Review Sheet for the Final

These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence of a topic does not imply that it won't appear on the test.

1. (a) Negate the following statement, simplifying so that only simple statements are negated:

$$
\neg P \rightarrow(P \wedge Q)
$$

(b) Negate the following statement, simplifying so that only simple statements are negated:

$$
\forall x \exists y(x>y \vee x \leq 0)
$$

(c) Negate the following statement, simplifying so that only simple statements are negated, and write your answer in words:
"Every soccer fan either likes pizza or dislikes writing proofs."
2. (a) Prove or disprove by specific counterexample: If x is rational and y is irrational, then $x y$ is irrational.
(b) Prove or disprove by specific counterexample: If x is rational and y is rational, then $x y$ is irrational.
3. Show that $\neg(P \rightarrow Q) \vee(\neg Q \rightarrow \neg P)$ is a tautology.
4. Prove that $\lim _{x \rightarrow 3}\left(x^{2}-4\right)=5$.
5. Prove that $\lim _{x \rightarrow 3} \frac{x+3}{x-2}=6$.
6. Prove: $\neg C$.

$$
\text { Premises: }\left\{\begin{array}{c}
A \rightarrow(B \wedge D) \\
D \rightarrow \neg C \\
(\neg B \vee C) \rightarrow A
\end{array}\right.
$$

7. Prove that if $x \in \mathbb{R}$, then

$$
-7 \leq|x+4|-|x-3| \leq 7
$$

8. Show that there do not exist real numbers x and y such that

$$
x^{2}-x+y^{2}-3 y+3=0
$$

9. The Fibonacci numbers are defined recursively by

$$
f_{0}=1, \quad f_{1}=1, \quad f_{n}=f_{n-1}+f_{n-2} \quad \text { for } \quad n>1
$$

Prove that for $n \geq 0$,

$$
f_{0}^{2}+f_{1}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}
$$

10. Prove that if $n \geq 1$, then

$$
1 \cdot 5+2 \cdot 6+3 \cdot 7+\cdots+n(n+4)=\frac{n(n+1)(2 n+13)}{6}
$$

11. Prove that the sum of the cubes of three consecutive positive integers is divisible by 9 .
12. A sequence of integers is defined by

$$
\begin{gathered}
x_{0}=6, \quad x_{1}=17 \\
x_{n}=x_{n-1}+12 x_{n-2} \quad \text { for } n \geq 2
\end{gathered}
$$

Prove that

$$
x_{n}=5 \cdot 4^{n}+(-3)^{n} \quad \text { for } \quad n \geq 0
$$

13. Prove that if $n \geq 4$, then

$$
(2 n)!\geq 10^{n}
$$

14. Suppose that A is a set and $|A|=3$. Which set has more elements $-\mathcal{P}(A)$ or $A \times A$?
15. Let A and B be sets. Prove that $(A-B) \cap(B-A)=\emptyset$.
16. Let A, B, and C be sets.
(a) Draw a general Venn diagram for $A-(B-C)$.
(b) Prove that $A-(B-C)=(A \cap C) \cup(A-B)$.
17. Prove that $[-1,2] \cup[0,4]=[-1,4]$.
18. Prove that $(-4,6) \cap(1,8)=(1,6)$.
19. In each case, give a counterexample to the statement.
(a) "If $n \in \mathbb{Z}$, then $n^{2}+120 \geq 22 n$."
(b) "If $\frac{d}{d x} f(x)=3 x^{2}+4 x$, then $f(x)=x^{3}+2 x^{2}$."
(c) "If a, b, and c are positive integers, then $\left.\left(a^{b}\right)^{c}=a^{(} b^{c}\right)$."
20. Bonzo McTavish observes that if n is an integer, then

$$
2 \cdot(2 n+3)+(-4) \cdot(n+1)=2
$$

He concludes that $(2 n+3, n+1)$ is either 1 or 2 . Can $(2 n+3, n+1)=2$? Why or why not?
21. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
f(x, y)=\left(x+y^{3}, x^{2}\right)
$$

Prove by example that f is neither injective nor surjective.
22. Define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
g(x, y)=\left(x+y^{3}, x^{3}\right)
$$

Prove that g is bijective by:
(a) Proving that g is injective and surjective.
(b) Constructing an inverse for g.
23. Define $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
h(x, y)=\left(x+3 y+2, x^{3}+5\right)
$$

