
Math 322
9-29-2020

Review Sheet for Test 3

These problems are provided to help you study. The presence of a problem on this handout does not
imply that there will be a similar problem on the test. And the absence of a topic does not imply that it
won’t appear on the test.

1. Consider the real matrix

A =





2 1 0
1 2 0
0 0 1



 .

Find the eigenvalues and a complete set of independent eigenvectors, and a matrix P such that P−1AP

is diagonal, and the corresponding diagonal matrix.

2. Consider the real matrix

A =





2 0 0
0 0 5
0 −1 4



 .

Find the eigenvalues and a complete set of independent eigenvectors, and a matrix P such that P−1AP

is diagonal, and the corresponding diagonal matrix.

3. Give an example of a nonzero 2× 2 matrix over R which is not diagonalizable.

4. Suppose that θ is not a multiple of π. Prove that the 2 × 2 real matrix A which gives rotation counter-
clockwise through θ does not have any real eigenvalues.

(You can do this algebraically, but see if you can give a geometric argument.)

5. Suppose A ∈ M(n,R) and every vector in R
n is an eigenvector of A. Prove that A is a multiple of the

n× n identity matrix.

6. Let A be an n×n matrix, let v be an eigenvector corresponding to the eigenvalue λ, and let c 6= 0. Prove
or disprove: cv is an eigenvector of A.

7. Let a, b ∈ R, and let

M =







a b b a

0 a b 0
0 b a 0
a a a a






.

Show that (1, 0, 0, 1) is an eigenvector for M corresponding to the eigenvalue 2a.

8. Find the general solution y(x) to each of the following differential equations.

(a) y′′ − 8y′ − 9y = 0.

(b) (D − 2)3Dy = 0.

(c) y′′ − 4y′ + 20y = 0.

9. Solve the following linear system for x, y, and z in terms of t:





x′

y′

z′



 =





3 −4 8
0 23 −40
0 12 −21









x

y

z



 .
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10. Solve the following linear system for x and y in terms of t:

[

x′

y′

]

=

[

1 5
−2 7

] [

x

y

]

.

Your answer should be given entirely in terms of real numbers and functions.

11. Two tanks hold 100 gallons of liquid each. The first tank starts with 36 pounds of dissolved salt, while the
second starts with pure water. Pure water flows into the first tank at 5 gallons per minute; the well-stirred
mixture flows into tank 2 at 9 gallons per minute. The mixture in tank 2 is pumped back into tank 1 at 4
gallons per minute, and also drains out at 5 gallons per minute. Find the amount of salt in each tank after
t minutes.

12. Suppose that A is a real 2× 2 matrix and

eAt =







7

8
e6t +

1

8
e−2t 1

8
e6t − 1

8
e−2t

7

8
e6t − 7

8
e−2t 1

8
e6t +

7

8
e−2t






.

Find A.

13. Find eAt for

A =





2 0 0
0 −5 0
0 0 7



 .

14. Compute eAt for

A =

[

2 −1
1 4

]

.

15. Compute eAt for

A =

[

3 1
0 −2

]

.

16. Compute eAt for

A =





1 0 0
1 2 0
1 −1 1



 .

17. Let u · v denote the standard inner product on R
4.

(a) Find (1,−2, 5, 14) · (3, 1, 2,−1).

(b) Find the cosine of the angle between (1, 1,−2, 5) and (2, 2, 0, 7).

(c) Find a nonzero vector that is perpendicular to both (1,−3, 6, 0) and (2, 1, 11).

18. Suppose that u, v, and w are vectors in a real inner product space, and

‖u‖ = 5, ‖v‖ = 3, ‖w‖ = 2,

〈u, v〉 = −2, 〈u,w〉 = 6, 〈v, w〉 = 10.

(a) Find 〈3u+ v, v + 2w〉.

(b) Find ‖u+ w‖.

2



19. Find an orthonormal basis relative to the standard dot product on R
4 for the subspace spanned by the

set
{(1, 0, 1, 1), (4, 1, 5, 0), (4, 45, 1, 7)} .

20. Let C[0, 1] denote the real vector space of continuous real-valued functions on the interval [0, 1]. An
inner product is defined on C[0, 1] by

〈f, g〉 =
∫ 1

0

f(x)g(x) dx.

(a) Compute 〈f, g〉, where f(x) = x and g(x) = cos
π

2
x.

