
Math 311
9-29-2020

Review Problems for Test 3

These problems are provided to help you study. The presence of a problem on this handout does not
imply that there will be a similar problem on the test. And the absence of a topic does not imply that it
won’t appear on the test.

1. Compute the exact value of

∫ 2

0

∫ 1+
√
2x−x2

0

dy dx.

2. Compute the exact value of

∫ 4

−4

∫

√
16−x2

−
√
16−x2

∫ 4

√
x2+y2

dz dy dx.

3. Find the volume of the solid lying below the paraboloid z = x2+ y2 and above the region in the x-y plane
bounded by y = x2 and y = x+ 2.

4. Compute

∫ 1

0

∫ 1

√
y

1√
x3 + 4

dx dy.

5. Compute
∫ 2

0

∫ 1

y/2

3y2 cos(x4) dx dy +

∫ 0

−2

∫ 1

−y/2

3y2 cos(x4) dx dy.

6. Compute

∫ 2

0

∫

√
2x−x2

−
√
2x−x2

√

x2 + y2 dy dx.

7. Find the volume of the region which lies above the cone z =
1√
3

√

x2 + y2 and below the hemisphere

z =
√

1− x2 − y2.

8. Compute

∫ 1

0

∫

√
1−x2

0

∫ x+y

0

√

x2 + y2 dz dy dx.

9. Find the area of the part of the surface z = 9− x2 − y2 which lies inside the cylinder x2 + y2 = 1.

10. Find the area of the surface

x = 2u cos v, y = u2, z = 2u sin v, 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π.

11. A lamina occupies the region in the x-y-plane bounded above by y = 1 and below by y = x2. The
density is δ(x, y) = y + 1. Find the coordinates of the center of mass.

12. Let R be the region between z = 2x2 + 2y2 and z = x2 + y2 + 4. Find the centroid of R.

13. Compute

∫∫

R

(x− 2y) dx dy, where R is the parallelogram with vertices A(0, 1), B(2, 0), C(4, 2), D(2, 3)

(counterclockwise).

14. (a) Let R be the region in the first quadrant bounded above by y = 2 − x2 and bounded below by
y = 1− x2, from x = 0 to x = 1. Find a transformation which carries the square

{

0 ≤ u ≤ 1
0 ≤ v ≤ 1

}

onto R.
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(b) Use a change of variables to evaluate

∫∫

R

(4x2 + y) dx dy.

15. Let f(x, y, z) = 3x+ y, and let

~σ(t) =

(

1

3
t3 + 1, 8t− 3, 2t2

)

, 0 ≤ t ≤ 1.

Compute

∫

~σ

f ds.

16. Compute

∫

~σ

(x+ y) dx− (x− y) dy, where σ is the path consisting of the segment from (0, 1) to (−1, 0),

the segment from (−1, 0) to (0,−1), the segment from (0,−1) to (1, 0), and the segment from (1, 0) to (0, 1).

17. Compute

∫

~σ

~F · −→ds, where ~σ is the curve of intersection of x2 + y2 = 1 and the plane z = 2 + 2x + 3y,

traversed counterclockwise as viewed from above, and ~F = (−2y, 2x, 2).

18. Let ~F (x, y, z) = (x2y + z, xz, x+ 3yz). Compute curl ~F and div ~F .

19. Let ~σ(t) be the path which consists of the curve

(

3t

2t+ 1
, te2(t−1),

1

8
t2(t2 + 1)3

)

for 0 ≤ t ≤ 1, followed

by the segment from (1, 1, 1) to (1, 2,−1).

Compute
∫

~σ

(y2 + z3) dx+ (2xy − 2y) dy + (3xz2 + 4) dz,

20. Let ~σ be the boundary of the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, traversed in the counterclockwise direction.

Compute
∫

~σ

(x2y − xy2) dx+

(

2x2y +
1

3
x3

)

dy.

21. Let ~σ be the boundary of the region bounded below by y = x2 and above by y = 4, traversed counter-
clockwise. Compute

∫

~σ

(4xy − 2y2) dx+ (2x2 + y4) dy.

