Review Sheet for Test 2

These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence of a topic does not imply that it won't appear on the test.

1. Find the domain of the function $f(x, y)=\frac{x^{2}+y^{2}}{(x-1)(y-3)}$.
2. Find the domain and range of $f(x, y, z)=\frac{z^{2}+1}{\sqrt{1-x^{2}-y^{2}}}$.
3. Compute $\lim _{(x, y) \rightarrow(2,1)} \frac{3 x+2 y+51}{x^{2}+3 y^{2}}$.
4. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{4}+5 y^{4}}{x^{4}+3 x^{2} y^{2}+y^{4}}$ is undefined.
5. Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}+y^{2}\right)^{3 / 2}}{x^{2}+y^{2}+1}$ by converting to polar coordinates.
6. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{4}}{x^{4}+3 x^{2} y^{2}+y^{4}}$ is defined and find its value.
7. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}\frac{3 x+y}{5 y-6} & \text { if }(x, y) \neq(1,4) \\ \frac{2}{3} & \text { if }(x, y)=(1,4)\end{cases}
$$

Determine whether f is continuous at $(1,4)$.
8. Compute the following partial derivatives:
(a) $\frac{\partial}{\partial x} x^{2} \sin \left(x^{3}+5 y\right)$ and $\frac{\partial}{\partial y} x^{2} \sin \left(x^{3}+5 y\right)$.
(b) $\frac{\partial}{\partial s} \frac{s^{2}}{s^{3}+t^{3}}$ and $\frac{\partial}{\partial t} \frac{s^{2}}{s^{3}+t^{3}}$.
(c) $\frac{\partial^{3} f}{\partial x^{2} \partial y}$, if

$$
f(x, y)=e^{3 x}+4 x^{2} y-\ln y
$$

(d) $\frac{\partial^{3} f}{\partial x \partial y \partial z}$, if

$$
f(x, y, z)=3 x+8 y-2 z+x^{2} y^{3} z^{4}
$$

9. Let

$$
f(x, y)=x^{3}+5 x y^{2}-y^{4}
$$

Construct the Taylor series for f at the point $(2,1)$, writing terms through the $2^{\text {nd }}$ order.
10. For a differentiable function $f(x, y)$,

$$
f(-2,4)=6, \quad f_{x}(-2,4)=3, \quad f_{y}(-2,4)=1
$$

Use a $1^{\text {st }}$-degree Taylor approximation at $(-2,4)$ to approximate $f(-2.1,4.1)$.
11. Find the tangent plane and the normal line to the surface

$$
z=x(2 x+y)^{3} \quad \text { at } \quad(x, y)=(2,-3)
$$

12. Find the tangent plane to the surface

$$
x=u^{2}-3 v^{2}, \quad y=\frac{4 u}{v}, \quad z=2 u^{2} v^{3} \quad \text { at } \quad(u, v)=(1,1) .
$$

13. Use a linear approximation to $z=f(x, y)=x^{2}-y^{2}$ at the point $(2,1)$ to approximate $f(1.9,1.1)$.
14. Let $f(x, y)=\frac{(x+4)^{2}}{y}$.
(a) Find a unit vector at $(-3,1)$ which points in the direction of most rapid increase.
(b) Find the rate of most rapid increase at $(-3,1)$.
15. Find the gradient of $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}+1}}$ and show that it always points toward the origin.
16. Let $f(x, y)=\sqrt{x^{2}+2 y+3}$. Find the directional derivative of f at the point $(3,2)$ in the direction of the vector $(-4,3)$.
17. Find the rate of change of $f(x, y, z)=x y-y z+x z$ at the point $(1,-2,-2)$ in the direction toward the origin. Is f increasing or decreasing in this direction?
18. The rate of change of $f(x, y)$ at $(1,-1)$ is 2 in the direction toward $(5,-1)$ and is $\frac{6}{5}$ in the direction of the vector $(-3,-4)$. Find $\nabla f(1,-1)$.
19. Calvin Butterball sits in his go-cart on the surface

$$
z=x^{3}-2 x^{2} y+x^{2}+x y^{2}-2 y^{3}+y^{2} \quad \text { at the point }(1,1,0)
$$

If his go-cart is pointed in the direction of the vector $\vec{v}=(15,-8)$, at what rate will it roll downhill?
20. Find the tangent plane to $x^{2}-y^{2}+2 y z+z^{5}=6$ at the point $(2,1,1)$.
21. Suppose that $z=f(x, y)$ and $(x, y)=g(u, v)$ are given by

$$
z=x^{4}+3 x y^{2}-y^{2}, \quad(x, y)=(\sin 5 u+\cos v, \cos 3 u+\sin 2 v)
$$

Find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$.
22. Let r and θ be the standard polar coordinates variables. Use the Chain Rule to find $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$, for $f(x, y)=x e^{x}+e^{y}$.
23. Suppose $u=f(x, y, z)$ and $x=\phi(s, t), y=\psi(s, t), z=\mu(s, t)$. Use the Chain Rule to write down an expression for $\frac{\partial u}{\partial t}$.
24. Suppose that $w=f(x, y), x=g(r, s, t)$, and $y=h(r, t, s)$. Use the Chain Rule to find an expression for $\frac{\partial^{2} f}{\partial t^{2}}$.
25. Locate and classify the critical points of

