
Math 311
9-29-2020

Review Sheet for Test 2

These problems are provided to help you study. The presence of a problem on this handout does not
imply that there will be a similar problem on the test. And the absence of a topic does not imply that it
won’t appear on the test.

1. Find the domain of the function f(x, y) =
x2 + y2

(x − 1)(y − 3)
.

2. Find the domain and range of f(x, y, z) =
z2 + 1

√

1− x2 − y2
.

3. Compute lim
(x,y)→(2,1)

3x+ 2y + 51

x2 + 3y2
.

4. Show that lim
(x,y)→(0,0)

3x4 + 5y4

x4 + 3x2y2 + y4
is undefined.

5. Compute lim
(x,y)→(0,0)

(x2 + y2)3/2

x2 + y2 + 1
by converting to polar coordinates.

6. Show that lim
(x,y)→(0,0)

x4y4

x4 + 3x2y2 + y4
is defined and find its value.

7. Define f : R2 → R by

f(x, y) =











3x+ y

5y − 6
if (x, y) 6= (1, 4)

2

3
if (x, y) = (1, 4)

Determine whether f is continuous at (1, 4).

8. Compute the following partial derivatives:

(a)
∂

∂x
x2 sin(x3 + 5y) and

∂

∂y
x2 sin(x3 + 5y).

(b)
∂

∂s

s2

s3 + t3
and

∂

∂t

s2

s3 + t3
.

(c)
∂3f

∂x2∂y
, if

f(x, y) = e3x + 4x2y − ln y.

(d)
∂3f

∂x∂y∂z
, if

f(x, y, z) = 3x+ 8y − 2z + x2y3z4.

9. Let
f(x, y) = x3 + 5xy2 − y4.

Construct the Taylor series for f at the point (2, 1), writing terms through the 2nd order.

10. For a differentiable function f(x, y),

f(−2, 4) = 6, fx(−2, 4) = 3, fy(−2, 4) = 1.
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Use a 1st-degree Taylor approximation at (−2, 4) to approximate f(−2.1, 4.1).

11. Find the tangent plane and the normal line to the surface

z = x(2x+ y)3 at (x, y) = (2,−3).

12. Find the tangent plane to the surface

x = u2 − 3v2, y =
4u

v
, z = 2u2v3 at (u, v) = (1, 1).

13. Use a linear approximation to z = f(x, y) = x2 − y2 at the point (2, 1) to approximate f(1.9, 1.1).

14. Let f(x, y) =
(x+ 4)2

y
.

(a) Find a unit vector at (−3, 1) which points in the direction of most rapid increase.

(b) Find the rate of most rapid increase at (−3, 1).

15. Find the gradient of f(x, y, z) =
1

√

x2 + y2 + z2 + 1
and show that it always points toward the origin.

16. Let f(x, y) =
√

x2 + 2y + 3. Find the directional derivative of f at the point (3, 2) in the direction of
the vector (−4, 3).

17. Find the rate of change of f(x, y, z) = xy − yz + xz at the point (1,−2,−2) in the direction toward the
origin. Is f increasing or decreasing in this direction?

18. The rate of change of f(x, y) at (1,−1) is 2 in the direction toward (5,−1) and is
6

5
in the direction of

the vector (−3,−4). Find ∇f(1,−1).

19. Calvin Butterball sits in his go-cart on the surface

z = x3 − 2x2y + x2 + xy2 − 2y3 + y2 at the point (1, 1, 0).

If his go-cart is pointed in the direction of the vector ~v = (15,−8), at what rate will it roll downhill?

20. Find the tangent plane to x2 − y2 + 2yz + z5 = 6 at the point (2, 1, 1).

21. Suppose that z = f(x, y) and (x, y) = g(u, v) are given by

z = x4 + 3xy2 − y2, (x, y) = (sin 5u+ cos v, cos 3u+ sin 2v).

Find
∂z

∂u
and

∂z

∂v
.

22. Let r and θ be the standard polar coordinates variables. Use the Chain Rule to find
∂f

∂r
and

∂f

∂θ
, for

f(x, y) = xex + ey.

23. Suppose u = f(x, y, z) and x = φ(s, t), y = ψ(s, t), z = µ(s, t). Use the Chain Rule to write down an

expression for
∂u

∂t
.