22. Find the area of the region enclosed by the ellipse

x2

4
+

y2

9
= 1.

Solutions to the Review Problems for Test 3

1. Compute the exact value of

∫ 2

0

∫ 1+
√
2x−x2

0

dy dx.
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Rewrite y = 1 +
√
2x− x2:

y − 1 =
√

2x− x2

(y − 1)2 = 2x− x2

x2 − 2x+ (y − 1)2 = 0

x2 − 2x+ 1 + (y − 1)2 = 1

(x − 1)2 + (y − 1)2 = 1

Thus, y = 1+
√
2x− x2 is the top half of the circle of radius 1 centered at (1, 1). The region is bounded

above by this semicircle, below by the x-axis, and on the sides by x = 0 and x = 2:

0.5 1 1.5 2

0.5

1

1.5

2

0.5 1 1.5 2

0.5

1

1.5

2

Since the integrand is 1, the integral represents the area of the region. The area is the sum of the area
of the semicircle (which has radius 1) and the rectangle below it (which is 2 by 1). Thus,

∫ 2

0

∫ 1+
√
2x−x2

0

dy dx =
1

2
π · 12 + 2 · 1 = 2 +

π

2
.

2. Compute the exact value of

∫ 4

−4

∫

√
16−x2

−
√
16−x2

∫ 4

√
x2+y2

dz dy dx.

The projection of the region into the x-y plane is

{

−4 ≤ x ≤ 4
−
√
16− x2 ≤ y ≤

√
16− x2

}

This is the circle of radius 4 centered at the origin.
The bottom of the region is the cone z =

√

x2 + y2 and the top is the plane z = 4.

-4
-2

0

2

4

-4
-2

0

2

4

0

1

2

3

4

-4
-2

0

2

4

-4
-2

0

2

4
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Thus, the region is a cone with height h = 4 and radius r = 4.
Since the integrand is 1, the integral represent the volume of the region. A cone of height h and radius

r has volume
1

3
πr2h. Therefore,

∫ 4

−4

∫

√
16−x2

−
√
16−x2

∫ 4

√
x2+y2

dz dy dx =
1

3
π · 42 · 4 =

64π

3
.

3. Find the volume of the solid lying below the paraboloid z = x2+ y2 and above the region in the x-y plane
bounded by y = x2 and y = x+ 2.

The projection into the x-y plane is:

-1 -0.5 0.5 1 1.5 2

1

2

3

4

-1 -0.5 0.5 1 1.5 2

1

2

3

4

Since x2 and x+2 intersect at x = −1 and at x = 2, the region is described by the following inequalities:

{

−1 ≤ x ≤ 2
x2 ≤ y ≤ x+ 2

}

The top of the solid is z = x2 + y2. The bottom is the x-y plane z = 0. The picture below shows the
top and the bottom; the solid is the region between them.

-1
0

1
2

0

1

2

3
4

0

5

10

15

20
0

1

2

3
4

The volume is

∫ 2

−1

∫ x+2

x2

(x2 + y2) dy dx =

∫ 2

−1

[

x2y +
1

3
y3
]x+2

x2

dx =

∫ 2

−1

(

x3 + 2x2 +
1

3
(x+ 2)3 − x4 − 1

3
x6

)

dx =

[

1

4
x4 +

2

3
x3 +

1

12
(x + 2)4 − 1

5
x5 − 1

21
x7

]2

−1

=
639

35
= 18.25714 . . . .
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4. Compute

∫ 1

0

∫ 1

√
y

1√
x3 + 4

dx dy.

Interchange the order of integration:

{

0 ≤ y ≤ 1√
y ≤ x ≤ 1

}

→

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

→
{

0 ≤ x ≤ 1
0 ≤ y ≤ x2

}

Thus,

∫ 1

0

∫ 1

√
y

1√
x3 + 4

dx dy =

∫ 1

0

∫ x2

0

1√
x3 + 4

dy dx =

∫ 1

0

1√
x3 + 4

[y]
x2

0 dx =

∫ 1

0

x2

√
x3 + 4

dx =

[

2

3
(x3 + 4)1/2

]1

0

=
2

3
(
√
5− 2) = 0.15737 . . . .