(b) Find ‖h‖, where h(x) = 2x+ 1.

(c) For what value of k are the functions f(x) = x+ k and g(x) = x2 orthogonal?

(d) Consider the set of functions S = {x+ 1, 2x}. Find an orthonormal set which spans the same subspace
of C[0, 1] as S.

21. The following set of vectors in R
3 is orthonormal relative to the standard dot product:

u1 =
1√
2
(1, 0, 1), u2 =

1√
3
(1,−1,−1), u3 =

1√
6
(−1,−2, 1).

Find the components of (5,−4, 2) relative to the basis {u1, u2, u3}.

22. An inner product is defined on R
2 by

〈x, y〉 = xT

[

10 −1
−1 5

]

y.

(a) Find ‖(1,−1)‖ relative to the given inner product.

(b) Find cos θ, where θ is the angle relative to the given inner product between (1,−1) and (1, 1).

(c) Find a nonzero vector (a, b) which is orthogonal to (3, 1) relative to this inner product.

23. Let x be a fixed vector in a real inner product space V . Let

x⊥ = {v ∈ V | 〈x, v〉 = 0}.

Prove that x⊥ is a subspace of V . (x⊥ is called the orthogonal complement of x.)

Solutions to the Review Sheet for Test 3

1. Consider the real matrix

A =





2 1 0
1 2 0
0 0 1



 .

Find the eigenvalues and a complete set of independent eigenvectors, and a matrix P such that P−1AP

is diagonal, and the corresponding diagonal matrix.

The characteristic polynomial is

det





2− x 1 0
1 2− x 0
0 0 1− x



 = −(x− 1)2(x− 3).
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The eigenvalues are λ = 1 and λ = 3.
For λ = 1,

A− 1 · I =





1 1 0
1 1 0
0 0 0



 →





1 1 0
0 0 0
0 0 0



 .

With a, b, and c as variables, the corresponding homogeneous system is a + b = 0, or a = −b. The
solution vector is





a

b

c



 =





−b

b

c



 = b





−1
1
0



+ c





0
0
1



 .

Taking b = 0 and c = 1, and then b = 0 and c = 1, I get the eigenvectors (−1, 1, 0) and (0, 0, 1).
For λ = 3,

A− 3 · I =





−1 1 0
1 −1 0
0 0 −2



 →





1 −1 0
0 0 1
0 0 0



 .

With a, b, and c as variables, the corresponding homogeneous system is a− b = 0, or a = b, and c = 0.
The solution vector is





a

b

c



 =





b

b

0



 = b





1
1
0



 .

Taking b = 1, I get the eigenvector (1, 1, 0).
Using the eigenvectors as columns, I obtain

P =





−1 0 1
1 0 1
0 1 0



 and D =





1 0 0
0 1 0
0 0 3



 .

2. Consider the real matrix

A =





2 0 0
0 0 5
0 −1 4



 .

Find the eigenvalues and a complete set of independent eigenvectors, and a matrix P such that P−1AP

is diagonal, and the corresponding diagonal matrix.

det(A− xI) =

∣

∣

∣

∣

∣

∣

2− x 0 0
0 −x 5
0 −1 4− x

∣

∣

∣

∣

∣

∣

= (2− x)[(−x)(4 − x) − (5)(−1)] = (2− x)(x2 − 4x+ 5).

The eigenvalues are 2 and 2± i.
For x = 2,

A− 2I =





0 0 0
0 −2 5
0 −1 2



 →





0 1 0
0 0 1
0 0 0



 .

With eigenvector (a, b, c), the row reduced echelon matrix gives the equations

b = 0, c = 0.
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So




a

b

c



 = a ·





1
0
0



 .

Hence, (1, 0, 0) is an eigenvector for x = 2.
For x = 2 + i,

A− (2 + i)I =





−i 0 0
0 −2− i 5
0 −1 2− i





The last two rows are clearly independent of the first, so they must be multiples (or all three rows would
be independent, and there would be no nonzero eigenvectors). It follows that some row operation can be

used to “wipe out” the third row (in fact, r3 → r3 −
1

2 + i
r2 works), and





−i 0 0
0 −2− i 5
0 −1 2− i



 →





−i 0 0
0 −2− i 5
0 0 0





(Note that you don’t need to actually figure out the row operation that does this — you know that one
exists, because the rows must be multiples.)