24. Suppose that w = f(x, y), x = g(r, s, t), and y = h(r, t, s). Use the Chain Rule to find an expression for
∂2f

∂t2
.
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25. Locate and classify the critical points of

z = x2y − 4xy +
1

3
y3 − 3

2
y2.

26. Locate and classify the critical points of

f(x, y) = 6xy2 − 2x3y + y2.

27. Find the critical points of

z = (x2 + y2)e−x2
−4y2

.

You do not need to classify them.

28. Find the points on the sphere x2 + y2 + z2 = 36 which are closest to and farthest from the point
(4,−3, 12).

29. A rectangular box (with a bottom and a top) is to have a total surface area of 6c2, where c > 0. Show
that the box of largest volume satisfying this condition is a cube with sides of length c.

30. (a) Find the critical points of

w = 4xyz subject to the constraint x+ y + z = 3.

(b) Express w as a function of x and y by eliminating z, then consider the behavior of w for x = y. Explain
why the critical points in (a) can’t give absolute maxes or mins.

31. Find the largest and smallest values of f(x, y) = 4x2y subject to the constraint x2 + y2 = 36.

Solutions to the Review Sheet for Test 2

1. Find the domain of the function f(x, y) =
x2 + y2

(x − 1)(y − 3)
.

Since the denominator of the fraction can’t be 0, the domain is

{(x, y) | x 6= 1 and y 6= 3}.

It consists of all points except those lying on the lines x = 1 or y = 3.

2. Find the domain and range of f(x, y, z) =
z2 + 1

√

1− x2 − y2
.

Since the expression inside the square root must be positive, the function is defined for 1− x2 − y2 > 0.
Therefore, the domain is the set of points (x, y, z) such that x2+y2 < 1 — that is, the interior of the cylinder
x2 + y2 = 1 of radius 1 whose axis is the z-axis. (There are no restrictions on z.)

To find the range, note that z2 + 1 ≥ 1. Also,

1− x2 − y2 ≤ 1, and
√

1− x2 − y2 ≤ 1, so
1

√

1− x2 − y2
≥ 1.
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Hence,

f(x, y, z) =
z2 + 1

√

1− x2 − y2
≥ 1 · 1 = 1.

This shows that every output of f is greater than or equal to 1.
On the other hand, suppose k ≥ 1. Then

f(0, 0,
√
k − 1) =

(
√
k − 1)2 + 1√
1− 0− 0

= k.

This shows that every number greater than or equal to 1 is an output of f .
Hence, the range of f is the set of numbers w such that w ≥ 1.

3. Compute lim
(x,y)→(2,1)

3x+ 2y + 51

x2 + 3y2
.

lim
(x,y)→(2,1)

3x+ 2y + 5

x2 + 3y2
=

6 + 2 + 5

4 + 3
=

13

7
.

4. Show that lim
(x,y)→(0,0)

3x4 + 5y4

x4 + 3x2y2 + y4
is undefined.

If you approach (0, 0) along the x-axis (y = 0), you get

lim
(x,y)→(0,0)

3x4 + 5y4

x4 + 3x2y2 + y4
= lim

(x,y)→(0,0)

3x4

x4
= lim

(x,y)→(0,0)
3 = 3.

If you approach (0, 0) along the line y = x, you get

lim
(x,y)→(0,0)

3x4 + 5y4

x4 + 3x2y2 + y4
= lim

(x,y)→(0,0)

3x4 + 5x4

x4 + 3x4 + x4
= lim

(x,y)→(0,0)

8x4

5x4
= lim

(x,y)→(0,0)

8

5
=

8

5
.

Since the function approaches different values as you approach (0, 0) in different ways, the limit is
undefined.

5. Compute lim
(x,y)→(0,0)

(x2 + y2)3/2

x2 + y2 + 1
by converting to polar coordinates.

Set r2 = x2 + y2. As (x, y) → (0, 0), I have r → 0. So

lim
(x,y)→(0,0)

(x2 + y2)3/2

x2 + y2 + 1
= lim

r→0

(r2)3/2

r2 + 1
= lim

r→0

r3

r2 + 1
=

0

0 + 1
= 0.