Here’s the work for the integral:

∫

x2

√
x3 + 4

dx =

∫

x2

√
u
· du

3x2
=

1

3

∫

du√
u
=

2

3

√
u+ c =

2

3

√

x3 + 4 + c.

[

u = x3 + 4, du = 3x2 dx, dx =
du

3x2

]

5. Compute
∫ 2

0

∫ 1

y/2

3y2 cos(x4) dx dy +

∫ 0

−2

∫ 1

−y/2

3y2 cos(x4) dx dy.

Interchange the order of integration:
{

0 ≤ y ≤ 2
y

2
≤ x ≤ 1

} {

−2 ≤ y ≤ 0

−y

2
≤ x ≤ 1

}

0.2 0.4 0.6 0.8 1

-2

-1

1

2

0.2 0.4 0.6 0.8 1

-2

-1

1

2

5



{

0 ≤ x ≤ 1
−2x ≤ y ≤ 2x

}

Thus,

∫ 2

0

∫ 1

y/2

3y2 cos(x4) dx dy +

∫ 0

−2

∫ 1

−y/2

3y2 cos(x4) dx dy =

∫ 1

0

∫ 2x

−2x

3y2 cos(x4) dy dx =

∫ 1

0

cos(x4)
[

y3
]2x

−2x
dx = 16

∫ 1

0

x3 cos(x4) dx = 4
[

sin(x4)
]1

0
= 4 sin 1 = 3.36588 . . . .

Here’s the work for the integral:

∫

x3 cos(x4) dx =

∫

x3 cosu · du

4x3
=

1

4

∫

cosu du =
1

4
sinu+ c =

1

4
sin(x4) + c.

[

u = x4, du = 4x3 dx, dx =
du

4x3

]

6. Compute

∫ 2

0

∫

√
2x−x2

−
√
2x−x2

√

x2 + y2 dy dx.

Note that y = ±
√
2x− x2 may be rewritten as follows:

y2 = 2x− x2

x2 − 2x+ y2 = 0

x2 − 2x+ 1 + y2 = 1

(x− 1)2 + y2 = 1

This is a circle of radius 1 centered at (1, 0).
I’ll convert to polar:

{

0 ≤ x ≤ 2
−
√
2x− x2 ≤ y ≤

√
2x− x2

}

0.5 1 1.5 2

-1

-0.5

0.5

1

0.5 1 1.5 2

-1

-0.5

0.5

1

{

−π

2
≤ θ ≤ π

2
0 ≤ r ≤ 2 cos θ

}

To get the polar equation for the circle, start with x2 − 2x+ y2 = 0. Then

x2 + y2 = 2x

r2 = 2r cos θ

r = 2 cos θ
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Note that the whole circle is traced out once as θ goes from −π

2
to

π

2
(not, for example, from 0 to 2π).

The integrand is
√

x2 + y2 =
√
r2 = r. So

∫ 2

0

∫

√
2x−x2

−
√
2x−x2

√

x2 + y2 dy dx =

∫ π/2

−π/2

∫ 2 cos θ

0

r2 dr dθ =

∫ π/2

−π/2

[

1

3
r3
]2 cos θ

0

dθ =

8

3

∫ π/2

−π/2

(cos θ)3 dθ =
8

3

[

sin θ − 1

3
(sin θ)3

]π/2

−π/2

=
32

9
.

Here’s the work for the integral:

∫

(cos θ)3 dθ =

∫

(cos θ)2(cos θ) dθ =

∫

(

1− (sin θ)2
)

(cos θ) dθ =

∫

(1− u2) cos θ · du

cos θ
=

∫

(1− u2) du =

[

u = sin θ, du = cos θ dθ, dθ =
du

cos θ

]

u− 1

3
u3 + c = sin θ − 1

3
(sin θ)3 + c.

7. Find the volume of the region which lies above the cone z =
1√
3

√

x2 + y2 and below the hemisphere

z =
√

1− x2 − y2.