With eigenvector (a, b, c), the row reduced echelon matrix gives the equations

−ia = 0, (−2− i)b+ 5c = 0.

The first equation gives a = 0. The second equation is satisfied by b = 5 and c = 2 + i (by swapping
the coefficients “−2− i” and “5” and negating one of them, in this case the “−2− i”). Thus, (0, 5, 2 + i) is
an eigenvector for x = 2 + i.

By conjugation, (0, 5, 2− i) is an eigenvector for 2− i.
(At this point, note that you might get different looking, but correct, results if you had “wiped out” the

second row of the matrix above rather than the third row, or if if you had chosen to negative the “5” rather
than the “−2− i”.)

A diagonalizing matrix is

P =





1 0 0
0 5 5
0 2 + i 2− i



 , and D =





2 0 0
0 2 + i 0
0 0 2− i



 .

3. Give an example of a nonzero 2× 2 matrix over R which is not diagonalizable.

Consider the matrix

A =

[

1 2
0 1

]

.

The characteristic polynomial is (x− 1)2, so λ = 1 is the only eigenvalue. Now

A− I =

[

0 2
0 0

]

→
[

0 1
0 0

]

With (a, b) as a solution vector, the corresponding homogeneous system is b = 0. Thus,

(a, b) = (a, 0) = a(1, 0).

Taking a = 1, I get the eigenvector (1, 0).
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Since there is only one eigenvector, the matrix is not diagonalizable.

4. Suppose that θ is not a multiple of π. Prove that the 2 × 2 real matrix A which gives rotation counter-
clockwise through θ does not have any real eigenvalues.

First, rotation through θ is an invertible operation (the inverse is rotation through −θ). Hence, A is
invertible, and 0 can’t be an eigenvalue of A.

Next, if c is a nonzero eigenvalue of A with eigenvector v, then Av = cv. This equation says that Av

and cv are parallel; since cv and v are parallel, this means that Av and v are parallel. But this is impossible,
because Av is just v rotated by θ, which is not a multiple of π.

Hence, A has no nonzero eigenvalues.

5. Suppose A ∈ M(n,R) and every vector in R
n is an eigenvector of A. Prove that A is a multiple of the

n× n identity matrix.

I need a little fact about matrix multiplication which you should check for yourself: If ei is the ith

standard basis vector, then Aei is the ith column of A. (Try it out for a 3× 3 matrix to see the idea.)
First, I’ll show that A is a diagonal matrix. Every vector is an eigenvector, so in particular the standard

basis vectors are eigenvectors. So
Ae1 = λ1e1 for some λ1.

But Ae1 is the first column of A, so this says that the first column of A is












λ1

0
0
...
0













.

Likewise,
Ae2 = λ2e2 for some λ2.

But Ae2 is the second column of A, so this says that the second column of A is












0
λ2

0
...
0













.

Continue with e3, . . . , en. Then stringing the columns of A together, I find that

A =













λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λn













.

But the vector (1, 1, 1, . . . , 1) is also an eigenvector of A, so for some λ,













λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λn

























1
1
1
...
1













= λ ·













1
1
1
...
1













.
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Multiplying out the two sides of this equation, I get













λ1

λ2

λ3
...
λn













=













λ

λ

λ
...
λ













.

So λ1, λ2, . . . λn are all equal to λ, and

A =













λ 0 0 . . . 0
0 λ 0 . . . 0
0 0 λ . . . 0
...

...
...

. . .
...

0 0 0 . . . λ













.

This is just λ times the identity matrix.

6. Let A be an n×n matrix, let v be an eigenvector corresponding to the eigenvalue λ, and let c 6= 0. Prove
or disprove: cv is an eigenvector of A.

Since v is an eigenvector corresponding to the eigenvalue λ,

Av = λv.

Multiply both sides by c:
A(cv) = λ(cv).

Since c 6= 0 and v 6= ~0 (since v is an eigenvector), it follows that cv 6= ~0. Hence, cv is an eigenvector for
A corresponding to the eigenvalue λ.

7. Let a, b ∈ R, and let

M =







a b b a

0 a b 0
0 b a 0
a a a a






.

Show that (1, 0, 0, 1) is an eigenvector for M corresponding to the eigenvalue 2a.







a b b a

0 a b 0
0 b a 0
a a a a













1
0
0
1






=







2a
0
0
2a






= 2a







1
0
0
1






.

