√
k − 1)

= 0.

Let f(k) =
1

( 3
√
k)( 3

√
k − 1)

. Then

f ′(k) =
1

3k4/3(k1/3 − 1)
− 1

3k(k1/3 − 1)2
.

Since f ′(k) < 0 for k ≥ 2, the terms decrease in absolute value. Therefore, the series converges, by the
Alternating Series Rule. Since the series did not converge absolutely, it converges conditionally.
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9. Does the following series converge or diverge?

∞
∑

k=1

sin k cos k

k2 + 1

Consider the absolute value series

∞
∑

k=1

∣

∣

∣

∣

sin k cos k

k2 + 1

∣

∣

∣

∣

. Since sin k cos k =
1

2
sin 2k,

∣

∣

∣

∣

sin k cos k

k2 + 1

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

sin 2k

k2 + 1

∣

∣

∣

∣

≤ 1

2

| sin 2k|
k2 + 1

≤ 1

2

1

k2 + 1
<

1

2

1

k2
.

The series

∞
∑

k=1

1

2

1

k2
is a convergent p-series (p = 2). Therefore, the absolute value series converges by

comparison. Hence, the original series converges absolutely. Therefore, the original series converges.

10. Does the following series converge or diverge?

∞
∑

k=1

cos 3k

k3/2

You might think of applying the Alternating Series Rule, which allows us to handle series with negative
terms. Unfortunately, the terms of this series do not alternate in sign; the signs of the first few terms are −,
−, −, +, −, +, +, +, −, . . . and no pattern ever emerges.

Instead, consider the absolute value series

∞
∑

k=1

| cos 3k|
k3/2

. Since | cos 3k| ≤ 1,

∣

∣

∣

∣

cos 3k

k3/2

∣

∣

∣

∣

≤ 1

k3/2
.

The series

∞
∑

k=1

1

k3/2
is a convergent p-series (p =

3

2
). Therefore, the absolute value series

∞
∑

k=1

∣

∣

∣

∣

cos 3k

k3/2

∣

∣

∣

∣

converges by comparison. (The comparison test applies, because the absolute value series has positive terms!)

Hence, the original series

∞
∑

k=1

cos 3k

k3/2
converges absolutely. Since absolute convergence implies convergence,

the series converges.

11. Determine the interval of convergence for the power series

∞
∑

n=1

2n

n!
(x+ 5)n.

Apply the Ratio Test to the absolute value series:

lim
n→∞

|an+1|
|an|

= lim
n→∞

2n+1

(n+ 1)!
|x+ 5|n+1

2n

n!
|x+ 5|n

= lim
n→∞

2n+1

2n
n!

(n+ 1)!

|x+ 5|n+1

|x+ 5|n = lim
n→∞

2

n+ 1
|x+ 5| = 0.

12



Since the limit is less than 1 independent of x, the series converges for all x.

12. Determine the interval of convergence for the power series

∞
∑

n=0

(−1)n
x2n

(n!)222n
.

Apply the Ratio Test to the absolute value series:

lim
n→∞

|an+1|
|an|

= lim
n→∞

|x|2n+2

((n+ 1)!)222n+2

|x|2n
(n!)222n

= lim
n→∞

22n

22n+2
·
(

n!

(n+ 1)!

)2

· |x|
2n+2

|x|2n = lim
n→∞

1

4

1

(n+ 1)2
|x|2 = 0.

Since the limit is less than 1 independent of x, the series converges (absolutely) for all values of x.

13. Determine the interval of convergence for the power series

∞
∑

n=1

(nx)n.

Apply the Ratio Test to the absolute value series:

lim
n→∞

|an+1|
|an|

= lim
n→∞

(n+ 1)n+1|x|n+1

nn|x|n = lim
n→∞

(n+ 1) ·
(

n+ 1

n

)n

|x| = lim
n→∞

(n+ 1) ·
(

1 +
1

n

)n

|x| = +∞,

(since lim
n→∞

(

1 +
1

n

)n

= e).

Since the limit is greater than 1 independent of x, the series diverges for all x except x = 0. (A power
series always converges at its point of expansion.)