$$
z=x^{2} y-4 x y+\frac{1}{3} y^{3}-\frac{3}{2} y^{2} .
$$

26. Locate and classify the critical points of

$$
f(x, y)=6 x y^{2}-2 x^{3} y+y^{2}
$$

27. Find the critical points of

$$
z=\left(x^{2}+y^{2}\right) e^{-x^{2}-4 y^{2}}
$$

You do not need to classify them.
28. Find the points on the sphere $x^{2}+y^{2}+z^{2}=36$ which are closest to and farthest from the point $(4,-3,12)$.
29. A rectangular box (with a bottom and a top) is to have a total surface area of $6 c^{2}$, where $c>0$. Show that the box of largest volume satisfying this condition is a cube with sides of length c.
30. (a) Find the critical points of

$$
w=4 x y z \quad \text { subject to the constraint } \quad x+y+z=3
$$

(b) Express w as a function of x and y by eliminating z, then consider the behavior of w for $x=y$. Explain why the critical points in (a) can't give absolute maxes or mins.
31. Find the largest and smallest values of $f(x, y)=4 x^{2} y$ subject to the constraint $x^{2}+y^{2}=36$.

Solutions to the Review Sheet for Test 2

1. Find the domain of the function $f(x, y)=\frac{x^{2}+y^{2}}{(x-1)(y-3)}$.

Since the denominator of the fraction can't be 0 , the domain is

$$
\{(x, y) \mid x \neq 1 \quad \text { and } \quad y \neq 3\}
$$

It consists of all points except those lying on the lines $x=1$ or $y=3$.
2. Find the domain and range of $f(x, y, z)=\frac{z^{2}+1}{\sqrt{1-x^{2}-y^{2}}}$.

Since the expression inside the square root must be positive, the function is defined for $1-x^{2}-y^{2}>0$. Therefore, the domain is the set of points (x, y, z) such that $x^{2}+y^{2}<1-$ that is, the interior of the cylinder $x^{2}+y^{2}=1$ of radius 1 whose axis is the z-axis. (There are no restrictions on z.)

To find the range, note that $z^{2}+1 \geq 1$. Also,

$$
1-x^{2}-y^{2} \leq 1, \quad \text { and } \quad \sqrt{1-x^{2}-y^{2}} \leq 1, \quad \text { so } \quad \frac{1}{\sqrt{1-x^{2}-y^{2}}} \geq 1
$$

Hence,

$$
f(x, y, z)=\frac{z^{2}+1}{\sqrt{1-x^{2}-y^{2}}} \geq 1 \cdot 1=1
$$

This shows that every output of f is greater than or equal to 1 .
On the other hand, suppose $k \geq 1$. Then

$$
f(0,0, \sqrt{k-1})=\frac{(\sqrt{k-1})^{2}+1}{\sqrt{1-0-0}}=k .
$$

This shows that every number greater than or equal to 1 is an output of f.
Hence, the range of f is the set of numbers w such that $w \geq 1$.
3. Compute $\lim _{(x, y) \rightarrow(2,1)} \frac{3 x+2 y+51}{x^{2}+3 y^{2}}$.

$$
\lim _{(x, y) \rightarrow(2,1)} \frac{3 x+2 y+5}{x^{2}+3 y^{2}}=\frac{6+2+5}{4+3}=\frac{13}{7} .
$$

4. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{4}+5 y^{4}}{x^{4}+3 x^{2} y^{2}+y^{4}}$ is undefined.

If you approach $(0,0)$ along the x-axis $(y=0)$, you get

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{4}+5 y^{4}}{x^{4}+3 x^{2} y^{2}+y^{4}}=\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{4}}{x^{4}}=\lim _{(x, y) \rightarrow(0,0)} 3=3
$$

If you approach $(0,0)$ along the line $y=x$, you get

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{4}+5 y^{4}}{x^{4}+3 x^{2} y^{2}+y^{4}}=\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{4}+5 x^{4}}{x^{4}+3 x^{4}+x^{4}}=\lim _{(x, y) \rightarrow(0,0)} \frac{8 x^{4}}{5 x^{4}}=\lim _{(x, y) \rightarrow(0,0)} \frac{8}{5}=\frac{8}{5}
$$

Since the function approaches different values as you approach $(0,0)$ in different ways, the limit is undefined. \quad]
5. Compute $\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}+y^{2}\right)^{3 / 2}}{x^{2}+y^{2}+1}$ by converting to polar coordinates.

Set $r^{2}=x^{2}+y^{2}$. As $(x, y) \rightarrow(0,0)$, I have $r \rightarrow 0$. So

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}+y^{2}\right)^{3 / 2}}{x^{2}+y^{2}+1}=\lim _{r \rightarrow 0} \frac{\left(r^{2}\right)^{3 / 2}}{r^{2}+1}=\lim _{r \rightarrow 0} \frac{r^{3}}{r^{2}+1}=\frac{0}{0+1}=0
$$

6. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{4}}{x^{4}+3 x^{2} y^{2}+y^{4}}$ is defined and find its value.

$$
\left|\frac{x^{4} y^{4}}{x^{4}+3 x^{2} y^{2}+y^{4}}\right| \leq\left|\frac{x^{4} y^{4}}{x^{4}}\right|=\left|y^{4}\right| \rightarrow 0 \quad \text { as } \quad(x, y) \rightarrow(0,0)
$$

Therefore,

$$
\lim _{(x, y) \rightarrow(0,0)}\left|\frac{x^{4} y^{4}}{x^{4}+3 x^{2} y^{2}+y^{4}}\right|=0
$$