-0.5
0

0.5

-0.5 0 0.5

0

0.25

0.5

0.75

1

-0.5
0

0.5

0 0.5

I’ll do the integral in spherical coordinates. It’s pretty clear that the ranges for θ and ρ are 0 ≤ θ ≤ 2π
and 0 ≤ ρ ≤ 1. What is the range for φ? I need to figure out the angle between the side of the cone and the
z-axis.

To do this, take a random point on the cone: For instance, if x = 1 and y = 0, then z =
1√
3
. Here’s

the picture:
1 3

1/   3 1
2/   3 2p/3

I drew a triangle with horizontal side 1 (since r =
√

x2 + y2 =
√
12 + 02 = 1) and vertical side

1√
3
(the

value of z). I found the hypotenuse using Pythagoras. Then I scaled the triangle up by multiplying all the
sides by

√
3 so I could see the ratios better. In the second triangle, I can clearly see that the cone angle is

π

3
.
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Therefore, the range on φ is 0 ≤ φ ≤ π

3
.

The volume is

∫∫∫

R

dx dy dz =

∫ 2π

0

∫ π/3

0

∫ 1

0

ρ2 sinφdρ dφ dθ = 2π

∫ π/3

0

sinφ

[

1

3
ρ3
]1

0

dφ =
2π

3

∫ π/3

0

sinφdφ =

2π

3
[− cosφ]

π/3
0 =

π

3
= 1.04719 . . . .

8. Compute

∫ 1

0

∫

√
1−x2

0

∫ x+y

0

√

x2 + y2 dz dy dx.

I’ll convert to cylindrical coordinates. The ranges 0 ≤ x ≤ 1 and 0 ≤ y ≤
√
1− x2 describe the interior

of the circle of radius 1 centered at the origin which lies in the first quadrant:

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

In polar coordinates, it is
{

0 ≤ θ ≤ π

2
0 ≤ r ≤ 1

}

Note that
x+ y = r cos θ + r sin θ.

Hence, the limits on z become 0 ≤ z ≤ r cos θ + r sin θ.
The integrand is

√

x2 + y2 =
√
r2 = r.

Therefore,

∫ 1

0

∫

√
1−x2

0

∫ x+y

0

√

x2 + y2 dz dy dx =

∫ π/2

0

∫ 1

0

∫ r cos θ+r sin θ

0

r2 dz dr dθ =

∫ π/2

0

∫ 1

0

r2 [z]r cos θ+r sin θ
0 dr dθ =

∫ π/2

0

(cos θ + sin θ)

∫ 1

0

r3 dr dθ =

∫ π/2

0

(cos θ + sin θ)

[

1

4
r4
]1

0

dθ =

1

4

∫ π/2

0

(cos θ + sin θ) dθ =
1

4
[sin θ − cos θ]π/20 =

1

2
.

9. Find the area of the part of the surface z = 9− x2 − y2 which lies inside the cylinder x2 + y2 = 1.

Since I’ll be integrating over the region inside x2 + y2 = 1, I’ll do the double integral in polar. The
region of integration is

{

0 ≤ θ ≤ 2π
0 ≤ r ≤ 1

}

.
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The normal vector is

~N =

(

− ∂z

∂x
,−∂z

∂y
, 1

)

= (2x, 2y, 1).

Hence,

‖vecN‖ =
√

4x2 + 4y2 + 1 =
√

4r2 + 1.

The area is
∫ 2π

0

∫ 1

0

√

4r2 + 1 · r dr dθ = 2π

∫ 1

0

r
√

4r2 + 1 dr = 2π

∫ 5

1

r
√
u · du

8r
=

π

4

∫ 5

1

√
udu =

[

u = 4r2 + 1, du = 8r dr, dr =
du

8r
; r = 0, u = 1; r = 1, u = 5

]

π

4

[

2

3
u3/2

]5

1

=
π

6
(53/2 − 1) = 5.33041 . . . .

10. Find the area of the surface

x = 2u cos v, y = u2, z = 2u sin v, 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π.