14. Determine the interval of convergence for the power series

∞
∑

n=1

(−1)n+1 xn

√
n2n

.

Apply the Ratio Test to the absolute value series:

lim
n→∞

|an+1|
|an|

= lim
n→∞

xn+1

√
n+ 12n+1

xn

√
n2n

= lim
n→∞

2n

2n+1

√

n

n+ 1

|x|n+1

|x|n = lim
n→∞

1

2

√

n

n+ 1
|x| = 1

2
|x|.

The series converges absolutely for
1

2
|x| < 1, i.e. for −2 < x < 2. It diverges for x < −2 and for x > 2.

I’ll check the endpoints separately.
For x = −2, the series is

∞
∑

n=1

(−1)n+1 (−2)n√
n2n

= −
∞
∑

n=1

1√
n
.

(Since (−1)2n+1 is an odd power of −1, it equals −1 for all n.) The series is (−1 times) a p-series with

p =
1

2
, so it diverges.

For x = 2, the series is

∞
∑

n=1

(−1)n+1 1√
n
. The terms alternate, and

lim
n→∞

1√
n
= 0.

13



If f(n) =
1√
n
, then f ′(n) = −1

2
n−3/2 < 0 for n ≥ 1. Therefore, the terms decrease in absolute value.

Hence, the series converges, by the Alternating Series Test.

To summarize, the series converges absolutely for −2 < x < 2, diverges for x ≤ 2 and x > 2, and
converges conditionally for x = 2. The interval of convergence is −2 < x ≤ 2.

15. Determine the interval of convergence for the power series
∞
∑

n=0

n2(x− 3)n

5n
.

Apply the Ratio Test to the absolute value series:

lim
n→∞

|an+1|
|an|

= lim
n→∞

(n+ 1)2|x− 3|n+1

5n+1

n2|x− 3|n
5n

= lim
n→∞

5n

5n+1
·
(

n+ 1

n

)2

· |x− 3| =

lim
n→∞

1

5
·
(

n+ 1

n

)2

· |x− 3| = 1

5
|x− 3|.

The series converges absolutely for
1

5
|x − 3| < 1, i.e. for −2 < x < 8. It diverges for x < −2 and for

x > 8.

I’ll check the endpoints separately.

At x = −2, the series becomes

∞
∑

n=0

(−1)nn2. Since lim
n→∞

(−1)nn2 = ±∞, the series diverges by the Zero

Limit Test.

At x = 8, the series becomes

∞
∑

n=0

n2. Since lim
n→∞

n2 = +∞, the series diverges by the Zero Limit Test.

Thus, the series converges absolutely for −2 < x < 8, and it diverges for x ≤ −2 and for x ≥ 8. The
interval of convergence is −2 < x < 8.

16. Find the Taylor series at c = 2 for f(x) =
3

7− 2x
, and find its interval of convergence.

Since c = 2, I want powers of x− 2.

3

7− 2x
=

3

3− 2(x− 2)
= 3 · 1

3− 2(x− 2)
=

1

1−
(

2

3
(x− 2)

) =

∞
∑

n=0

2n

3n
(x− 2)n = 1+

2

3
(x− 2) +

(

2

3
(x− 2)

)2

+

(

2

3
(x − 2)

)3

+ · · · .

For the last step, I plugged u =
2

3
(x − 2) into the series

1

1− u
=

∞
∑

n=0

un = 1 + u+ u2 + u3 + · · · .

14



The
1

1− u
series converges for −1 < u < 1, so

−1 < u < 1

−1 <
2

3
(x − 2) < 1

−3

2
< x− 2 <

3

2

1

2
< x <

7

2

17. Find the Taylor series at c = −1 for f(x) =
1

8 + 3x
, and find its interval of convergence.

Since c = −1, I want powers of x− (−1) = x+ 1.

1

8 + 3x
=

1

5 + 3(x+ 1)
=

1

5

1

1 +
3

5
(x+ 1)

=
1

5

1

1−
(

−3

5
(x+ 1)

) =

1

5

∞
∑

n=0

(−1)n
3n

5n
(x + 1)n =

1

5

(

1− 3

5
(x+ 1) +

9

25
(x+ 1)2 − 27

125
(x+ 1)3 + · · ·

)

.