Hence,

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y^{4}}{x^{4}+3 x^{2} y^{2}+y^{4}}=0
$$

7. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}\frac{3 x+y}{5 y-6} & \text { if }(x, y) \neq(1,4) \\ \frac{2}{3} & \text { if }(x, y)=(1,4)\end{cases}
$$

Determine whether f is continuous at $(1,4)$.

$$
\lim _{(x, y) \rightarrow(1,4)} f(x, y)=\lim _{(x, y) \rightarrow(1,4)} \frac{3 x+y}{5 y-6}=\frac{3+4}{20-6}=\frac{1}{2} .
$$

Since $f(1,4)=\frac{1}{2}$,

$$
\lim _{(x, y) \rightarrow(1,4)} f(x, y) \neq f(1,4)
$$

Therefore, f is not continuous at $(1,4)$.
8. Compute the following partial derivatives:
(a) $\frac{\partial}{\partial x} x^{2} \sin \left(x^{3}+5 y\right)$ and $\frac{\partial}{\partial y} x^{2} \sin \left(x^{3}+5 y\right)$.
(b) $\frac{\partial}{\partial s} \frac{s^{2}}{s^{3}+t^{3}}$ and $\frac{\partial}{\partial t} \frac{s^{2}}{s^{3}+t^{3}}$.
(c) $\frac{\partial^{3} f}{\partial x^{2} \partial y}$, if

$$
f(x, y)=e^{3 x}+4 x^{2} y-\ln y
$$

(d) $\frac{\partial^{3} f}{\partial x \partial y \partial z}$, if

$$
f(x, y, z)=3 x+8 y-2 z+x^{2} y^{3} z^{4}
$$

(a)

$$
\begin{gathered}
\frac{\partial}{\partial x} x^{2} \sin \left(x^{3}+5 y\right)=3 x^{4} \cos \left(x^{3}+5 y\right)+2 x \sin \left(x^{3}+5 y\right) \\
\frac{\partial}{\partial y} x^{2} \sin \left(x^{3}+5 y\right)=5 x^{2} \cos \left(x^{3}+5 y\right) .
\end{gathered}
$$

(b)

$$
\begin{gathered}
\frac{\partial}{\partial s} \frac{s^{2}}{s^{3}+t^{3}}=\frac{\left(s^{3}+t^{3}\right)(2 s)-\left(s^{2}\right)\left(3 s^{2}\right)}{\left(s^{3}+t^{3}\right)^{2}} \\
\frac{\partial}{\partial t} \frac{s^{2}}{s^{3}+t^{3}}=-\frac{3 s^{2} t^{2}}{\left(s^{3}+t^{3}\right)^{2}}
\end{gathered}
$$

(c)

$$
\frac{\partial f}{\partial y}=4 x^{2}-\frac{1}{y}
$$

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial x \partial y}=8 x . \\
\frac{\partial^{3} f}{\partial x^{2} \partial y}=8 .
\end{gathered}
$$

(d)

$$
\begin{gathered}
\frac{\partial f}{\partial z}=-2+4 x^{2} y^{3} z^{3} . \\
\frac{\partial^{2} f}{\partial y \partial z}=12 x^{2} y^{2} z^{3} . \\
\frac{\partial^{3} f}{\partial x \partial y \partial z}=24 x y^{2} z^{3} .
\end{gathered}
$$

9. Let

$$
f(x, y)=x^{3}+5 x y^{2}-y^{4} .
$$

Construct the Taylor series for f at the point $(2,1)$, writing terms through the $2^{\text {nd }}$ order.

$$
\begin{gathered}
\frac{\partial f}{\partial x}=3 x^{2}+5 y^{2}, \quad \frac{\partial f}{\partial y}=10 x y-4 y^{3} . \\
\frac{\partial^{2} f}{\partial x^{2}}=6 x, \quad \frac{\partial^{2} f}{\partial x \partial y}=10 y, \quad \frac{\partial^{2} f}{\partial y^{2}}=10 x-12 y^{2} .
\end{gathered}
$$

At $(2,1)$,

$$
\begin{array}{cl}
f(2,1)=17, & \frac{\partial f}{\partial x}(2,1)=17, \quad \frac{\partial f}{\partial y}(2,1)=16 . \\
\frac{\partial^{2} f}{\partial x^{2}}(2,1)=12, & \frac{\partial^{2} f}{\partial x \partial y}(2,1)=10, \quad \frac{\partial^{2} f}{\partial y^{2}}(2,1)=8 .
\end{array}
$$

The series is

$$
f(x, y)=17+(17(x-2)+16(y-1))+\frac{1}{2!}\left(12(x-2)^{2}+20(x-2)(y-1)+8(y-1)^{2}\right)+\cdots . \quad \square
$$

10. For a differentiable function $f(x, y)$,

$$
f(-2,4)=6, \quad f_{x}(-2,4)=3, \quad f_{y}(-2,4)=1 .
$$

Use a $1^{\text {st }}$-degree Taylor approximation at $(-2,4)$ to approximate $f(-2.1,4.1)$.
The $1^{\text {st }}$-degree Taylor approximation is

$$
f(x, y) \approx 6+(3(x+2)+(y-4)) .
$$

Hence,

$$
f(-2.1,4.1) \approx 6+3(-0.1)+0.1=5.8
$$

11. Find the tangent plane and the normal line to the surface

$$
z=x(2 x+y)^{3} \quad \text { at } \quad(x, y)=(2,-3) .
$$

When $(x, y)=(2,-3)$,

$$
z=2 \cdot 1^{3}=2
$$

The point of tangency is $(2,-3,2)$.