6. Show that lim
(x,y)→(0,0)

x4y4

x4 + 3x2y2 + y4
is defined and find its value.

∣

∣

∣

∣

x4y4

x4 + 3x2y2 + y4

∣

∣

∣

∣

≤
∣

∣

∣

∣

x4y4

x4

∣

∣

∣

∣

= |y4| → 0 as (x, y) → (0, 0).

Therefore,

lim
(x,y)→(0,0)

∣

∣

∣

∣

x4y4

x4 + 3x2y2 + y4

∣

∣

∣

∣

= 0.
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Hence,

lim
(x,y)→(0,0)

x4y4

x4 + 3x2y2 + y4
= 0.

7. Define f : R2 → R by

f(x, y) =











3x+ y

5y − 6
if (x, y) 6= (1, 4)

2

3
if (x, y) = (1, 4)

Determine whether f is continuous at (1, 4).

lim
(x,y)→(1,4)

f(x, y) = lim
(x,y)→(1,4)

3x+ y

5y − 6
=

3 + 4

20− 6
=

1

2
.

Since f(1, 4) =
1

2
,

lim
(x,y)→(1,4)

f(x, y) 6= f(1, 4).

Therefore, f is not continuous at (1, 4).

8. Compute the following partial derivatives:

(a)
∂

∂x
x2 sin(x3 + 5y) and

∂

∂y
x2 sin(x3 + 5y).

(b)
∂

∂s

s2

s3 + t3
and

∂

∂t

s2

s3 + t3
.

(c)
∂3f

∂x2∂y
, if

f(x, y) = e3x + 4x2y − ln y.

(d)
∂3f

∂x∂y∂z
, if

f(x, y, z) = 3x+ 8y − 2z + x2y3z4.

(a)
∂

∂x
x2 sin(x3 + 5y) = 3x4 cos(x3 + 5y) + 2x sin(x3 + 5y).

∂

∂y
x2 sin(x3 + 5y) = 5x2 cos(x3 + 5y).

(b)
∂

∂s

s2

s3 + t3
=

(s3 + t3)(2s)− (s2)(3s2)

(s3 + t3)2
.

∂

∂t

s2

s3 + t3
= − 3s2t2

(s3 + t3)2
.

(c)
∂f

∂y
= 4x2 − 1

y
.
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∂2f

∂x∂y
= 8x.

∂3f

∂x2∂y
= 8.

(d)
∂f

∂z
= −2 + 4x2y3z3.

∂2f

∂y∂z
= 12x2y2z3.

∂3f

∂x∂y∂z
= 24xy2z3.

9. Let
f(x, y) = x3 + 5xy2 − y4.

Construct the Taylor series for f at the point (2, 1), writing terms through the 2nd order.

∂f

∂x
= 3x2 + 5y2,

∂f

∂y
= 10xy − 4y3.

∂2f

∂x2
= 6x,

∂2f

∂x∂y
= 10y,

∂2f

∂y2
= 10x− 12y2.

At (2, 1),

f(2, 1) = 17,
∂f

∂x
(2, 1) = 17,

∂f

∂y
(2, 1) = 16.

∂2f

∂x2
(2, 1) = 12,

∂2f

∂x∂y
(2, 1) = 10,

∂2f

∂y2
(2, 1) = 8.

The series is

f(x, y) = 17 + (17(x− 2) + 16(y − 1)) +
1

2!

(

12(x− 2)2 + 20(x− 2)(y − 1) + 8(y − 1)2
)

+ · · · .

10. For a differentiable function f(x, y),

f(−2, 4) = 6, fx(−2, 4) = 3, fy(−2, 4) = 1.

Use a 1st-degree Taylor approximation at (−2, 4) to approximate f(−2.1, 4.1).

The 1st-degree Taylor approximation is

f(x, y) ≈ 6 + (3(x+ 2) + (y − 4)) .

Hence,
f(−2.1, 4.1) ≈ 6 + 3(−0.1) + 0.1 = 5.8.

11. Find the tangent plane and the normal line to the surface

z = x(2x+ y)3 at (x, y) = (2,−3).
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When (x, y) = (2,−3),
z = 2 · 13 = 2.

The point of tangency is (2,−3, 2).