For the last step, I plugged u = −3

5
(x+ 1) into the series

1

1− u
=

∞
∑

n=0

un = 1 + u+ u2 + u3 + · · · .

The
1

1− u
series converges for −1 < u < 1, so

−1 < u < 1

−1 < −3

5
(x+ 1) < 1

−5

3
< x+ 1 <

5

3

−8

3
< x <

2

3

18. Find the Taylor series at c = 1 for f(x) = e−3x, and find its interval of convergence.

Use

eu = 1 + u+
u2

2!
+

u3

3!
+ · · ·+ un

n!
+ · · · , −∞ < u < ∞.

Write
e−3x = e−3(x−1)−3 = e−3e−3(x−1).

Setting u = −3(x− 1), I get

e−3x = e−3
∞
∑

n=0

(−3)n(x − 1)n

n!
=

15



e−3

(

1− 3(x− 1) +
32(x− 1)2

2!
− 33(x− 1)3

3!
+ · · ·+ (−1)n

3n(x − 1)n

n!
+ · · ·

)

.

−∞ < −3(x− 1) < ∞ gives −∞ < x < ∞. The interval of convergence is −∞ < x < ∞.

19. The angle addition formula for cosine is

cos(a+ b) = cos a cos b− sin a sin b.

Use this formula to find the Taylor series for cosx expanded at c = 2.

cosx = cos[(x− 2) + 2] = [cos(x− 2)](cos 2)− [sin(x− 2)](sin 2) =

(cos 2)

∞
∑

n=0

(−1)n
(x− 2)2n

(2n)!
− (sin 2)

∞
∑

n=0

(−1)n
(x − 2)2n+1

(2n+ 1)!
.

The interval of convergence is −∞ < x < ∞.

20. (a) Find the Taylor series at c = 0 for
1

10− x
.

(b) Find the Taylor series at c = 0 for f(x) =
1

(10− x)2
by differentiating the series in (a).

(a) I have

1

1− u
=

∞
∑

n=0

un = 1+ u+ u2 + u3 + u4 + · · · .

Set u =
x

10
:

1

10− x
=

1

10

1

1− x

10

=
1

10

∞
∑

n=0

xn

10n
=

1

10

(

1 +
x

10
+

x2

100
+

x3

1000
+

x4

10000
+ · · ·

)

.

(b) Differentiating the series in (a) gives the series for
1

(10− x)2
:

1

(10− x)2
=

d

dx

(

1

10− x

)

=
1

10

∞
∑

n=1

nxn−1

10n
.

Here are the first few terms:

1

(10− x)2
=

1

10

(

1

10
+

x

50
+

3x2

1000
+

x3

2500
+ · · ·

)

.

21. (a) Find the Taylor series at c = 0 for
1

1 + x4
.

(b) Find the Taylor series at c = 0 for f(x) =
x3

(1 + x4)2
by differentiating the series in (a).
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(a) I’ll find the series for
1

1 + x4
by setting u = −x4 in the series for

1

1− u
:

1

1 + x4
=

1

1− (−x4)
= 1− x4 + x8 − x12 + x16 − cdots+ (−1)nx4n + · · · .

(b) Note that
d

dx

1

1 + x4
=

−4x3

(1 + x4)2
, so

x3

(1 + x4)2
= −1

4

d

dx

1

1 + x4
.

Hence,

x3

(1 + x4)2
= −1

4

d

dx

1

1 + x4
= −1

4

d

dx

(

1− x4 + x8 − x12 + x16 − · · ·+ (−1)nx4n + · · ·
)

=

−1

4

(

−4x3 + 8x7 − 12x11 + 16x15 − · · ·+ (−1)n4nx4n−1 + · · ·
)

=

x3 − 2x7 + 3x11 − 4x15 + · · ·+ (−1)n−1nx4n−1 + · · · .