Prove that h is surjective.
24. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=2 e^{x}+x^{3}+4 x+\sin x
$$

Prove that f is injective.
25. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=2 x^{3}+\tan ^{-1} x
$$

Prove that f is surjective.
26. Prove that $\{0,1\} \times \mathbb{R}$ has the same cardinality as \mathbb{R}.
27. Prove by constructing a bijection that $|[-1,3]|=|[3,5]|$.
28. Prove that $[1,4] \cup(5,6)$ has the same cardinality as $(2,3) \cup\{7\}$.
29. Define a relation on \mathbb{R} by

$$
x \sim y \quad \text { means } \quad(\sin x)(\sin y) \geq 0
$$

Take each axiom for an equivalence relation. If the axiom holds, prove it; if the axiom does not hold, give a counterexample.
30. Consider the equivalence relation defined by writing $x \sim y$ to mean $x=y(\bmod 3)$ on the set

$$
S=\{-3,-2,0,2,4,5,6,10,17,18,22\}
$$

List the elements of the equivalence classes.
31. A relation is defined on \mathbb{R}^{2} by

$$
(a, b) \sim(c, d) \quad \leftrightarrow \quad a|d|=c|b|
$$

Check each axiom for an equivalence relation. If the axiom holds, prove it. If the axiom doesn't hold, give a specific counterexample.
32. Define a relation \sim on \mathbb{R} by

$$
x \sim y \quad \text { means } \quad x^{3}-x \leq y^{3}-y
$$

Check each axiom for a partial order. If the axiom holds, prove it; if the axiom does not hold, give a counterexample.
33. Define a relation \sim on \mathbb{R}^{2} by

$$
(a, b) \sim(c, d) \quad \text { means } \quad a b \geq c d
$$

Check each axiom for a partial order. If the axiom holds, prove it; if the axiom does not hold, give a counterexample.
34. Prove that the square of an odd number leaves a remainder of 1 when it's divided by 4 .
35. Prove that if n is an integer, then $n^{2}+n+3$ does not leave a remainder of 1 or 2 when it's divided by 5 .
36. Prove that if $m, n \in \mathbb{Z}$ and neither m nor n is divisible by 3 , then $m^{2}+n^{2}$ is not divisible by 3 .
37. Compute $(1021,129)$.
38. Using the fact that $(x, y)=m x+n y$ for some $m, n \in \mathbb{Z}$, prove:
(a) If d is a common divisor of a and b, then $d \mid(a, b)$.
(b) If $a, b, c \in \mathbb{Z}$ and $a>0$, then $(a b, a c)=a(b, c)$.
39. If $a, b, m, n \in \mathbb{Z}$ and $a m+b n=6$, does it follow that $(m, n)=6$?
40. Prove that if $n \in \mathbb{Z}$, then $\left(2 n^{2}+8 n+1, n+4\right)=1$.
41. Prove that if $x, y>0$, then $x^{2}+\frac{y^{2}}{x^{2}} \geq 2 y$.
42. Prove that if $x>0$, then $x^{3}+e^{2 x}>1$.
43. Prove that if $x>0$, then

$$
x \ln x \geq x-1
$$

[Hint: Find the absolute min of $f(x)=x \ln x-x+1$.]
44. Use the limit definition to prove that

$$
\lim _{x \rightarrow \infty} \frac{8 x^{3}+1}{2 x^{3}}=4
$$

45. Phoebe Small has proved that

$$
\bigcup_{n=1}^{\infty}\left[0, \frac{n}{n+6}\right]=[0,1)
$$

But Bonzo McTavish is confused. "The point 0.9 is in $[0,1]$. But for $n=1$, the interval $\left[0, \frac{n}{n+6}\right]$ is $\left[0, \frac{1}{7}\right]$, and that doesn't contain 0.9." Does Bonzo have a valid objection?
46. Prove that $\bigcap_{n=1}^{\infty}\left[1,2+e^{-n}\right]=[1,2]$.