The definition says that x is an eigenvector for a matrix A with eigenvalue λ if Ax = λx, and that
is what I’ve shown for M , (1, 0, 0, 1), and 2a. I don’t need to go through a lot of trouble computing the
characteristic polynomial of M and finding eigenvalues and eigenvectors. Did you try to do that?

8. Find the general solution y(x) to each of the following differential equations.

(a) y′′ − 8y′ − 9y = 0.
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(b) (D − 2)3Dy = 0.

(c) y′′ − 4y′ + 20y = 0.

(a) In operator form, this is (D2 − 8D − 9)y = 0, or (D − 9)(D + 1)y = 0. The solution is

y = c1e
9x + c2e

−x.

(b) The root 2 is repeated 3 times; the “D” term corresponds to a root of 0. The general solution is

y = c1e
2x + c2xe

2x + c3x
2e2x + c4.

(c) In operator form, this is (D2 − 4D + 20)y = 0. The equation m2 − 4m+ 20 = 0 has roots m = 2 ± 4i.
The general solution is

y = c1e
2x cos 4x+ c2e

2x sin 4x.

9. Solve the following linear system for x, y, and z in terms of t:





x′

y′

z′



 =





3 −4 8
0 23 −40
0 12 −21









x

y

z



 .

Let

A =





3 −4 8
0 23 −40
0 12 −21



 .

The characteristic polynomial is

|A−xI| =

∣

∣

∣

∣

∣

∣

3− x −4 8
0 23− x −40
0 12 −21− x

∣

∣

∣

∣

∣

∣

= (3−x)

∣

∣

∣

∣

23− x −40
12 −21− x

∣

∣

∣

∣

= (3−x)[(23−x)(−21−x)−(−40)(12)] =

(3 − x)(x2 − 2x− 3) = −(x− 3)2(x+ 1).

The eigenvalues are x = 3 and x = −1.

For x = 3:

A− 3I =





0 −4 8
0 20 −40
0 12 −24



 →





0 1 −2
0 0 0
0 0 0





With variables a, b, and c, the homogeneous system is b− 2c = 0, or b = 2c. So





a

b

c



 = a ·





1
0
0



+ c ·





0
2
1



 .

This gives the independent eigenvectors (1, 0, 0) and (0, 2, 1).

For x = −1:

A+ I =





4 −4 8
0 24 −40
0 12 −20



 →











1 0
1

3

0 1 −5

3
0 0 0










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With variables a, b, and c, the homogeneous system is

a+
1

3
c = 0 and b − 5

3
c = 0.

Then a = −1

3
c and b =

5

3
c. So





a

b

c



 = c ·











−1

3
5

3
1











.

Taking c = 3, I get the eigenvector (−1, 5, 3).
The general solution is





x

y

z



 = c1e
3t





1
0
0



+ c2e
3t





0
2
1



+ c3e
−t





−1
5
3



 .

10. Solve the following linear system for x and y in terms of t:

[

x′

y′

]

=

[

1 5
−2 7

] [

x

y

]

.

Your answer should be given entirely in terms of real numbers and functions.

Let

A =

[

1 5
−2 7

]

.

The characteristic polynomial is

|A− xI| =
∣

∣

∣

∣

1− x 5
−2 7− x

∣

∣

∣

∣

= (1− x)(7 − x)− (5)(−2) = x2 − 8x+ 17.

The roots are x = 4± i.
For x = 4 + i, I have

A− (4 + i)I =

[

−3− i 5
−2 3− i

]

.

Since the rows must be multiples, I can drop the second row. With variables a and b, the first row yields
the homogeneous system

(−3− i)a+ 5b = 0.

By inspection, an eigenvector is (5, 3 + i).
The solution corresponding to this eigenvector is

e(4+i)t

[

5
3 + i

]

= e4t(cos t+ i sin t)

[

5
3 + i

]

= e4t
[

5 cos t+ 5i sin t
(3 cos t− sin t) + i(cos t+ 3 sin t)

]

.

The real and imaginary parts give two independent solutions:

e4t
[

5 cos t
3 cos t− sin t

]

and e4t
[

5 sin t
cos t+ 3 sin t

]

.
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They give the general solution

[

x

y

]

= c1e
4t

[

5 cos t
3 cos t− sin t

]

+ c2e
4t

[

5 sin t
cos t+ 3 sin t

]

.