∂f

∂x
= 6x(2x+ y)2 + (2x+ y)3,

∂f

∂x
(2,−3) = 13.

∂f

∂y
= 3x(2x+ y)2,

∂f

∂y
(2,−3) = 6.

The normal vector is
(

−∂f
∂x
,−∂f

∂y
, 1

)

= (−13,−6, 1).

The normal line is
x− 2 = −13t, y + 3 = −6t, z − 2 = t.

The tangent plane is

−13(x− 2)− 6(y + 3) + (z − 2) = 0, or − 13x− 6y + z = −6.

12. Find the tangent plane to the surface

x = u2 − 3v2, y =
4u

v
, z = 2u2v3 at (u, v) = (1, 1).

u = 1 and v = 1 give the point of tangency: (x, y, z) = (−2, 4, 2).
Next,

~Tu =

(

2u,
4

v
, 4uv3

)

and ~Tv =

(

−6v,−4u

v2
, 6u2v2

)

.

Thus,
~Tu(1, 1) = (2, 4, 4) and ~Tv(1, 1) = (−6,−4, 6).

The normal vector is given by

~Tu(1, 1)× ~Tv(1, 1) =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

2 4 4
−6 −4 6

∣

∣

∣

∣

∣

∣

= (40,−36, 16).

The tangent plane is

40(x+ 2)− 36(y − 4) + 16(z − 2) = 0, or 10x− 9y + 4z = −48.

13. Use a linear approximation to z = f(x, y) = x2 − y2 at the point (2, 1) to approximate f(1.9, 1.1).

f(2, 1) = 3, so the point of tangency is (2, 1, 3). A normal vector for a function z = f(x, y) is given by

~N =

(

∂f

∂x
,
∂f

∂y
,−1

)

= (2x,−2y,−1), ~N(2, 1) = (4,−2,−1).

Hence, the tangent plane is

4(x− 2)− 2(y − 1)− (z − 3) = 0, or z = 3 + 4(x− 2)− 2(y − 1).
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Substitute x = 1.9 and y = 1.1:

z = 3 + 4(−0.1)− 2(0.1) = 2.4.

14. Let f(x, y) =
(x+ 4)2

y
.

(a) Find a unit vector at (−3, 1) which points in the direction of most rapid increase.

(b) Find the rate of most rapid increase at (−3, 1).

∇f(x, y) =
(

2(x+ 4)

y
,− (x+ 4)2

y2

)

.

∇f(−3, 1) = (2,−1), ‖∇f(−3, 1)‖ =
√
5.

(a) Find a unit vector at (−3, 1) which points in the direction of most rapid increase is
1√
5
(2,−1).

(b) Find the rate of most rapid increase at (−3, 1) is
√
5.

15. Find the gradient of f(x, y, z) =
1

√

x2 + y2 + z2 + 1
and show that it always points toward the origin.

∇f =

( −x
(x2 + y2 + z2 + 1)3/2

,
−y

(x2 + y2 + z2 + 1)3/2
,

−z
(x2 + y2 + z2 + 1)3/2

)

=

−1

(x2 + y2 + z2 + 1)3/2
(x, y, z).

(x, y, z) is the radial vector from the origin (0, 0, 0) to the point (x, y, z). Since ∇f is a negative
multiple of this vector ∇f always points inward toward the origin.

16. Let f(x, y) =
√

x2 + 2y + 3. Find the directional derivative of f at the point (3, 2) in the direction of
the vector (−4, 3).

∇f(x, y) =
(

x
√

x2 + 2y + 3
,

1
√

x2 + 2y + 3

)

.

∇f(3, 2) =
(

3

4
,
1

4

)

.

Hence,

Df(−4,3)(3, 2) =

(

3

4
,
1

4

)

· (−4, 3)

‖(−4, 3)‖ =

(

3

4
,
1

4

)

· (−4, 3)

5
= − 9

20
.

17. Find the rate of change of f(x, y, z) = xy − yz + xz at the point (1,−2,−2) in the direction toward the
origin. Is f increasing or decreasing in this direction?
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First, compute the gradient at the point:

∇f = (y + z, x− z,−y + x) , ∇f(1,−2,−2) = (−4, 3, 3).