$$
\begin{gathered}
\frac{\partial f}{\partial x}=6 x(2 x+y)^{2}+(2 x+y)^{3}, \quad \frac{\partial f}{\partial x}(2,-3)=13 . \\
\frac{\partial f}{\partial y}=3 x(2 x+y)^{2}, \quad \frac{\partial f}{\partial y}(2,-3)=6
\end{gathered}
$$

The normal vector is

$$
\left(-\frac{\partial f}{\partial x},-\frac{\partial f}{\partial y}, 1\right)=(-13,-6,1)
$$

The normal line is

$$
x-2=-13 t, \quad y+3=-6 t, \quad z-2=t
$$

The tangent plane is

$$
-13(x-2)-6(y+3)+(z-2)=0, \quad \text { or } \quad-13 x-6 y+z=-6
$$

12. Find the tangent plane to the surface

$$
x=u^{2}-3 v^{2}, \quad y=\frac{4 u}{v}, \quad z=2 u^{2} v^{3} \quad \text { at } \quad(u, v)=(1,1) .
$$

$u=1$ and $v=1$ give the point of tangency: $(x, y, z)=(-2,4,2)$.
Next,

$$
\vec{T}_{u}=\left(2 u, \frac{4}{v}, 4 u v^{3}\right) \quad \text { and } \quad \vec{T}_{v}=\left(-6 v,-\frac{4 u}{v^{2}}, 6 u^{2} v^{2}\right)
$$

Thus,

$$
\vec{T}_{u}(1,1)=(2,4,4) \quad \text { and } \quad \vec{T}_{v}(1,1)=(-6,-4,6)
$$

The normal vector is given by

$$
\vec{T}_{u}(1,1) \times \vec{T}_{v}(1,1)=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & 4 & 4 \\
-6 & -4 & 6
\end{array}\right|=(40,-36,16)
$$

The tangent plane is

$$
40(x+2)-36(y-4)+16(z-2)=0, \quad \text { or } \quad 10 x-9 y+4 z=-48
$$

13. Use a linear approximation to $z=f(x, y)=x^{2}-y^{2}$ at the point $(2,1)$ to approximate $f(1.9,1.1)$. $f(2,1)=3$, so the point of tangency is $(2,1,3)$. A normal vector for a function $z=f(x, y)$ is given by

$$
\vec{N}=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y},-1\right)=(2 x,-2 y,-1), \quad \vec{N}(2,1)=(4,-2,-1)
$$

Hence, the tangent plane is

$$
4(x-2)-2(y-1)-(z-3)=0, \quad \text { or } \quad z=3+4(x-2)-2(y-1)
$$

Substitute $x=1.9$ and $y=1.1$:

$$
z=3+4(-0.1)-2(0.1)=2.4
$$

14. Let $f(x, y)=\frac{(x+4)^{2}}{y}$.
(a) Find a unit vector at $(-3,1)$ which points in the direction of most rapid increase.
(b) Find the rate of most rapid increase at $(-3,1)$.

$$
\begin{gathered}
\nabla f(x, y)=\left(\frac{2(x+4)}{y},-\frac{(x+4)^{2}}{y^{2}}\right) . \\
\nabla f(-3,1)=(2,-1), \quad\|\nabla f(-3,1)\|=\sqrt{5}
\end{gathered}
$$

(a) Find a unit vector at $(-3,1)$ which points in the direction of most rapid increase is $\frac{1}{\sqrt{5}}(2,-1)$.
(b) Find the rate of most rapid increase at $(-3,1)$ is $\sqrt{5}$.
15. Find the gradient of $f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}+1}}$ and show that it always points toward the origin.

$$
\begin{gathered}
\nabla f=\left(\frac{-x}{\left(x^{2}+y^{2}+z^{2}+1\right)^{3 / 2}}, \frac{-y}{\left(x^{2}+y^{2}+z^{2}+1\right)^{3 / 2}}, \frac{-z}{\left(x^{2}+y^{2}+z^{2}+1\right)^{3 / 2}}\right)= \\
\frac{-1}{\left(x^{2}+y^{2}+z^{2}+1\right)^{3 / 2}}(x, y, z)
\end{gathered}
$$

(x, y, z) is the radial vector from the origin $(0,0,0)$ to the point (x, y, z). Since ∇f is a negative multiple of this vector ∇f always points inward toward the origin. $\quad \square$
16. Let $f(x, y)=\sqrt{x^{2}+2 y+3}$. Find the directional derivative of f at the point $(3,2)$ in the direction of the vector $(-4,3)$.

$$
\begin{aligned}
\nabla f(x, y)= & \left(\frac{x}{\sqrt{x^{2}+2 y+3}}, \frac{1}{\sqrt{x^{2}+2 y+3}}\right) \\
& \nabla f(3,2)=\left(\frac{3}{4}, \frac{1}{4}\right)
\end{aligned}
$$

Hence,

$$
D f_{(-4,3)}(3,2)=\left(\frac{3}{4}, \frac{1}{4}\right) \cdot \frac{(-4,3)}{\|(-4,3)\|}=\left(\frac{3}{4}, \frac{1}{4}\right) \cdot \frac{(-4,3)}{5}=-\frac{9}{20}
$$

17. Find the rate of change of $f(x, y, z)=x y-y z+x z$ at the point $(1,-2,-2)$ in the direction toward the origin. Is f increasing or decreasing in this direction?