11. Two tanks hold 100 gallons of liquid each. The first tank starts with 36 pounds of dissolved salt, while the
second starts with pure water. Pure water flows into the first tank at 5 gallons per minute; the well-stirred
mixture flows into tank 2 at 9 gallons per minute. The mixture in tank 2 is pumped back into tank 1 at 4
gallons per minute, and also drains out at 5 gallons per minute. Find the amount of salt in each tank after
t minutes.

Let x be the number of pounds of salt dissolved in the first tank at time t and let y be the number of
pounds of salt dissolved in the second tank at time t. The rate equations are

dx

dt
=

(

5
gal

min

)(

0
lbs

gal

)

+

(

4
gal

min

)(

y lbs

100gal

)

−
(

9
gal

min

)(

x lbs

100gal

)

,

dy

dt
=

(

9
gal

min

)(

x lbs

100gal

)

−
(

4
gal

min

)(

y lbs

100gal

)

−
(

5
gal

min

)(

y lbs

100gal

)

.

Simplify:
x′ = −0.09x+ 0.04y

y′ = 0.09x− 0.09y

Next, find the characteristic polynomial:

∣

∣

∣

∣

−0.09− λ 0.04
0.09 −0.09− λ

∣

∣

∣

∣

= λ2 + 0.18λ+ 0.0045 = (λ+ 0.15)(λ+ 0.03).

The eigenvalues are λ = −0.15, λ = −0.03.
Consider λ = −0.15:

A+ 0.15I =

[

0.06 0.04
0.09 0.06

]

→
[

3 2
0 0

]

(2,−3) is an eigenvector.
Now consider λ = −0.03:

A+ 0.03I =

[

−0.06 0.04
0.09 −0.06

]

→
[

−3 2
0 0

]

(2, 3) is an eigenvector.
The solution is

~x = c1e
−0.15t

[

2
−3

]

+ c2e
−0.03t

[

2
3

]

.

When t = 0, x = 36 and y = 0. Plug in:

[

36
0

]

= c1

[

2
−3

]

+ c2

[

2
3

]

=

[

2 2
−3 3

] [

c1
c2

]

.

Solving for the constants, I obtain c1 = 9, c2 = 9. Thus,

~x = 9e−0.15t

[

2
−3

]

+ 9e−0.03t

[

2
3

]

.
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12. Suppose that A is a real 2× 2 matrix and

eAt =







7

8
e6t +

1

8
e−2t 1

8
e6t − 1

8
e−2t

7

8
e6t − 7

8
e−2t 1

8
e6t +

7

8
e−2t






.

Find A.

d

dt
eAt =







21

4
e6t − 1

4
e−2t 3

4
e6t +

1

4
e−2t

21

4
e6t +

7

4
e−2t 3

4
e6t − 7

4
e−2t






.

Setting t = 0, I have

A =

[

d

dt
eAt

]

t=0

=

[

5 1
7 −1

]

.

13. Find eAt for

A =





2 0 0
0 −5 0
0 0 7



 .

eAt =





e2t 0 0
0 e−5t 0
0 0 e7t



 .

Here’s a summary of the algorithm for computing eAt.
Let {λ1, λ2, . . . , λn} be the eigenvalues of A.
(If the characteristic polynomial has a multiple root, you list the eigenvalue multiple times. For instance,

if the characteristic polynomial has a factor of (x− 5)3, you list the eigenvalue 5 three times.)
Define

B1 = I, Bk = (A− λ1I)(A − λ2I) · · · (A− λk−1I) for k = 2, . . . , n.

a1(t) = eλ1t, ak(t) =

∫ t

0

eλk(t−u)ak−1(u) du = eλkt

∫ t

0

e−λkuak−1(u) du.

Then
eAt = a1(t)B1 + a2(t)B2 + · · ·+ an(t)Bn.

Note that in defining the B′s, you never get to the last eigenvalue λn. But λn does occur in an(t).
If you have complex roots, the result may have complex numbers in it until you do some simplification.

14. Compute eAt for

A =

[

2 −1
1 4

]

.

The characteristic polynomial is

|A− xI| =
∣

∣

∣

∣

2− x −1
1 4− x

∣

∣

∣

∣

= (2− x)(4 − x)− (−1)(1) = x2 − 6x+ 9 = (x− 3)2.