Next, determine the direction vector. The point is P (1,−2,−2), so the direction toward the origin
Q(0, 0, 0) is −−→

PQ = (−1, 2, 2).

Make this into a unit vector by dividing by its length:

−−→
PQ

‖−−→PQ‖
=

1

3
(−1, 2, 2).

Finally, take the dot product of the unit vector with the gradient:

Df~v(1,−2,−2) = ∇f(1,−2,−2) ·
−−→
PQ

‖−−→PQ‖
= (−4, 3, 3) · 1

3
(−1, 2, 2) =

16

3
.

f is increasing in this direction, since the directional derivative is positive.

18. The rate of change of f(x, y) at (1,−1) is 2 in the direction toward (5,−1) and is
6

5
in the direction of

the vector (−3,−4). Find ∇f(1,−1).

The direction from (1,−1) toward the point (5,−1) is given by the vector (4, 0). This vector has length
4, so

2 = ∇f(1,−1) · (4, 0)
4

= (fx, fy) ·
(4, 0)

4
= fx.

The vector (−3,−4) has length 5, so

6

5
= ∇f(1,−1) · (−3,−4)

5
= (fx, fy) ·

(−3,−4)

5
= −3

5
fx − 4

5
fy.

Thus, 6 = −3fx − 4fy.
I have two equations involving fx and fy. Solving simultaneously, I obtain fx = 2 and fy = −3. Hence,

∇f(1,−1) = (2,−3).

19. Calvin Butterball sits in his go-cart on the surface

z = x3 − 2x2y + x2 + xy2 − 2y3 + y2 at the point (1, 1, 0).

If his go-cart is pointed in the direction of the vector ~v = (15,−8), at what rate will it roll downhill?

The rate at which he rolls is given by the directional derivative. The gradient is

∇f = (3x2 − 4xy + 2x+ y2,−2x2 + 2xy − 6y2 + 2y), and ∇f(1, 1) = (2,−4).

Since ‖(15,−8)‖ = 17,

Df~v(1, 1) = (2,−4) · (15,−8)

17
=

62

17
= 3.64705 . . . .
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20. Find the tangent plane to x2 − y2 + 2yz + z5 = 6 at the point (2, 1, 1).

Write w = x2 − y2 + 2yz + z5 − 6. (Take the original surface and drag everything to one side of the
equation.) The original surface is w = 0, so it’s a level surface of w. Since the gradient ∇w is perpendicular
to the level surfaces of w, it follows that ∇w must be perpendicular to the original surface.

The gradient is
∇w = (2x,−2y + 2z, 2y+ 5z4), ∇w(2, 1, 1) = (4, 0, 7).

The vector (4, 0, 7) is perpendicular to the tangent plane. Hence, the plane is

4(x− 2) + 0 · (y − 1) + 7(z − 1) = 0, or 4x+ 7z = 15.

21. Suppose that z = f(x, y) and (x, y) = g(u, v) are given by

z = x4 + 3xy2 − y2, (x, y) = (sin 5u+ cos v, cos 3u+ sin 2v).

Find
∂z

∂u
and

∂z

∂v
.

∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u
= (4x3 + 3y2)(5 cos 5u) + (6xy − 2y)(−3 sin 3u).

∂z

∂v
=
∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v
= (4x3 + 3y2)(− sin v) + (6xy − 2y)(2 cos 2v).

22. Let r and θ be the standard polar coordinates variables. Use the Chain Rule to find
∂f

∂r
and

∂f

∂θ
, for

f(x, y) = xex + ey.

∂f

∂r
=
∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r
= (xex + ex)(cos θ) + (ey)(sin θ),

∂f

∂θ
=
∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ
= (xex + ex)(−r sin θ) + (ey)(r cos θ).

23. Suppose u = f(x, y, z) and x = φ(s, t), y = ψ(s, t), z = µ(s, t). Use the Chain Rule to write down an

expression for
∂u

∂t
.

This diagram shows the dependence of the variables.

yx

x

s

st

t

s t

y
z

s t

z

u

u

x

zx

z

y y

u
u
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There are 3 paths from u to t, which give rise to the 3 terms in the following sum:

∂u

∂t
=
∂u

∂x

∂x

∂t
+
∂u

∂y

∂y

∂t
+
∂u

∂z

∂z

∂t
.