First, compute the gradient at the point:

$$
\nabla f=(y+z, x-z,-y+x), \quad \nabla f(1,-2,-2)=(-4,3,3) .
$$

Next, determine the direction vector. The point is $P(1,-2,-2)$, so the direction toward the origin $Q(0,0,0)$ is

$$
\overrightarrow{P Q}=(-1,2,2) .
$$

Make this into a unit vector by dividing by its length:

$$
\frac{\overrightarrow{P Q}}{\|\overrightarrow{P Q}\|}=\frac{1}{3}(-1,2,2) .
$$

Finally, take the dot product of the unit vector with the gradient:

$$
D f_{\vec{v}}(1,-2,-2)=\nabla f(1,-2,-2) \cdot \frac{\overrightarrow{P Q}}{\|\overrightarrow{P Q}\|}=(-4,3,3) \cdot \frac{1}{3}(-1,2,2)=\frac{16}{3} .
$$

f is increasing in this direction, since the directional derivative is positive.
18. The rate of change of $f(x, y)$ at $(1,-1)$ is 2 in the direction toward $(5,-1)$ and is $\frac{6}{5}$ in the direction of the vector $(-3,-4)$. Find $\nabla f(1,-1)$.

The direction from $(1,-1)$ toward the point $(5,-1)$ is given by the vector $(4,0)$. This vector has length 4, so

$$
2=\nabla f(1,-1) \cdot \frac{(4,0)}{4}=\left(f_{x}, f_{y}\right) \cdot \frac{(4,0)}{4}=f_{x} .
$$

The vector $(-3,-4)$ has length 5 , so

$$
\frac{6}{5}=\nabla f(1,-1) \cdot \frac{(-3,-4)}{5}=\left(f_{x}, f_{y}\right) \cdot \frac{(-3,-4)}{5}=-\frac{3}{5} f_{x}-\frac{4}{5} f_{y} .
$$

Thus, $6=-3 f_{x}-4 f_{y}$.
I have two equations involving f_{x} and f_{y}. Solving simultaneously, I obtain $f_{x}=2$ and $f_{y}=-3$. Hence, $\nabla f(1,-1)=(2,-3) . \quad \square$
19. Calvin Butterball sits in his go-cart on the surface

$$
z=x^{3}-2 x^{2} y+x^{2}+x y^{2}-2 y^{3}+y^{2} \quad \text { at the point }(1,1,0) .
$$

If his go-cart is pointed in the direction of the vector $\vec{v}=(15,-8)$, at what rate will it roll downhill?
The rate at which he rolls is given by the directional derivative. The gradient is

$$
\nabla f=\left(3 x^{2}-4 x y+2 x+y^{2},-2 x^{2}+2 x y-6 y^{2}+2 y\right), \quad \text { and } \quad \nabla f(1,1)=(2,-4) .
$$

Since $\|(15,-8)\|=17$,

$$
D f_{\vec{v}}(1,1)=(2,-4) \cdot \frac{(15,-8)}{17}=\frac{62}{17}=3.64705 \ldots
$$

20. Find the tangent plane to $x^{2}-y^{2}+2 y z+z^{5}=6$ at the point $(2,1,1)$.

Write $w=x^{2}-y^{2}+2 y z+z^{5}-6$. (Take the original surface and drag everything to one side of the equation.) The original surface is $w=0$, so it's a level surface of w. Since the gradient ∇w is perpendicular to the level surfaces of w, it follows that ∇w must be perpendicular to the original surface.

The gradient is

$$
\nabla w=\left(2 x,-2 y+2 z, 2 y+5 z^{4}\right), \quad \nabla w(2,1,1)=(4,0,7)
$$

The vector $(4,0,7)$ is perpendicular to the tangent plane. Hence, the plane is

$$
4(x-2)+0 \cdot(y-1)+7(z-1)=0, \quad \text { or } \quad 4 x+7 z=15 .
$$

21. Suppose that $z=f(x, y)$ and $(x, y)=g(u, v)$ are given by

$$
z=x^{4}+3 x y^{2}-y^{2}, \quad(x, y)=(\sin 5 u+\cos v, \cos 3 u+\sin 2 v)
$$

Find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$.

$$
\begin{aligned}
& \frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}=\left(4 x^{3}+3 y^{2}\right)(5 \cos 5 u)+(6 x y-2 y)(-3 \sin 3 u) . \\
& \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}=\left(4 x^{3}+3 y^{2}\right)(-\sin v)+(6 x y-2 y)(2 \cos 2 v) .
\end{aligned}
$$

22. Let r and θ be the standard polar coordinates variables. Use the Chain Rule to find $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$, for $f(x, y)=x e^{x}+e^{y}$.

$$
\begin{gathered}
\frac{\partial f}{\partial r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r}=\left(x e^{x}+e^{x}\right)(\cos \theta)+\left(e^{y}\right)(\sin \theta) \\
\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta}=\left(x e^{x}+e^{x}\right)(-r \sin \theta)+\left(e^{y}\right)(r \cos \theta)
\end{gathered}
$$

23. Suppose $u=f(x, y, z)$ and $x=\phi(s, t), y=\psi(s, t), z=\mu(s, t)$. Use the Chain Rule to write down an expression for $\frac{\partial u}{\partial t}$.

This diagram shows the dependence of the variables.