11



The eigenvalue is x = 3 (double), so my list of eigenvalues is {3, 3}.
First,

B1 = I =

[

1 0
0 1

]

and B2 = A− 3I =

[

−1 −1
1 1

]

.

Next, a1(t) = e3t and

a2(t) = e3t
∫ t

0

e−3ua1(u) du = e3t
∫ t

0

e−3ue3u du = e3t
∫ t

0

du = te3t.

Thus,

eAt = e3t
[

1 0
0 1

]

+ te3t
[

−1 −1
1 1

]

=

[

e3t − te3t −te3t

te3t e3t + te3t

]

.

15. Compute eAt for

A =

[

3 1
0 −2

]

.

Since the matrix is upper triangular, the eigenvalues are the diagonal elements 3 and −2.
I have

B1 = I =

[

1 0
0 1

]

and B2 = A− 3I =

[

0 1
0 −5

]

.

Next, a1(t) = e3t and

a2(t) = e−2t

∫ t

0

e2ua1(u) du = e−2t

∫ t

0

e2ue3u du = e−2t

∫ t

0

e5u du = e−2t · 1
5
(e5t − 1) =

1

5
e3t − 1

5
e−2t.

So

eAt = e3t
[

1 0
0 1

]

+

(

1

5
e3t − 1

5
e−2t

)[

0 1
0 −5

]

=

[

e3t
1

5
(e3t − e−2t)

0 e−2t

]

.

16. Compute eAt for

A =





1 0 0
1 2 0
1 −1 1



 .

Since the matrix is lower triangular, the eigenvalues are the diagonal entries 1 (double) and 2. I will list
the eigenvalues in this order: {1, 1, 2}.

I have

B1 =





1 0 0
0 1 0
0 0 1



 , B2 = A− I =





0 0 0
1 1 0
1 −1 0



 , B3 = (A− I)(A− I) =





0 0 0
1 1 0
−1 −1 0



 .

Moreover,
a1(t) = et,

a2(t) =

∫ t

0

et−ueu du = et
∫ t

0

e−ueu du = et
∫ t

0

du = et [u]t0 = tet,

a3(t) =

∫ t

0

e2(t−u)ueu du = e2t
∫ t

0

e−2uueu du = e2t
∫ t

0

ue−u du = e2t
[

−ue−u − e−u
]t

0
= e2t − tet − et.

12



Here’s the work for the third integral, which is done by parts:

d

du

∫

du

+ u e−u

− 1 −e−u

+ 0 e−u

∫

ue−u du = −ue−u − e−u + C.

Hence,

eAt = et





1 0 0
0 1 0
0 0 1



+ tet





0 0 0
1 1 0
1 −1 0



+ (e2t − tet − et)





0 0 0
1 1 0
−1 −1 0



 =





et 0 0
e2t − et e2t 0

2tet + et − e2t et − e2t et



 .

17. Let u · v denote the standard inner product on R
4.

(a) Find (1,−2, 5, 14) · (3, 1, 2,−1).

(b) Find the cosine of the angle between (1, 1,−2, 5) and (2, 2, 0, 7).

(c) Find a nonzero vector that is perpendicular to both (1,−3, 6, 0) and (2, 1, 11).

(a)
(1,−2, 5, 14) · (3, 1, 2,−1) = 3− 2 + 10− 14 = −3.

(b)

cos θ =
(1, 1,−2, 5) · (2, 2, 0, 7)

‖(1, 1,−2, 5)‖‖(2, 2, 0, 7)‖ =
2 + 2 + 0 + 35√

31
√
57

=
39√
1767

.

(c) I want (a, b, c, d) such that

(1,−3, 6, 0) · (a, b, c, d) = 0 and (2, 1, 11) · (a, b, c, d) = 0.

This gives the equations
a− 3b+ 6c = 0

2a+ b + c+ d = 0

Row reduce to solve:

[ 1 −3 6 0 02 1 1 1 0 ] →







1 0
9

7

3

7
0

0 1 −11

7

1

7
0







The parametric solutions are

a = −9

7
s− 3

7
t

b =
11

7
s− 1

7
t

c = s

d = t

13



I can get a nonzero solution by setting at least one of s, t equal to a nonzero value. For example, taking
s = 7 and t = 7, I get

(a, b, c, d) = (−12, 10, 7, 7).