24. Suppose that w = f(x, y), x = g(r, s, t), and y = h(r, t, s). Use the Chain Rule to find an expression for
∂2f

∂t2
.

By the Chain Rule,
∂w

∂t
=
∂w

∂x

∂x

∂t
+
∂w

∂y

∂y

∂t
.

Next, differentiate with respect to t, applying the Product Rule to the terms on the right:

∂2f

∂t2
=
∂w

∂x

∂2x

∂t2
+
∂x

∂t

∂

∂t

(

∂w

∂x

)

+
∂w

∂y

∂2y

∂t2
+
∂y

∂t

∂

∂t

(

∂w

∂x

)

.

Since
∂w

∂x
and

∂w

∂y
are functions of x and y, I must apply the Chain Rule in computing their derivatives

with respect to t. I get

∂2f

∂t2
=
∂w

∂x

∂2x

∂t2
+
∂x

∂t

(

∂

∂x

(

∂w

∂x

)

∂x

∂t
+

∂

∂y

(

∂w

∂x

)

∂y

∂t

)

+
∂w

∂y

∂2y

∂t2
+
∂y

∂t

(

∂

∂x

(

∂w

∂y

)

∂x

∂t
+

∂

∂y

(

∂w

∂y

)

∂y

∂t

)

=

∂w

∂x

∂2x

∂t2
+
∂x

∂t

(

∂2w

∂x2
∂x

∂t
+

∂2w

∂x∂y

∂y

∂t

)

+
∂w

∂y

∂2y

∂t2
+
∂y

∂t

(

∂2w

∂x∂y

∂x

∂t
+
∂2w

∂y2
∂y

∂t

)

.

25. Locate and classify the critical points of

z = x2y − 4xy +
1

3
y3 − 3

2
y2.

∂z

∂x
= 2xy − 4y,

∂z

∂y
= x2 − 4x+ y2 − 3y,

∂2z

∂x2
= 2y,

∂2z

∂x∂y
= 2x− 4,

∂2z

∂y2
= 2y − 3.

Set the first partials equal to 0:

2xy − 4y = 0, (x− 2)y = 0.

x2 − 4x+ y2 − 3y = 0.

Solve simultaneously:

(x− 2)y = 0
ւ ց

x = 2 y = 0
x2 − 4x+ y2 − 3y = 0 x2 − 4x+ y2 − 3y = 0

y2 − 3y − 4 = 0 x2 − 4x = 0
(y − 4)(y + 1) = 0 x(x − 4) = 0

ւ ↓ ↓ ց
y = 4 y = −1 x = 0 x = 4
(2, 4) (2,−1) (0, 0) (4, 0)

11



Test the critical points:

point zxx zyy zxy ∆ result

(2, 4) 8 5 0 40 min

(2,−1) −2 −5 0 10 max

(0, 0) 0 −3 −4 −16 saddle

(4, 0) 0 −3 4 −16 saddle

26. Locate and classify the critical points of

f(x, y) = 6xy2 − 2x3y + y2.

fx = 6y2 − 6x2y, fy = 12xy − 2x3 + 2y,

fxx = −12xy, fxy = 12y − 6x2, fyy = 12x+ 2.

Set the first partials equal to 0:

(1) 6y2 − 6x2y = 0, y(y − x2) = 0,

(2) 12xy − 2x3 + 2y = 0, 6xy − x3 + y = 0.

Solve simultaneously:

(1) y(y − x2) = 0
ւ ց

y = 0 y = x2

(2) 6xy − x3 + y = 0 (2) 6xy − x3 + y = 0
x3 = 0 6x3 − x3 + x2 = 0
x = 0 5x3 + x2 = 0
(0, 0) x2(5x+ 1) = 0

ւ ց
x2 = 0 5x+ 1 = 0

x = 0 x = −1

5

y = 0 y =
1

25

(0, 0)

(

−1

5
,
1

25

)

Test the critical points:

point fxx = −12xy fyy = 12x+ 2 fxy = 12y − 6x2 ∆ result

(0, 0) 0 2 0 0 test fails
(

−1

5
,
1

25

)

12

125
−2

5

6

25
− 12

125
saddle

12



27. Find the critical points of

z = (x2 + y2)e−x2
−4y2

.