~Tu = (2 cos v, 2u, 2 sinv), ~Tv = (−2u sin v, 0, 2u cosv),

~Tu × ~Tv =

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂

2 cos v 2u 2 sin v
−2u sinv 0 2u cos v

∣

∣

∣

∣

∣

∣

= (4u2 cos v,−4u(sin v)2 − 4u(cos v)2, 4u2 sin v) =

(4u2 cos v,−4u, 4u2 sin v),

‖~Tu × ~Tv‖ =
√

16u4(cos v)2 + 16u2 + 16u4(sin v)2 =
√

16u4 + 16u2 = 4u
√

u2 + 1.

The area is
∫ 2π

0

∫ 1

0

4u
√

u2 + 1 du dv = 8π

∫ 1

0

u
√

u2 + 1 du = 8π

[

1

3
(u2 + 1)3/2

]1

0

=
8π

3
(23/2 − 1) = 15.31779 . . . .

Here’s the work for the integral:
∫

u
√

u2 + 1 du =

∫

u
√
w · dw

2u
=

1

2

∫ √
w dw =

1

3
w3/2 + c =

1

3
(u2 + 1)3/2 + c.

[

w = u2 + 1, dw = 2u du, du =
dw

2u

]

11. A lamina occupies the region in the x-y-plane bounded above by y = 1 and below by y = x2. The
density is δ(x, y) = y + 1. Find the coordinates of the center of mass.

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

1.2
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The region is given by
{

−1 ≤ x ≤ 1
x2 ≤ y ≤ 1

}

.

The mass is
∫ 1

−1

∫ 1

x2

(y + 1) dy dx =
32

15
.

Note that the region is symmetric about the y-axis, and that the density is symmetric about the y-axis
(since δ(x, y) = y + 1 does not involve x). By symmetry, it follows that the center of mass must lie on the
y-axis, i.e. that x = 0. Therefore, I only need to find y.

The moment in the y-direction is

my =

∫ 1

−1

∫ 1

x2

y(y + 1) dy dx =
48

35
.

Hence,

y =

48

35
32

15

=
9

14
.

12. Let R be the region between z = 2x2 + 2y2 and z = x2 + y2 + 4. Find the centroid of R.

R is the region between two paraboloids, both opening upward. (Think of the space between two bowls,
one stacked on top of the other.) In the picture below, I’ve cut a chunk out of the surfaces so you can see
the inner one inside the outer one.

 0

 1

 2

 3

 4

 5

 6

 7

 8

x

y

z

The region is symmetric about the z-axis, so x = y = 0. Thus, I just need to find z.
I’ll convert to cylindrical coordinates. Note that

z = 2x2 + 2y2 = 2r2 and z = x2 + y2 + 4 = r2 + 4.

To find where the surfaces intersect, I solve the equations simultaneously:

2r2 = r2 + 4

r2 = 4

r = 2

So the region projects onto the interior of the circle of radius 2 centered at the origin in the x-y-plane.
z = 2r2 is the bottom of the region and z = r2 + 4 is the top. The region is







0 ≤ θ ≤ 2π
0 ≤ r ≤ 2

2r2 ≤ z ≤ r2 + 4






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The volume is

∫ 2π

0

∫ 2

0

(r2 + 4− 2r2)r dr dθ = 2π

∫ 2

0

(4r − r3) dr = 2π

[

2r2 − 1

4
r4
]2

0

= 8π.

The z-moment is

∫ 2π

0

∫ 2

0

∫ r2+4

2r2
z · r dz dr dθ = 2π

∫ 2

0

r

[

1

2
z2
]r2+4

2r2
dr = π

∫ 2

0

r[(r2 + 4)2 − (2r2)2] dr =

π

∫ 2

0

(−3r5 + 8r3 + 16r) drπ

[

−1

6
r6 + 2r4 + 8r2

]2

0

= 32π.

Hence,

z =
32π

8π
= 4.

The centroid is (0, 0, 4).