There are 3 paths from u to t, which give rise to the 3 terms in the following sum:

$$
\frac{\partial u}{\partial t}=\frac{\partial u}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial u}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial u}{\partial z} \frac{\partial z}{\partial t}
$$

24. Suppose that $w=f(x, y), x=g(r, s, t)$, and $y=h(r, t, s)$. Use the Chain Rule to find an expression for $\frac{\partial^{2} f}{\partial t^{2}}$.

By the Chain Rule,

$$
\frac{\partial w}{\partial t}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial t}
$$

Next, differentiate with respect to t, applying the Product Rule to the terms on the right:

$$
\frac{\partial^{2} f}{\partial t^{2}}=\frac{\partial w}{\partial x} \frac{\partial^{2} x}{\partial t^{2}}+\frac{\partial x}{\partial t} \frac{\partial}{\partial t}\left(\frac{\partial w}{\partial x}\right)+\frac{\partial w}{\partial y} \frac{\partial^{2} y}{\partial t^{2}}+\frac{\partial y}{\partial t} \frac{\partial}{\partial t}\left(\frac{\partial w}{\partial x}\right)
$$

Since $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ are functions of x and y, I must apply the Chain Rule in computing their derivatives with respect to t. I get

$$
\begin{gathered}
\frac{\partial^{2} f}{\partial t^{2}}=\frac{\partial w}{\partial x} \frac{\partial^{2} x}{\partial t^{2}}+\frac{\partial x}{\partial t}\left(\frac{\partial}{\partial x}\left(\frac{\partial w}{\partial x}\right) \frac{\partial x}{\partial t}+\frac{\partial}{\partial y}\left(\frac{\partial w}{\partial x}\right) \frac{\partial y}{\partial t}\right)+\frac{\partial w}{\partial y} \frac{\partial^{2} y}{\partial t^{2}}+\frac{\partial y}{\partial t}\left(\frac{\partial}{\partial x}\left(\frac{\partial w}{\partial y}\right) \frac{\partial x}{\partial t}+\frac{\partial}{\partial y}\left(\frac{\partial w}{\partial y}\right) \frac{\partial y}{\partial t}\right)= \\
\frac{\partial w}{\partial x} \frac{\partial^{2} x}{\partial t^{2}}+\frac{\partial x}{\partial t}\left(\frac{\partial^{2} w}{\partial x^{2}} \frac{\partial x}{\partial t}+\frac{\partial^{2} w}{\partial x \partial y} \frac{\partial y}{\partial t}\right)+\frac{\partial w}{\partial y} \frac{\partial^{2} y}{\partial t^{2}}+\frac{\partial y}{\partial t}\left(\frac{\partial^{2} w}{\partial x \partial y} \frac{\partial x}{\partial t}+\frac{\partial^{2} w}{\partial y^{2}} \frac{\partial y}{\partial t}\right) .
\end{gathered}
$$

25. Locate and classify the critical points of

$$
\begin{gathered}
z=x^{2} y-4 x y+\frac{1}{3} y^{3}-\frac{3}{2} y^{2} \\
\frac{\partial z}{\partial x}=2 x y-4 y, \quad \frac{\partial z}{\partial y}=x^{2}-4 x+y^{2}-3 y \\
\frac{\partial^{2} z}{\partial x^{2}}=2 y, \quad \frac{\partial^{2} z}{\partial x \partial y}=2 x-4, \quad \frac{\partial^{2} z}{\partial y^{2}}=2 y-3
\end{gathered}
$$

Set the first partials equal to 0 :

$$
\begin{gathered}
2 x y-4 y=0, \quad(x-2) y=0 \\
x^{2}-4 x+y^{2}-3 y=0
\end{gathered}
$$

Solve simultaneously:

Test the critical points:

point	$z_{x x}$	$z_{y y}$	$z_{x y}$	Δ	result
$(2,4)$	8	5	0	40	\min
$(2,-1)$	-2	-5	0	10	\max
$(0,0)$	0	-3	-4	-16	saddle
$(4,0)$	0	-3	4	-16	saddle

26. Locate and classify the critical points of

$$
\begin{gathered}
f(x, y)=6 x y^{2}-2 x^{3} y+y^{2} \\
f_{x}=6 y^{2}-6 x^{2} y, \quad f_{y}=12 x y-2 x^{3}+2 y \\
f_{x x}=-12 x y, \quad f_{x y}=12 y-6 x^{2}, \quad f_{y y}=12 x+2
\end{gathered}
$$

Set the first partials equal to 0 :

$$
\begin{equation*}
6 y^{2}-6 x^{2} y=0, \quad y\left(y-x^{2}\right)=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
12 x y-2 x^{3}+2 y=0, \quad 6 x y-x^{3}+y=0 \tag{2}
\end{equation*}
$$

Solve simultaneously:

$$
\begin{aligned}
& \text { (1) } y\left(y-x^{2}\right)=0 \\
& y=0 \\
& \text { (2) } 6 x y-x^{3}+y=0 \\
& x^{3}=0 \\
& x=0 \\
& (0,0) \\
& y=x^{2} \\
& \text { (2) } 6 x y-x^{3}+y=0 \\
& 6 x^{3}-x^{3}+x^{2}=0 \\
& 5 x^{3}+x^{2}=0 \\
& x^{2}(5 x+1)=0 \\
& x^{2}=0 \\
& x=0 \\
& y=0 \\
& (0,0) \\
& 5 x+1=0 \\
& x=-\frac{1}{5} \\
& y=\frac{1}{25} \\
& \left(-\frac{1}{5}, \frac{1}{25}\right)
\end{aligned}
$$