You do not need to classify them.

zx = −2x(x2 + y2)e−x2
−4y2

+ 2xe−x2
−4y2

= −2x(x2 + y2 − 1)e−x2
−4y2

,

zy = −8y(x2 + y2)e−x2
−4y2

+ 2ye−x2
−4y2

= −2y(4x2 + 4y2 − 1)e−x2
−4y2

.

Set the first partials equal to 0:

−2x(x2 + y2 − 1)e−x2
−4y2

= 0, x(x2 + y2 − 1) = 0.

−2y(4x2 + 4y2 − 1)e−x2
−4y2

= 0, y(4x2 + 4y2 − 1) = 0.

Solve simultaneously:

x(x2 + y2 − 1) = 0
ւ ց

x = 0 x2 + y2 = 1
y(4x2 + 4y2 − 1) = 0 y(4x2 + 4y2 − 1) = 0

y(4y2 − 1) = 0 3y = 0
(A) (B)

(A)
y(4y2 − 1) = 0

ւ ց
y = 0 4y2 − 1 = 0

(0, 0)

ւ ց
y =

1

2
y = −1

2
(

0,
1

2

) (

0,−1

2

)

(B)
3y = 0
y = 0
x2 = 1

ւ ց
x = 1 x = −1
(1, 0) (−1, 0)

28. Find the points on the sphere x2 + y2 + z2 = 36 which are closest to and farthest from the point
(4,−3, 12).

The (square of the) distance from (x, y, z) to (4,−3, 12) is

w = (x− 4)2 + (y + 3)2 + (z − 12)2.

The constraint is g(x, y, z) = x2 + y2 + z2 − 36 = 0.
The equations to be solved are

2(x− 4) = 2xλ, x− 4 = xλ.

2(y + 3) = 2yλ, y + 3 = yλ.

13



2(z − 12) = 2zλ, z − 12 = zλ.

x2 + y2 + z2 = 36.

Note that if x = 0 in the first equation, the equation becomes −4 = 0, which is impossible. Therefore,
x 6= 0, and I may divide by x.

Solve simultaneously:

x− 4 = xλ

λ =
x− 4

x
y + 3 = yλ

y + 3 =
y(x− 4)

x
xy + 3x = yx− 4y

y = −3

4
x

z − 12 = zλ

z − 12 =
z(x− 4)

x
xz − 12x = xz − 4z

z = 3x
x2 + y2 + z2 = 36

x2 +
9

16
x2 + 9x2 = 36

169x2 = 576

x2 =
576

169
ւ ց

x =
24

13
x = −24

13

y = −18

13
y =

18

13

z =
72

13
z = −72

13
(

24

13
,−18

13
,
72

13

) (

−24

13
,
18

13
,−72

13

)

Test the points:

(

24

13
,−18

13
,
72

13

) (

−24

13
,
18

13
,−72

13

)

w(x, y, z) 49 361

(

24

13
,−18

13
,
72

13

)

is closest to (4,−3, 12) and

(

−24

13
,
18

13
,−72

13

)

is farthest from (4,−3, 12).

29. A rectangular box (with a bottom and a top) is to have a total surface area of 6c2, where c > 0. Show
that the box of largest volume satisfying this condition is a cube with sides of length c.

Suppose the dimensions of the box are x, y, and z. Then the volume is

V = xyz.

The surface area is
6c2 = 2xy + 2yz + 2xz, so 3c2 = xy + yz + xz.

The constraint is
g(x, y, z) = xy + yz + xz − 3c2 = 0.

14



Set up the multiplier equation:

∇V = λ∇g
(yz, xz, xy) = λ(y + z, x+ z, x+ y)

This gives the equations

yz = λ(y + z).

xz = λ(x+ z).

xy = λ(x+ y).

3c2 = xy + yz + xz.

Note that x = y = z = c satisfies the constraint and gives a volume of c3. Thus, the solution to the
problem certainly has V > 0. If any of x, y, or z is 0, the volume is 0, which is not a max. So I may assume
x, y, z > 0.