18. Suppose that u, v, and w are vectors in a real inner product space, and

‖u‖ = 5, ‖v‖ = 3, ‖w‖ = 2,

〈u, v〉 = −2, 〈u,w〉 = 6, 〈v, w〉 = 10.

(a) Find 〈3u+ v, v + 2w〉.

(b) Find ‖u+ w‖.

(a)

〈3u+ v, v + 2w〉 = 3 〈u, v〉+6 〈u,w〉+〈v, v〉+2 〈v, w〉 = 3(−2)+6(6)+32+2(10) = −6+36+9+20 = 59.

(b) Note that ‖u+ w‖2 = 〈u+ w, u+ w〉. Now

〈u+ w, u+ w〉 = 〈u, u〉+ 2 〈u,w〉+ 〈w,w〉 = 52 + 2(6) + 22 = 25 + 12 + 4 = 41.

Hence, ‖u+ w‖ =
√
41.

19. Find an orthonormal basis relative to the standard dot product on R
4 for the subspace spanned by the

set
{(1, 0, 1, 1), (4, 1, 5, 0), (4, 45, 1, 7)} .

First, I’ll get an orthogonal basis for the subspace. At the end, I’ll divide each vector by its length to
get an orthonormal set. To get the orthogonal basis, apply Gram-Schmidt to the original set of vectors.

The first vector in the orthogonal set will be w1 = (1, 0, 1, 1). The second vector is

w2 = (4, 1, 5, 0)− (4, 1, 5, 0) · (1, 0, 1, 1)
(1, 0, 1, 1) · (1, 0, 1, 1)(1, 0, 1, 1) = (1, 1, 2,−3).

The third vector is

w3 = (4, 45, 1, 7)− (4, 45, 1, 7) · (1, 0, 1, 1)
(1, 0, 1, 1) · (1, 0, 1, 1) (1, 0, 1, 1)−

(4, 45, 1, 7) · (1, 1, 2,−3)

(1, 1, 2,−3) · (1, 1, 2,−3)
(1, 1, 2,−3) =

(4, 45, 1, 7)− (4, 0, 4, 4)− (2, 2, 4,−6) = (−2, 43,−7, 9).

To get the orthonormal basis, divide w1, w2, and w3 by their lengths. The orthonormal basis is

{

1√
3
(1, 0, 1, 1),

1√
15

(1, 1, 2,−3),
1√
1983

(−2, 43,−7, 9)

}

.

20. Let C[0, 1] denote the real vector space of continuous real-valued functions on the interval [0, 1]. An
inner product is defined on C[0, 1] by

〈f, g〉 =
∫ 1

0

f(x)g(x) dx.

14



(a) Compute 〈f, g〉, where f(x) = x and g(x) = cos
π

2
x.

(b) Find ‖h‖, where h(x) = 2x+ 1.

(c) For what value of k are the functions f(x) = x+ k and g(x) = x2 orthogonal?

(d) Consider the set of functions S = {x+ 1, 2x}. Find an orthonormal set which spans the same subspace
of C[0, 1] as S.

(a)

〈f, g〉 =
∫ 1

0

x cos
π

2
x dx =

[

2

π
x sin

π

2
x+

4

π2
cos

π

2
x

]1

0

=
2

π
− 4

π2
.

(b)

‖h‖2 = 〈h, h〉 =
∫ 1

0

(2x+ 1)2 dx =

∫ 1

0

(4x2 + 4x+ 1) dx =

[

4

3
x3 + 2x2 + x

]1

0

=
13

3
.

Hence, ‖h‖ =

√

13

3
.

(c)

〈f, g〉 =
∫ 1

0

x2(x + k) dx =

∫ 1

0

(x3 + kx2) dx =

[

1

4
x4 +

1

3
kx3

]1

0

=
1

4
+

1

3
k.

Setting 〈f, g〉 = 0, I have
1

4
+

1

3
k = 0, so k = −3

4
.

(d) I have to do Gram-Schmidt on the set S. The first vector will be v1 = x+ 1.
For the second vector, I have

v2 = 2x− 〈x+ 1, 2x〉
〈x+ 1, x+ 1〉 (x + 1).

I need to compute the integrals in the top and bottom of the fraction:

〈x+ 1, 2x〉 =
∫ 1

0

(x+ 1)(2x) dx =

∫ 1

0

(2x2 + 2x) dx =

[

2

3
x3 + x2

]1

0

=
5

3
.