Solutions to the Review Sheet for the Final

1. (a) Negate the following statement, simplifying so that only simple statements are negated:

$$
\neg P \rightarrow(P \wedge Q)
$$

(b) Negate the following statement, simplifying so that only simple statements are negated:

$$
\forall x \exists y(x>y \vee x \leq 0)
$$

(c) Negate the following statement, simplifying so that only simple statements are negated, and write your answer in words:
"Every soccer fan either likes pizza or dislikes writing proofs."
(a)

$$
\begin{array}{rlcc}
\neg[\neg P \rightarrow(P \wedge Q)] & \leftrightarrow & \neg[P \vee(P \wedge Q)] & \text { (Conditional disjunction) } \\
& \leftrightarrow & P \wedge \neg(P \wedge Q) & \text { (DeMorgan) } \\
& \leftrightarrow & \neg P \wedge(\neg P \vee \neg Q) & \text { (DeMorgan) }
\end{array}
$$

(b)

$$
\begin{aligned}
\neg[\forall x \exists y(x>y \vee x \leq 0)] & \leftrightarrow \exists x \forall y \neg(x>y \vee x \leq 0) \quad \text { (Negating quantifiers) } \\
& \leftrightarrow \exists x \forall y(x \leq y \wedge x>0) \quad \text { (DeMorgan) }
\end{aligned}
$$

(c) Let
$S(x)$ mean " x is a soccer fan."
$P(x)$ mean " x likes pizza."
$W(x)$ means " x likes writing proofs."
The original statement is $\forall x[S(x) \rightarrow(P(x) \vee \neg W(x))]$. Negate it:

$$
\begin{array}{rlrl}
\neg(\forall x[S(x) \rightarrow(P(x) \vee \neg W(x))]) & \leftrightarrow \exists x \neg[S(x) \rightarrow(P(x) \vee \neg W(x))] & \text { (Negating a quantifier) } \\
& \leftrightarrow \exists x \neg[\neg S(x) \vee(P(x) \vee \neg W(x))] & \text { (Conditonal disjunction) } \\
& \leftrightarrow & \leftrightarrow x[S(x) \wedge \neg(P(x) \vee \neg W(x))] & \text { (DeMorgan) } \\
& \leftrightarrow \exists x[S(x) \wedge(\neg P(x) \wedge W(x))] & \text { (DeMorgan) }
\end{array}
$$

The last statement says: "There is a soccer fan who dislikes pizza and likes writing proofs." \quad -
2. (a) Prove or disprove by specific counterexample: If x is rational and y is irrational, then $x y$ is irrational.
(b) Prove or disprove by specific counterexample: If x is rational and y is rational, then $x y$ is irrational.
(a) The claim is false. $x=0$ is rational and $y=\sqrt{2}$ is irrational, but $x y=0 \cdot \sqrt{2}=0$ is rational. \quad a
(b) Suppose x is rational and y is rational. Then

$$
x=\frac{a}{b} \quad \text { and } \quad y=\frac{c}{d}, \quad \text { where } \quad a, b, c, d \in \mathbb{Z} \text {. }
$$

So

$$
x y=\frac{a c}{b d} .
$$

Since $a c, b d \in \mathbb{Z}$, it follows that $x y$ is rational. \quad
3. Show that $\neg(P \rightarrow Q) \vee(\neg Q \rightarrow \neg P)$ is a tautology.

P	Q	$P \rightarrow Q$	$\neg(P \rightarrow Q)$	$\neg P$	$\neg Q$	$\neg Q \rightarrow \neg P$
T	T	T	F	F	F	T
T	F	F	T	F	T	F
F	T	T	F	T	F	T
F	F	T	F	T	T	T

$\neg(P \rightarrow Q) \vee(\neg Q \rightarrow \neg P)$
T
T
T
T

Since the column for $\neg(P \rightarrow Q) \vee(\neg Q \rightarrow \neg P)$ contains only T's, the statement is a tautology.
4. Prove that $\lim _{x \rightarrow 3}\left(x^{2}-4\right)=5$.

Let $\epsilon>0$. I want to find δ such that if $\delta>|x-3|>0$, then $\epsilon>\left|\left(x^{2}-4\right)-5\right|$.
Here's the scratch work. I want $\epsilon>\left|x^{2}-9\right|=|x-3||x+3|$. I can use δ to control $|x-3|$. To control $|x+3|$, assume $1 \geq \delta$. Then $1>|x-3|$, so $2<x<4$. Then $5<x+3<7$, so $|x+3|<7$.