22. Suppose that
f(1) = 5, f ′(1) = 2, f ′′(1) = −2, f (3)(1) = 3.

Use the 3rd degree Taylor polynomial p3(x; 1) to approximate f(1.2).

p3(x; 1) = 5 + 2(x− 1)− 2

2!
(x− 1)2 +

3

3!
(x− 1)3

p3(x; 1) = 5 + 2(x− 1)− (x− 1)2 +
1

2
(x− 1)3

So
f(1.2) ≈ p3(x; 1) = 5.364.

23. Find the Taylor series at c = 0 for f(x) =
ex

ex + 1
up to the term of degree 2.

f ′(x) =
(ex + 1)(ex)− (ex)(ex)

(ex + 1)2
=

ex

(ex + 1)2
,

f ′′(x) =
(ex + 1)2(ex)− (ex)(2)(ex + 1)(ex)

(ex + 1)4
=

(ex + 1)(ex)− 2(ex)(ex)

(ex + 1)3
=

ex − e2x

(ex + 1)3
.

Then

f(0) =
1

2
, f ′(0) =

1

4
, f ′′(0) = 0.

So

f(x) =
1

2
+

1

4
x+ 0 · x2 + · · · .

Note: “Degree 2” means up to the x2-term. If the problem had asked for “the first 3 nonzero terms”,

you would have had to go up to the next term, which turns out to be − 1

48
x3.
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24. The first four terms of the Taylor series at c = 0 for f(t) = sec t tan t are

sec t tan t = t+
5

6
t3 +

61

120
t5 +

277

1008
t7 + · · · .

Find the first five terms of the Taylor series for secx at c = 0.

∫ x

0

sec t tan t dt = [sec t]x0 = secx− 1.

Hence,

secx = 1 +

∫ x

0

sec t tan t dt = 1 +

∫ x

0

(

t+
5

6
t3 +

61

120
t5 +

277

1008
t7 + · · ·

)

dt =

1 +
1

2
x2 +

5

24
x4 +

61

720
x6 +

277

8064
x8 + · · · .

25. If f(x) = sinx3, what is f (600)(0) ?

The Taylor series for sinx3 is

sinx3 =

∞
∑

n=0

x6n+3

(2n+ 1)!
.

(Substitute u = x3 in the series for sinu.)

The x600 term appears when 6n+3 = 600, or n =
597

6
. This is not an integer, so there is no x600 term.

That is, the coefficient of x600 in the Taylor expansion for sinx3 is 0. On the other hand, the Taylor series

formula says that the x600 term is
1

600!
f (600)(0)x600. Hence,

1

600!
f (600)(0) = 0, or f (600)(0) = 0.

26. Estimate the error made in using the 3rd degree Taylor polynomial p3(x; 0) to approximate f(x) = xex

if 0 ≤ x ≤ 0.5.

f ′(x) = xex + ex, f ′′(x) = xex + 2ex, f (3)(x) = xex + 3ex, f (4)(x) = xex + 4ex.

Hence,

R4(x; 0) =
zez + 4ez

4!
x4.

Since 0 ≤ x ≤ 0.5, I have x4 ≤ 0.54. Also, zez+4ez is an increasing function of z. Since 0 ≤ z ≤ x ≤ 0.5,
it follows that

zez + 4ez ≤ 0.5e0.5 + 4e0.5 =
9

2
e0.5.

Thus, the error is approximately

|R4(x; 0)| ≤
9

2
e0.5

4!
· 0.54 ≈ 0.01932.

27. How large an interval about
π

3
may be taken if the values of cosx are to be approximated using the first

three terms of the Taylor series at a =
π

3
and if the error is to be no greater than 0.0001 ?
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First, I’ll compute the first few derivatives of cosx:

f ′(x) = − sinx, f ′′(x) = − cosx, f ′′′(x) = sinx.

Then

f ′

(π

3

)

= −
√
3

2
, f ′′

(π

3

)

= −1

2
.

The first three terms of the Taylor series for cosx at a =
π

3
are

cosx =
1

2
−

√
3

2

(

x− π

3

)

− 1

4

(

x− π

3

)2

+ · · · .

The third term is the x2 term, so n = 2. Thus, the remainder term is

R2

(

x;
π

3

)

=
f ′′′(z)

3!