13. Compute

∫∫

R

(x− 2y) dx dy, where R is the parallelogram with vertices A(0, 1), B(2, 0), C(4, 2), D(2, 3)

(counterclockwise).

y = -(1/2)x + 4

y = -(1/2)x + 1

y = x + 1

y = x - 2

(0,1)

(2,0)

(4,2)

(2,3)

y

x

I’ll find a transformation which carries the unit square

{

0 ≤ u ≤ 1
0 ≤ v ≤ 1

}

onto R.

−−→
AB = (2,−1) and

−−→
AD = (2, 2). The transformation is

[

x

y

]

=

[

2 2
−1 2

] [

u

v

]

+

[

0
1

]

.

If I multiply out and combine terms on the right, then equate corresponding components, I get

x = 2u+ 2v, y = −u+ 2v + 1.

The Jacobian is

det

[

2 −1
2 2

]

= 6.
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The integrand is
x− 2y = (2u+ 2v)− 2(−u+ 2v + 1) = 4u− 2v − 2.

Hence,

∫∫

R

(x− 2y) dx dy =

∫ 1

0

∫ 1

0

(4u− 2v − 2)(6) du dv = 6

∫ 1

0

[

2u2 − 2uv − 2u
]1

0
dv = 6

∫ 1

0

(−2v) dv =

−12

[

1

2
v2
]1

0

= −6.

14. (a) Let R be the region in the first quadrant bounded above by y = 2 − x2 and bounded below by
y = 1− x2, from x = 0 to x = 1. Find a transformation which carries the square

{

0 ≤ u ≤ 1
0 ≤ v ≤ 1

}

onto R.

(b) Use a change of variables to evaluate

∫∫

R

(4x2 + y) dx dy.

x

(a) I’ll parametrize the region by vertical segments. Consider the segment with x-coordinate u. The corre-
sponding points are (u, 1−u2) on y = 1−x2 and (u, 2−u2) on y = 2−x2. The segment from the first point
to the second is

(x, y) = (1− v) · (u, 1− u2) + v · (u, 2− u2) = (u, 1− u2 + v).

So
x = u, y = 1− u2 + v.

(b) The Jacobian is

det

[

1 0
−2u 1

]

= 1.

The function is
4x2 + y = 4u2 + 1− u2 + v = 3u2 + v + 1.

Hence,
∫∫

R

(4x2 + y) dx dy =

∫ 1

0

∫ 1

0

(3u2 + v + 1) du dv =

∫ 1

0

[

u3 + uv + u
]1

0
dv =

12



∫ 1

0

(v + 2) dv =

[

1

2
v2 + 2v

]1

0

=
5

2
.

15. Let f(x, y, z) = 3x+ y, and let

~σ(t) =

(

1

3
t3 + 1, 8t− 3, 2t2

)

, 0 ≤ t ≤ 1.

Compute

∫

~σ

f ds.

To compute the path integral, I need the length of the velocity vector:

~σ ′(t) =
(

t2, 8, 4t
)

.

‖~σ ′(t)‖ =
√

(t2)2 + 82 + (4t)2 =
√

t4 + 16t2 + 64 =
√

(t2 + 8)2 = t2 + 8.

Next,

f(t) = 3

(

1

3
t3 + 1

)

+ (8t− 3) = t3 + 8t.

The integral is

∫

~σ

f ds =

∫ 1

0

(t3 + 8t)(t2 + 8) dt =

∫ 1

0

(

t5 + 16t3 + 64t
)

dt =

[

1

6
t6 + 4t4 + 32t2

]1

0

=
217

6
= 36.16666 . . . .

16. Compute

∫

~σ

(x+ y) dx− (x− y) dy, where σ is the path consisting of the segment from (0, 1) to (−1, 0),

the segment from (−1, 0) to (0,−1), the segment from (0,−1) to (1, 0), and the segment from (1, 0) to (0, 1).

B: y = -x - 1

A: y = x + 1

C: y = x - 1

D: y = 1 - x

(0,1)

(-1,0)

(0,-1)

(1,0)

I’ll break the integral up into four segments, as shown in the picture.
Segment A is y = x+ 1. For this segment, x goes from 0 to −1,

x+ y = 2x+ 1, x− y = −1, dy = dx.