Now if I can make $\epsilon>7|x-3|$, then $7|x-3|>|x+3||x-3|$ gives $\epsilon>|x+3||x-3|$. But $\epsilon>7|x-3|$ is equivalent to $\frac{\epsilon}{7}>|x-3|$, and I could get this if $\frac{\epsilon}{7} \geq \delta$.

Putting my two requirements on δ together, I'll take $\delta=\min \left(1, \frac{\epsilon}{7}\right)$.
Here's the real proof. Suppose $\epsilon>0$. Take $\delta=\min \left(1, \frac{\epsilon}{7}\right)$. If $\delta>|x-3|>0$, then

$$
\begin{gathered}
1 \geq \delta>|x-3| \\
2<x<4 \\
5<x+3<7
\end{gathered}
$$

Therefore, $7>|x+3|$.
Also, $\frac{\epsilon}{7} \geq \delta>|x-3|$. Since all the numbers involved are positive, I can multiply inequalities to get

$$
\epsilon=7 \cdot \frac{\epsilon}{7}>|x+3||x-3|=\left|x^{2}-9\right|=\left|\left(x^{2}-4\right)-5\right| .
$$

This proves that $\lim _{x \rightarrow 3}\left(x^{2}-4\right)=5$.
5. Prove that $\lim _{x \rightarrow 3} \frac{x+3}{x-2}=6$.

Let $\epsilon>0$. I must find δ such that if $\delta>|x-3|>0$, then $\epsilon>\left|\frac{x+3}{x-2}-6\right|$.
Here's the scratch work. I want

$$
\epsilon>\left|\frac{x+3}{x-2}-6\right|=\left|\frac{x+3-6(x-2)}{x-2}\right|=\left|\frac{15-5 x}{x-2}\right|=5|x-3| \cdot \frac{1}{|x-2|}
$$

As usual, I suppose $1 \geq \delta$. Then $\delta>|x-3|$ gives $1>|x-3|$, so $2<x<4$, and $0<x-2<4$. But now I have a problem: I want to estimate how big $\frac{1}{|x-2|}$ could be, but I can't take reciprocals in $0<x-2<4$! In fact, $\frac{1}{|x-2|}$ gets infinitely large on this interval.

So I rewind and try again with a smaller δ. Suppose $0.5 \geq \delta$. Then $\delta>|x-3|$ gives $0.5>|x-3|$, so $2.5<x<3.5$, and $0.5<x-2<1.5$. Taking reciprocals gives $2>\frac{1}{x-2}>\frac{2}{3}$, so $\frac{1}{|x-2|}<2$.

If I had $\epsilon>5|x-3| \cdot 2$, then $2>\frac{1}{|x-2|}$ gives $\epsilon>5|x-3| \cdot \frac{1}{|x-2|}$, which is what I want. I could get $\epsilon>5|x-3| \cdot 2=10|x-3|$ if $\frac{\epsilon}{10}>|x-3|$, and this in turn I could get if I had $\frac{\epsilon}{10} \geq \delta$.

Thus, I ought to take $\delta=\min \left(\frac{\epsilon}{10}, 0.5\right)$.
Now here's the proof. Take $\delta=\min \left(\frac{\epsilon}{10}, 0.5\right)$. Since $0.5 \geq \delta>|x-3|$, I get

$$
\begin{aligned}
0.5 & >|x-3| \\
2.5 & <x<3.5 \\
0.5 & <x-2<1.5 \\
2 & >\frac{1}{x-2}>\frac{2}{3}
\end{aligned}
$$

Therefore, $\frac{1}{|x-2|}<2$.
In addition, $\frac{\epsilon}{10} \geq \delta>|x-3|$, so

$$
\epsilon>10|x-3|=5|x-3| \cdot 2>5|x-3| \cdot \frac{1}{|x-2|}=\left|\frac{x+3}{x-2}-6\right|
$$

This proves that $\lim _{x \rightarrow 3} \frac{x+3}{x-2}=6$.
6. Prove: $\neg C$.