Note that this also implies that y + z > 0, so I may divide by y + z.
Now solve the equations:

yz = λ(y + z)

λ =
yz

y + z

xz = λ(x + z)

xz =
yz

y + z
(x + z)

xz(y + z) = yz(x+ z)

xyz + xz2 = xyz + yz2

xz2 = yz2

x = y

xy = λ(x + y)

xy =
yz

y + z
(x + y)

xy(y + z) = yz(x+ y)

xy2 + xyz = xyz + y2z

xy2 = y2z

x = z

3c2 = xy + yz + xz

3c2 = x2 + x2 + x2

x = c

y = c

z = c

The critical point is (c, c, c), which is a cube with sides of length c.

30. (a) Find the critical points of

w = 4xyz subject to the constraint x+ y + z = 3.

15



(b) Express w as a function of x and y by eliminating z, then consider the behavior of w for x = y. Explain
why the critical points in (a) can’t give absolute maxes or mins.

The constraint is
g(x, y, z) = x+ y + z − 3 = 0.

Set up the multiplier equation:
∇f = λ∇g

(4yz, 4xz, 4xy) = λ(1, 1, 1)

This gives the equations
4yz = λ.

4xz = λ.

4xy = λ.

x+ y + z = 3.

Solve the equations:

4yz = λ

4xz = λ

4yz = 4xz
yz − xz = 0
(y − x)z = 0

ւ ց
y = x z = 0

4xy = λ λ = 0
4xy = 4xz 4xy = 0
xy − xz = 0 xy = 0
x(y − z) = 0 ↓ ց

ւ ↓ x = 0 y = 0
x = 0 y = z x+ y + z = 3 x+ y + z = 3
y = 0 x+ y + z = 3 y = 3 x = 3

x+ y + z = 3 3x = 3 (0, 3, 0) (3, 0, 0)

z = 3 x = 1

(0, 0, 3) y = 1

z = 1

(1, 1, 1)

Test the points:

point w = 4xyz

(3, 0, 0) 0

(0, 3, 0) 0

(0, 0, 3) 0

(1, 1, 1) 1

(b) Solving the constraint for z gives z = 3− x− y. Then

w = 4xy(3− x− y).

Consider the behavior of w along the line x = y:

w = 4x2(3 − 2x).
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The factor 4x2 is positive. As x → infty, the term 3 − 2x becomes large and negative, so w → −∞.
As x→ −∞, the term 3− 2x becomes large and positive, so w → ∞.

This means that you can find values of x, y, and z satisfying the constraint for which w is arbitrarily
big or small. Hence, the critical points found in (a) can’t be absolute maxes or mins.

31. Find the largest and smallest values of f(x, y) = 4x2y subject to the constraint x2 + y2 = 36.

The constraint is g(x, y) = x2 + y2 − 36 = 0.
Set up the multiplier equation:

∇f = λ∇g
(8xy, 4x2) = λ(2x, 2y)

This gives two equations:

8xy = 2xλ, 4xy = xλ = 0, x(4y − λ) = 0.

4x2 = 2yλ.

Solve those equations simultaneously with the constraint:

x(4y − λ) = 0
ւ ց

x = 0 λ = 4y
x2 + y2 = 36 4x2 = 2yλ
y2 = 36 4x2 = 2y · 4y

ւ ↓ x2 = 2y2

y = 6 y = −6 2y2 + y2 = 36
(0, 6) (0,−6) 3y2 = 36

y2 = 12

ւ ↓
y = 2

√
3 y = −2

√
3

x2 = 24 x2 = 24

ւ ↓ ↓ ց
x = 2

√
6 x = −2

√
6 x = 2

√
6 x = −2

√
6

(

2
√
6, 2

√
3
) (

−2
√
6, 2

√
3
) (

2
√
6,−2

√
3
) (

−2
√
6,−2

√
3
)

Test the points:

(0, 6) (0,−6)
(

2
√
6, 2

√
3
) (

−2
√
6, 2

√
3
) (

2
√
6,−2

√
3
) (

−2
√
6,−2

√
3
)

f(x, y) 0 0 192
√
3 192

√
3 −192

√
3 −192

√
3

max max min min

To be conscious that you are ignorant is a great step to knowledge. - Benjamin Disraeli
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