〈x+ 1, x+ 1〉 =
∫ 1

0

(x+ 1)(x+ 1) dx =

∫ 1

0

(x+ 1)2 dx =

[

1

3
(x + 1)3

]1

0

=
7

3
.

Returning to v2, I have

v2 = 2x−
5

3
7

3

(x+ 1) = 2x− 5

7
(x + 1) =

9

7
x− 5

7
.

I may multiply by 7 to clear denominators to obtain v′2 = 9x− 5.

Finally, I have to divide x+1 and 9x−5 by their lengths. Since〈x+ 1, x+ 1〉 = 7

3
, I know ‖x+1‖ =

√

7

3
.

Also,

〈9x− 5, 9x− 5〉 =
∫ 1

0

(9x− 5)(9x− 5) dx =

∫ 1

0

(9x− 5)2 dx =

[

1

27
(9x− 5)3

]1

0

= 7.
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So ‖9x− 5‖ =
√
7. The orthonormal set is

{√
3√
7
(x+ 1),

1√
7
(9x− 5)

}

.

21. The following set of vectors in R
3 is orthonormal relative to the standard dot product:

u1 =
1√
2
(1, 0, 1), u2 =

1√
3
(1,−1,−1), u3 =

1√
6
(−1,−2, 1).

Find the components of (5,−4, 2) relative to the basis {u1, u2, u3}.

Since the basis is orthonormal, I can find the components by taking the dot product of (5,−4, 2) with
each of the vectors:

(5,−4, 2) · 1√
2
(1, 0, 1) =

7√
2
.

(5,−4, 2) · 1√
3
(1,−1,−1) =

7√
3
.

(5,−4, 2) · 1√
6
(−1,−2, 1) =

5√
6
.

That is,

(5,−4, 2) =
7√
2
· 1√

2
(1, 0, 1) +

7√
3
· 1√

3
(1,−1,−1) +

5√
6
· 1√

6
(−1,−2, 1).

22. An inner product is defined on R
2 by

〈x, y〉 = xT

[

10 −1
−1 5

]

y.

(a) Find ‖(1,−1)‖ relative to the given inner product.

(b) Find cos θ, where θ is the angle relative to the given inner product between (1,−1) and (1, 1).

(c) Find a nonzero vector (a, b) which is orthogonal to (3, 1) relative to this inner product.

(a)

‖(1,−1)‖ = 〈(1,−1), (1,−1)〉1/2 =

(

[ 1 −1 ]

[

10 −1
−1 5

] [

1
−1

])1/2

=
√
17.

(b)

cos θ =
〈(1,−1), (1, 1)〉
‖(1,−1)‖‖(1, 1)‖ .

Now

〈(1,−1), (1, 1)〉 = [ 1 1 ]

[

10 −1
−1 5

] [

1
−1

]

= 5,

‖(1, 1)‖ = 〈(1, 1), (1, 1)〉1/2 =

(

[ 1 1 ]

[

10 −1
−1 5

] [

1
1

])1/2

=
√
13.
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Hence,

cos θ =
5√

17
√
13

=
5√
221

.

(c) Find a nonzero vector (a, b) which is orthogonal to (3, 1) relative to this inner product.

I want

[ 3 1 ]

[

10 −1
−1 5

] [

a

b

]

= 0.

Multiplying out gives the equation
29a+ 2b = 0.

A nonzero solution is given by (a, b) = (2,−29).

23. Let x be a fixed vector in a real inner product space V . Let

x⊥ = {v ∈ V | 〈x, v〉 = 0}.

Prove that x⊥ is a subspace of V . (x⊥ is called the orthogonal complement of x.)

I must show that x⊥ is closed under sums and under scalar multiplication.
Let v, w ∈ x⊥. Then

〈x, v + w〉 = = 〈x, v〉+ 〈x,w〉 (Linearity of inner products)
= 0 + 0 (v, w ∈ x⊥)
= 0

Therefore, v + w ∈ x⊥.
Let v ∈ x⊥ and let k ∈ R. Then

〈x, kv〉 = k · 〈x, v〉 (Linearity of inner products)
= k · 0 (v ∈ x⊥)
= 0

Therefore, kv ∈ x⊥.
Hence, x⊥ is a subspace of V .

If we can really understand the problem, the answer will come out of it, because the answer is not separate

from the problem. - Jiddu Krishnamurti
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