13



The integral is

∫ −1

0

((2x+ 1) dx− (−1) dx) =

∫ −1

0

(2x+ 2) dx =
[

x2 + 2x
]−1

0
= −1.

Segment B is y = −x− 1. For this segment, x goes from −1 to 0,

x+ y = −1, x− y = 2x+ 1, dy = −dx.

The integral is

∫ 0

−1

(−dx− (2x+ 1) dx) =

∫ 0

−1

(−2x− 2) dx =
[

−x2 − 2x
]0

−1
= −1.

Segment C is y = x− 1. For this segment, x goes from 0 to 1,

x+ y = 2x− 1, x− y = 1, dy = dx.

The integral is
∫ 1

0

((2x− 1) dx− dx) =

∫ 1

0

(2x− 2) dx =
[

x2 − 2x
]1

0
= −1.

Segment D is y = 1− x. For this segment, x goes from 1 to 0,

x+ y = 1, x− y = 2x− 1, dy = −dx.

The integral is
∫ 0

1

(dx− (2x− 1)dx) =

∫ 0

1

(2− 2x) dx =
[

2x− x2
]0

1
= −1.

Therefore,
∫

~σ

(x+ y) dx− (x − y) dy = −1 + (−1) + (−1) + (−1) = −4.

17. Compute

∫

~σ

~F · −→ds, where ~σ is the curve of intersection of x2 + y2 = 1 and the plane z = 2 + 2x + 3y,

traversed counterclockwise as viewed from above, and ~F = (−2y, 2x, 2).

-2
-1

0

1

2

-2
-1

0
1

2

-5

0

5

10

-5

0

5

10

The projection of the curve into the x-y plane is the circle x2 + y2 = 1, which may be parametrized by
x = cos t, y = sin t for 0 ≤ t ≤ 2π. Note that this parameter range traverses the circle counterclockwise as
viewed from above.
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Plugging these expressions into z = 2 + 2x + 3y, I get z = 2 + 2 cos t + 3 sin t. Hence, the curve of
intersection is

~σ(t) = (cos t, sin t, 2 + 2 cos t+ 3 sin t).

Therefore,

~σ ′(t) = (− sin t, cos t,−2 sin t+ 3 cos t).

The integrand is

~F (~σ(t)) · ~σ ′(t) = (−2 sin t, 2 cos t, 2) · (− sin t, cos t,−2 sin t+ 3 cos t) =

2(sin t)2 + 2(cos t)2 − 4 sin t+ 6 cos t = 2− 4 sin t+ 6 cos t.

The integral is

∫

~σ

~F · −→ds =

∫ 2π

0

(2− 4 sin t+ 6 cos t) dt = [2t+ 4 cos t+ 6 sin t]
2π
0 = 4π = 12.56637 . . . .

18. Let ~F (x, y, z) = (x2y + z, xz, x+ 3yz). Compute curl ~F and div ~F .

curl ~F =

∣

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂
∂

∂x

∂

∂y

d

dz
x2y + z xz x+ 3yz

∣

∣

∣

∣

∣

∣

∣

= (3z − x, 1 − 1, z − x2) = (3z − x, 0, z − x2).

div ~F = 2xy + 0 + 3y = 2xy + 3y.

19. Let ~σ(t) be the path which consists of the curve

(

3t

2t+ 1
, te2(t−1),

1

8
t2(t2 + 1)3

)

for 0 ≤ t ≤ 1, followed

by the segment from (1, 1, 1) to (1, 2,−1).
Compute

∫

~σ

(y2 + z3) dx+ (2xy − 2y) dy + (3xz2 + 4) dz,

It would be very tedious to compute the line integral directly, and it should lead you to ask yourself
whether there might not be an easier way. Well,

curl(y2 + z3, 2xy − 2y, 3xz2 + 4) =

∣

∣

∣

∣

∣

∣

∣

ı̂ ̂ k̂
∂

∂x

∂

∂y

∂

∂z
y2 + z3 2xy − 2y 3xz2 + 4

∣

∣

∣

∣

∣

∣

∣

= (0, 3z2 − 3z2, 2y − 2y) = (0, 0, 0).