Test the critical points:

point	$f_{x x}=-12 x y$	$f_{y y}=12 x+2$	$f_{x y}=12 y-6 x^{2}$	Δ	result
$(0,0)$	0	2	0	0	test fails
$\left(-\frac{1}{5}, \frac{1}{25}\right)$	$\frac{12}{125}$	$-\frac{2}{5}$	$\frac{6}{25}$	$-\frac{12}{125}$	saddle

27. Find the critical points of

$$
z=\left(x^{2}+y^{2}\right) e^{-x^{2}-4 y^{2}}
$$

You do not need to classify them.

$$
\begin{gathered}
z_{x}=-2 x\left(x^{2}+y^{2}\right) e^{-x^{2}-4 y^{2}}+2 x e^{-x^{2}-4 y^{2}}=-2 x\left(x^{2}+y^{2}-1\right) e^{-x^{2}-4 y^{2}} \\
z_{y}=-8 y\left(x^{2}+y^{2}\right) e^{-x^{2}-4 y^{2}}+2 y e^{-x^{2}-4 y^{2}}=-2 y\left(4 x^{2}+4 y^{2}-1\right) e^{-x^{2}-4 y^{2}}
\end{gathered}
$$

Set the first partials equal to 0 :

$$
\begin{gathered}
-2 x\left(x^{2}+y^{2}-1\right) e^{-x^{2}-4 y^{2}}=0, \quad x\left(x^{2}+y^{2}-1\right)=0 . \\
-2 y\left(4 x^{2}+4 y^{2}-1\right) e^{-x^{2}-4 y^{2}}=0, \quad y\left(4 x^{2}+4 y^{2}-1\right)=0 .
\end{gathered}
$$

Solve simultaneously:

\[

\]

(A)

\[

\]

$$
\begin{equation*}
3 y=0 \tag{B}
\end{equation*}
$$

$$
y=0
$$

$$
x^{2}=1
$$

$$
\begin{array}{lll}
\\
x=1 \\
(1.0)
\end{array} \quad \begin{aligned}
& \\
& \\
& \\
& \\
& (-1.0)
\end{aligned}
$$

28. Find the points on the sphere $x^{2}+y^{2}+z^{2}=36$ which are closest to and farthest from the point $(4,-3,12)$.

The (square of the) distance from (x, y, z) to $(4,-3,12)$ is

$$
w=(x-4)^{2}+(y+3)^{2}+(z-12)^{2}
$$

The constraint is $g(x, y, z)=x^{2}+y^{2}+z^{2}-36=0$.
The equations to be solved are

$$
\begin{aligned}
& 2(x-4)=2 x \lambda, \quad x-4=x \lambda \\
& 2(y+3)=2 y \lambda, \quad y+3=y \lambda
\end{aligned}
$$

$$
\begin{gathered}
2(z-12)=2 z \lambda, \quad z-12=z \lambda \\
x^{2}+y^{2}+z^{2}=36
\end{gathered}
$$

Note that if $x=0$ in the first equation, the equation becomes $-4=0$, which is impossible. Therefore, $x \neq 0$, and I may divide by x.

Solve simultaneously:

$$
\begin{aligned}
& x-4=x \lambda \\
& \lambda=\frac{x-4}{x} \\
& y+3=y \lambda \\
& y+3=\frac{y(x-4)}{x} \\
& x y+3 x=\stackrel{x}{x}-4 y \\
& y=-\frac{3}{4} x \\
& z-12=z \lambda \\
& z-12=\frac{z(x-4)}{x} \\
& x z-12 x=x z-4 z \\
& z=3 x \\
& x^{2}+y^{2}+z^{2}=36 \\
& x^{2}+\frac{9}{16} x^{2}+9 x^{2}=36 \\
& 169 x^{2}=576 \\
& x^{2}=\frac{576}{169} \\
& x=-\frac{24}{13} \\
& x=\frac{24}{13} \\
& y=-\frac{18}{13} \\
& y=\frac{18}{13} \\
& z=\frac{72}{13} \\
& z=-\frac{72}{13} \\
& \left(\frac{24}{13},-\frac{18}{13}, \frac{72}{13}\right) \\
& \left(-\frac{24}{13}, \frac{18}{13},-\frac{72}{13}\right)
\end{aligned}
$$

Test the points:

	$\left(\frac{24}{13},-\frac{18}{13}, \frac{72}{13}\right)$	$\left(-\frac{24}{13}, \frac{18}{13},-\frac{72}{13}\right)$
$w(x, y, z)$	49	361

$\left(\frac{24}{13},-\frac{18}{13}, \frac{72}{13}\right)$ is closest to $(4,-3,12)$ and $\left(-\frac{24}{13}, \frac{18}{13},-\frac{72}{13}\right)$ is farthest from $(4,-3,12) . \quad \square$
29. A rectangular box (with a bottom and a top) is to have a total surface area of $6 c^{2}$, where $c>0$. Show that the box of largest volume satisfying this condition is a cube with sides of length c.