(

x− π

3

)3

.

f ′′′(z) = sin z, and | sin z| ≤ 1, so

|R2

(

x;
π

3

)

| ≤ 1

6

∣

∣

∣
x− π

3

∣

∣

∣

3

.

The error will be less than 0.0001 if the right side is less than 0.0001:

1

6

∣

∣

∣x− π

3

∣

∣

∣

3

≤ 0.0001,
∣

∣

∣x− π

3

∣

∣

∣

3

≤ 0.0006,
∣

∣

∣x− π

3

∣

∣

∣ ≤ 0.08434.

That is, the error will be less than 0.0001 within an interval of radius approximately 0.08434 about
π

3
.

28. Suppose 0 ≤ x ≤ 0.2. What is the smallest value of n for which the nth degree Taylor polynomial
pn(x; 0) of f(x) = e−3x at c = 0 approximates f(x) to an accuracy of at least 10−6?

The Remainder Term is

Rn(x; 0) =
f (n+1)(z)

(n+ 1)!
xn+1.

I need to find f (n+1)(z). Compute a few derivatives to find the pattern:

f ′(x) = −3e−3x, f ′′(x) = (−3)2e−3x, f ′′′(x) = (−3)3e−3x.

I can see that
f (n+1)(x) = (−3)n+1e−3x, so f (n+1)(z) = (−3)n+1e−3z.

Therefore,

Rn(x; 0) =
(−3)n+1e−3z

(n+ 1)!
0.2n+1.

Since 0 ≤ x ≤ 0.2, I have xn+1 ≤ 0.2n+1.
Next, 0 ≤ z ≤ x ≤ 0.2, so

0 ≥ −3z ≥ −0.6, and e0 ≥ e−3z ≥ e−0.6.

(Notice that the inequality “flipped” when I multiplied by −3.) Since e0 = 1, I have e−3z ≤ 1.
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Therefore,

|Rn(x; 0)| =
3n+1e−3z

(n+ 1)!
xn+1 ≤ 3n+1(1)

(n+ 1)!
0.2n+1 =

3n+1

(n+ 1)!
0.2n+1 =

0.6n+1

(n+ 1)!
.

I took absolute values because I only care about the size of the error. Doing this changed (−3)n+1 to
3n+1.

Since |Rn(x; 0)| ≤
0.6n+1

(n+ 1)!
, if I can make

0.6n+1

(n+ 1)!
< 10−6, then putting the two inequalities together

gives |Rn(x; 0)| < 10−6, which is what I want.

Thus, I want to find the smallest n for which
0.6n+1

(n+ 1)!
≤ 10−6. This inequality is too complicated to

solve algebraically, so I’ll do it by trial-and-error: I plug values of n into the left side until it’s less than 10−6.

n
0.6n+1

(n+ 1)!

1 0.18000000000000005

2 0.03600000000000001

3 0.005400000000000001

4 0.0006480000000000001

5 0.00006480000000000003

6 5.554285714285717× 10−6

7 4.165714285714288× 10−7

The smallest value of n is n = 7. Since the first term is the 0th term, this means I need the first 8 terms
of the Taylor series (or the 7th degree Taylor polynomial) to approximate f(x) to within 10−6 on the interval
0 ≤ x ≤ 0.2.

29. (a) Find the Taylor series for
ln(1 + x2)

x
at a = 0.

(b) Express the series using summation notation.

(c) Calvin Butterball is bothered by parts (a) and (b). “How can you define the Taylor series for f(x) =
ln(1 + x2)

x
when

ln(1 + x2)

x
isn’t defined at x = 0?”, he whines.

Actually, he has a valid point. Use the series of part (a) to compute

lim
x→0

ln(1 + x2)

x
.

Then use the result to redefine f so that it’s at least continuous at x = 0.

(d) Find f (91)(0).

(e) Use the series of part (a) to approximate the following integral to within 0.01:

∫ 1

0

ln(1 + x2)

x
dx.

Justify the accuracy of your approximation using the error estimate for alternating series.
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(a) Set u = x2 in the series for ln(1 + u):

ln(1 + x2) = x2 − x4

2
+

x6

3
− x8

4
+ · · · .