The field is conservative. I’ll find a potential function f . I want

∂f

∂x
= y2 + z3,

∂f

∂y
= 2xy − 2y,

∂f

∂z
= 3xz2 + 4.

Integrate the first equation with respect to x:

f(x, y, z) =

∫

(y2 + z3) dx = xy2 + xz3 + C(y, z).
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C(y, z) is an arbitrary constant depending on y and z. Differentiate with respect to y and set the result

equal to
∂f

∂y
= 2xy − 2y:

2xy +
∂C

∂y
=

∂f

∂y
= 2xy − 2y.

Cancelling 2xy’s, I get
∂C

∂y
= −2y, so

C =

∫

−2y dy = −y2 +D(z).

D(z) is an arbitrary constant depending on z. Then

f(x, y, z) = xy2 + xz3 − y2 +D(z).

Differentiate with respect to z and set the result equal to
∂f

∂z
= 3xz2 + 4:

3xz2 +D′(z) =
∂f

∂z
= 3xz2 + 4.

Cancelling 3xz2’s, I get D′(z) = 4, so D(z) = 4z + E. Now E is a numerical arbitrary constant, and
since I need some potential function, I can take E = 0. Then

f(x, y, z) = xy2 + xz3 − y2 + 4z.

Now ~σ starts at (0, 0, 0) (as you see by plugging t = 0 into

(

3t

2t+ 1
, te2(t−1),

1

8
t2(t2 + 1)3

)

), and it ends

at (1, 2,−1). By path independence,

∫

~σ

(y2 + z3) dx+ (2xy − 2y) dy + (3xz2 + 4) dz = f(1, 2,−1)− f(0, 0, 0) = −5.

20. Let ~σ be the boundary of the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, traversed in the counterclockwise direction.
Compute

∫

~σ

(x2y − xy2) dx+

(

2x2y +
1

3
x3

)

dy.

y

x

(0,1)

(1,0)(0,0)

(1,1)

I’ll use Green’s Theorem.
The region is

{

0 ≤ x ≤ 1
0 ≤ y ≤ 1

}
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∂Q

∂x
− ∂P

∂y
= (4xy + x2)− (x2 − 2xy) = 6xy.

Hence,

∫

~σ

(x2y − xy2) dx +

(

2x2y +
1

3
x3

)

dy =

∫ 1

0

∫ 1

0

6xy dx dy =

∫ 1

0

[

3x2y
]1

0
dy =

∫ 1

0

3y dy =

[

3

2
y2
]1

0

=
3

2
.

21. Let ~σ be the boundary of the region bounded below by y = x2 and above by y = 4, traversed counter-
clockwise. Compute

∫

~σ

(4xy − 2y2) dx+ (2x2 + y4) dy.

x

I’ll use Green’s theorem. The region is

{

−2 ≤ x ≤ 2
x2 ≤ y ≤ 4

}

∂Q

∂x
− ∂P

∂y
= 4x− (4x− 4y) = 4y.

Hence,

∫

~σ

(4xy − 2y2) dx + (2x2 + y4) dy =

∫ 2

−2

∫ 4

x2

4y dy dx =

∫ 2

−2

[

2y2
]4

x2
dx = 2

∫ 2

−2

(

16− x4
)

dx =

2

[

16x− 1

5
x5

]2

−2

=
512

5
= 102.4.

22. Find the area of the region enclosed by the ellipse

x2

4
+

y2

9
= 1.

Parametrize the ellipse by
~σ(t) = (2 cos t, 3 sin t), 0 ≤ t ≤ 2π.
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This curve traverses the ellipse counterclockwise. By Green’s Theorem, the area is

∫

~σ

x dy =

∫ 2π

0

x · dy
dt

dt =

∫ 2π

0

(2 cos t)(3 cos t) dy = 6

∫ 2π

0

(cos t)2 dt = 3

∫ 2π

0

(1 + cos 2t) dt =

3

[

t+
1

2
sin 2t

]2π

0

= 6π.

There’s a difference between forgetting and not recalling. - Alessandro Morandotti
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