Suppose the dimensions of the box are x, y, and z. Then the volume is

$$
V=x y z
$$

The surface area is

$$
6 c^{2}=2 x y+2 y z+2 x z, \quad \text { so } \quad 3 c^{2}=x y+y z+x z
$$

The constraint is

$$
g(x, y, z)=x y+y z+x z-3 c^{2}=0
$$

Set up the multiplier equation:

$$
\begin{aligned}
\nabla V & =\lambda \nabla g \\
(y z, x z, x y) & =\lambda(y+z, x+z, x+y)
\end{aligned}
$$

This gives the equations

$$
\begin{gathered}
y z=\lambda(y+z) \\
x z=\lambda(x+z) \\
x y=\lambda(x+y) \\
3 c^{2}=x y+y z+x z
\end{gathered}
$$

Note that $x=y=z=c$ satisfies the constraint and gives a volume of c^{3}. Thus, the solution to the problem certainly has $V>0$. If any of x, y, or z is 0 , the volume is 0 , which is not a max. So I may assume $x, y, z>0$.

Note that this also implies that $y+z>0$, so I may divide by $y+z$.
Now solve the equations:

$$
\begin{aligned}
y z & =\lambda(y+z) \\
\lambda=\frac{y z}{y+z} & \\
x z & =\lambda(x+z) \\
x z & =\frac{y z}{y+z}(x+z) \\
x z(y+z) & =y z(x+z) \\
x y z+x z^{2} & =x y z+y z^{2} \\
x z^{2} & =y z^{2} \\
x & =y \\
x y & =\lambda(x+y) \\
x y & =\frac{y z}{y+z}(x+y) \\
x y(y+z) & =y z(x+y) \\
x y^{2}+x y z & =x y z+y^{2} z \\
x y^{2} & =y^{2} z \\
x & =z \\
3 c^{2} & =x y+y z+x z \\
3 c^{2} & =x^{2}+x^{2}+x^{2} \\
x & =c \\
y & =c \\
z & =c
\end{aligned}
$$

The critical point is (c, c, c), which is a cube with sides of length c.
30. (a) Find the critical points of

$$
w=4 x y z \quad \text { subject to the constraint } \quad x+y+z=3
$$

(b) Express w as a function of x and y by eliminating z, then consider the behavior of w for $x=y$. Explain why the critical points in (a) can't give absolute maxes or mins.

The constraint is

$$
g(x, y, z)=x+y+z-3=0
$$

Set up the multiplier equation:

$$
\begin{aligned}
\nabla f & =\lambda \nabla g \\
(4 y z, 4 x z, 4 x y) & =\lambda(1,1,1)
\end{aligned}
$$

This gives the equations

$$
\begin{gathered}
4 y z=\lambda \\
4 x z=\lambda \\
4 x y=\lambda \\
x+y+z=3 .
\end{gathered}
$$

Solve the equations:

$$
\begin{aligned}
& 4 y z=\lambda \\
& 4 x z=\lambda \\
& 4 y z=4 x z \\
& y z-x z=0 \\
& (y-x) z=0 \\
& y=x \\
& z=0 \\
& 4 x y=\lambda \\
& 4 x y=4 x z \\
& x y-x z=0 \\
& x(y-z)=0 \\
& x=0 \\
& y=0 \\
& x+y+z=3 \\
& z=3 \\
& (0,0,3) \\
& y=z \\
& x+y+z=3 \\
& 3 x=3 \\
& x=1 \\
& y=1 \\
& z=1 \\
& (1,1,1)
\end{aligned}
$$

Test the points:

point	$w=4 x y z$
$(3,0,0)$	0
$(0,3,0)$	0
$(0,0,3)$	0
$(1,1,1)$	1

\square
(b) Solving the constraint for z gives $z=3-x-y$. Then

$$
w=4 x y(3-x-y) .
$$

Consider the behavior of w along the line $x=y$:

$$
w=4 x^{2}(3-2 x)
$$

The factor $4 x^{2}$ is positive. As $x \rightarrow$ infty, the term $3-2 x$ becomes large and negative, so $w \rightarrow-\infty$. As $x \rightarrow-\infty$, the term $3-2 x$ becomes large and positive, so $w \rightarrow \infty$.

This means that you can find values of x, y, and z satisfying the constraint for which w is arbitrarily big or small. Hence, the critical points found in (a) can't be absolute maxes or mins.
31. Find the largest and smallest values of $f(x, y)=4 x^{2} y$ subject to the constraint $x^{2}+y^{2}=36$.

The constraint is $g(x, y)=x^{2}+y^{2}-36=0$.
Set up the multiplier equation:

$$
\begin{aligned}
\nabla f & =\lambda \nabla g \\
\left(8 x y, 4 x^{2}\right) & =\lambda(2 x, 2 y)
\end{aligned}
$$

This gives two equations:

$$
\begin{gathered}
8 x y=2 x \lambda, \quad 4 x y=x \lambda=0, \quad x(4 y-\lambda)=0 \\
4 x^{2}=2 y \lambda
\end{gathered}
$$

Solve those equations simultaneously with the constraint:

Test the points:

	$(0,6)$	$(0,-6)$	$(2 \sqrt{6}, 2 \sqrt{3})$	$(-2 \sqrt{6}, 2 \sqrt{3})$	$(2 \sqrt{6},-2 \sqrt{3})$	$(-2 \sqrt{6},-2 \sqrt{3})$
$f(x, y)$	0	0	$192 \sqrt{3}$	$192 \sqrt{3}$	$-192 \sqrt{3}$	$-192 \sqrt{3}$
			\max	\max	\min	\min

To be conscious that you are ignorant is a great step to knowledge. - Benjamin Disraeli