Divide both sides by x:
ln(1 + x2)

x
= x− x3

2
+

x5

3
− x7

4
+ · · · .

(b)

ln(1 + x2)

x
=

∞
∑

n=0

(−1)n
x2n+1

n+ 1
.

(c)

lim
x→0

ln(1 + x2)

x
= lim

x→0

∞
∑

n=0

(−1)n
x2n+1

n+ 1
= 0.

Hence, define

f(x) =

{

ln(1 + x2)

x
if x 6= 0

0 if x = 0

This is the function whose Taylor series I’m finding. Note that all I know is that f is continuous at 0;
to construct the Taylor series, I should also show that f is infinitely differentiable at 0. (I’ll just take that
for granted.)

(d) The term of order 91 in the Taylor series should be
1

91!
f (91)(0)x91.

On the other hand, I know what the series is, and I know that the term of order 91 is
1

46
x91.

Setting the coefficients equal, I get
1

91!
f (91)(0) =

1

46
, or f (91)(0) =

91!

46
.

(e) Integrate the series for
ln(1 + x2)

x
term-by-term:

∫ 1

0

ln(1 + x2)

x
dx =

∫ 1

0

(

x− x3

2
+

x5

3
− x7

4
+ · · ·

)

dx =

[

x2

2
− x4

4 · 2 +
x6

6 · 3 − x8

8 · 4 + · · ·
]1

0

=
1

2
− 1

4 · 2 +
1

6 · 3 − 1

8 · 4 + · · · .

By examination, the first term of the series which is less than 0.01 is
1

16 · 8 . Therefore, the sum of the

preceding terms approximates the integral to within 0.01, by the error estimate for alternating series. This
sum is

1

2
− 1

4 · 2 +
1

6 · 3 − 1

8 · 4 +
1

10 · 5 − 1

12 · 6 +
1

14 · 7 ≈ 0.42.

30. Find parametric equations for the curve y = x3 + x+ 1.

x = t, y = t3 + t+ 1.
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31. Find parametric equations for the curve x = 9− 8y − y2.

x = 9− 8t− t2, y = t.

32. Find parametric equations for the segment from P (8,−5) to Q(3, 11). Find a parameter range for which
the segment is traced out exactly once.

(x, y) = (1− t)(8,−5) + t(3, 11)

(x, y) = (8(1− t),−5(1− t)) + (3t, 11t)

(x, y) = (8− 8t,−5 + 5t) + (3t, 11t)

(x, y) = (8− 8t+ 3t,−5 + 5t+ 11t)

(x, y) = (8− 5t,−5 + 16t)

The segment is
x = 8− 5t, y = −5 + 16t, 0 ≤ t ≤ 1.

33. Find parametric equations for the circle with center (5,−4) and radius 2.

The equation of the circle is

(x− 5)2 + (y + 4)2 = 4, or
(x− 5)2

4
+

(y + 4)2

4
= 1.

Match this up against the identity (cos t)2 + (sin t)2 = 1.

(x− 5)2

4
= (cos t)2

(x− 5)2 = 4(cos t)2

x− 5 = 2 cos t

x = 5 + 2 cos t

(y + 4)2

4
= (sin t)2

(y + 4)2 = 4(sin t)2

y + 4 = 2 sin t

y = −4 + 2 sin t

The parametric equations are

x = 5 + 2 cos t, y = −4 + 2 sin t, 0 ≤ t ≤ 2π.

Notes: (a) The range 0 ≤ t ≤ 2π traces out the circle once counterclockwise, except that t = 0 and
t = 2π give the same point.

(b) If you match the x-term against (sin t)2 and the y-term against (cos t)2 and follow the procedure
above, you’ll get a valid parametrization. However, the circle will be traced out clockwise as t goes from 0 to
2π. Since counterclockwise is the direction of increasing angle, it is usually chosen by convention to be the
“positive” direction. This may be an issue if you ever use this kind of parametrization to do line integrals.
For that reason, I think the approach above is better.

22



34. Find an x-y equation for the curve whose parametric equations are

x = t+ 2, y = t2 + 5.

Solve the x-equation for t to get t = x− 2.
Plug t = x− 2 into the y-equation to get

y = (x− 2)2 + 5 = x2 − 4x+ 9.

35. Find an x-y equation for the curve whose parametric equations are

x = 2 cos t+ 6, y = 3 sin t+ 5.

Solve the x-equation for cos t:

x = 2 cos t+ 6

x− 6 = 2 cos t

1

2
(x− 6) = cos t

Solve the y-equation for sin t:

y = 3 sin t+ 5

y − 5 = 3 sin t

1

3
(y − 5) = sin t

Plug cos t =
1

2
(x− 6) and sin t = −1

3
(y − 5) into the identity (cos t)2 + (sin t)2 = 1:

(

1

2
(x− 6)

)2

+

(

1

3
(y − 5)

)2

= 1

1

4
(x− 6)2 +

1

9
(y − 5)2 = 1

36. x = et and y = e2t +1 is a parametrization of part of the curve y = x2 +1, but it does not represent the
whole curve. Why not?

Since x = et > 0 for all t, the parametrization can only represent the part of the parabola y = x2 + 1
to the right of the y-axis.

If you want a parametrization that could give the whole parabola, you could use (for instance) x = t

and y = t2 + 1.

37. Find the value(s) of t for which the following curve has horizontal tangents, and the value(s) for which
it has vertical tangents:

x = (t+ 1)2, y = t3 − 6t2 − 36t+ 5.
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dy

dx
=

dy

dt
dx

dt

=
3t2 − 12t− 36

2(t+ 1)
=

3(t− 6)(t+ 2)

2(t+ 1)
.

The curve has horizontal tangents when
dy

dx
= 0. This occurs if t = 6 or t = −2.

The curve has vertical tangents when
dy

dx
is undefined. This occurs if t = −1.

38. Find the points at which the following parametric curves intersect:

{

x = s

y = s2 + s+ 1
and

{

x = t+ 1
y = 2t+ 5

Equating the two x-expressions gives

s = x = t+ 1.

Plug s = t+ 1 into y = s2 + s+ 1:

y = (t+ 1)2 + (t+ 1) + 1 = t2 + 3t+ 3.

But y = 2t+ 5, so

t2 + 3t+ 3 = 2t+ 5

t2 + t− 2 = 0

(t+ 2)(t− 1) = 0

This gives t = −2 and t = 1.
Plugging t = −2 into x = t+ 1 and y = 2t+ 5 gives the point (x, y) = (−1, 1).
Plugging t = 1 into x = t+ 1 and y = 2t+ 5 gives the point (x, y) = (2, 7).
The curves intersect at (−1, 1) and at (2, 7).

39. Consider the parametric curve

x = t2 + t+ 1, y = t3 − 5t+ 2.

(a) Find the equation of the tangent line at t = 1.

(b) Find
d2y

dx2
at t = 1.

(a)

dy

dx
=

dy

dt
dx

dt

=
3t2 − 5

2t+ 1
.

When t = 1, I have x = 3 and y = −2, and
dy

dx
= −2

3
. The equation of the tangent line is

y + 2 = −2

3
(x− 3).
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(b)

d2y

dx2
=

d

dt

(

dy

dx

)

dx

dt

=

d

dt

(

3t2 − 5

2t+ 1

)

2t+ 1
=

(2t+ 1)(6t)− (3t2 − 5)(2)

(2t+ 1)2

2t+ 1
=

6t2 + 6t+ 10

(2t+ 1)3
.

When t = 1,
d2y

dx2
=

22

27
.

40. Find
d2y

dx2
at t = 2 for the parametric curve

x = t2 + 2t+ 2, y = t3 + 1.

dy

dx
=

3t2

2t+ 2
.

Then

d2y

dx2
=

d

dt

dy

dx
dx

dt

=

d

dt

3t2

2t+ 2
2t+ 2

=

(2t+ 2)(6t)− (3t2)(2)

(2t+ 2)2

2t+ 2
=

(2t+ 2)(6t)− (3t2)(2)

(2t+ 2)3
.

When t = 2,
d2y

dx2
=

(6)(12)− (12)(2)

63
=

2

9
.

It breeds great perfection, if the practice be harder than the use. - Francis Bacon
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