Premises: $\left\{\begin{array}{c}A \rightarrow(B \wedge D) \\ D \rightarrow \neg C \\ (\neg B \vee C) \rightarrow A\end{array}\right.$

1.	A	Premise for proof by cases
2.	$A \rightarrow(B \wedge D)$	Premise
3.	$B \wedge D$	Modus ponens (1,2)
4.	D	Decomposing a conjunction (3)
5.	$D \rightarrow \neg C$	Premise
6.	$\neg C$	Modus ponens (4,5)
7.	$\neg A$	Premise for proof by cases
8.	$(\neg B \vee C) \rightarrow A$	Premise
9.	$\neg(\neg B \vee C)$	Modus tollens (7,8)
10.	$B \wedge \neg C$	DeMorgan's law (9)
11.	$\neg C$	Decomposing a conjunction (10)
12.	$\neg C$	Proof by cases (1, 6, 7, 11)

7. Prove that if $x \in \mathbb{R}$, then

$$
-7 \leq|x+4|-|x-3| \leq 7
$$

Note that

$$
|x+4|=\left\{\begin{array}{ll}
x+4 & \text { if } x \geq-4 \\
-(x+4) & \text { if } x<-4
\end{array} \quad \text { and } \quad|x-3|=\left\{\begin{array}{ll}
x-3 & \text { if } x \geq 3 \\
-(x-3) & \text { if } x<3
\end{array} .\right.\right.
$$

Case 1: $x<-4$.

$$
|x+4|-|x-3|=-(x+4)-[-(x-3)]=-x-4+x-3=-7
$$

Hence, $-7 \leq|x+4|-|x-3| \leq 7$.
Case 2: $-4 \leq x<3$.

$$
|x+4|-|x-3|=(x+4)-[-(x-3)]=x+4+x-3=2 x+1
$$

Now

$$
\begin{aligned}
-4 & \leq x<3 \\
-8 & \leq 2 x<6 \\
-7 & \leq 2 x+1<7
\end{aligned}
$$

Hence, $-7 \leq|x+4|-|x-3| \leq 7$.

Case 3: $x \geq 3$.

$$
|x+4|-|x-3|=(x+4)-(x-3)=x+4-x+3=7 .
$$

Hence, $-7 \leq|x+4|-|x-3| \leq 7$.
This proves $-7 \leq|x+4|-|x-3| \leq 7$ for all $x \in \mathbb{R}$.
8. Show that there do not exist real numbers x and y such that

$$
x^{2}-x+y^{2}-3 y+3=0 .
$$

Suppose that for $x, y \in \mathbb{R}$,

$$
x^{2}-x+y^{2}-3 y+3=0 .
$$

Complete the square in x and in y :

$$
\begin{array}{r}
x^{2}-x+\frac{1}{4}+y^{2}-3 y+\frac{9}{4}+\frac{1}{2}=0 \\
\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{3}{2}\right)^{2}+\frac{1}{2}=0
\end{array}
$$

Each of the squared terms on the left are nonnegative, so the left side must be greater than or equal to $\frac{1}{2}$. Therefore, it can't be equal to 0 . This contradiction show that there do not exist $x, y \in \mathbb{R}$ such that $x^{2}-x+y^{2}-3 y+3=0$.
9. The Fibonacci numbers are defined recursively by

$$
f_{0}=1, \quad f_{1}=1, \quad f_{n}=f_{n-1}+f_{n-2} \quad \text { for } \quad n>1
$$

Prove that for $n \geq 0$,

$$
f_{0}^{2}+f_{1}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}
$$

For $n=0$,

$$
f_{0}^{2}=1^{2}=1 \quad \text { and } \quad f_{0} f_{1}=1 \cdot 1=1
$$

Thus, the result is true for $n=0$.
Assume $n>1$, and suppose the result is true for n. I'll prove the result for $n+1$.
The result for n says that

$$
f_{0}^{2}+f_{1}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}
$$

Adding f_{n+1}^{2} to both sides, I get

$$
f_{0}^{2}+f_{1}^{2}+\cdots+f_{n}^{2}+f_{n+1}^{2}=f_{n} f_{n+1}+f_{n+1}^{2}=f_{n+1}\left(f_{n}+f_{n+1}\right)=f_{n+1} f_{n+2}
$$

This proves the result for $n+1$. Hence, the result is true for all $n \geq 0$, by induction.
10. Prove that if $n \geq 1$, then

$$
1 \cdot 5+2 \cdot 6+3 \cdot 7+\cdots+n(n+4)=\frac{n(n+1)(2 n+13)}{6}
$$

For $n=1$, the left side is $1 \cdot 5=5$, while the right side is $\frac{1(2)(15)}{6}=5$. Thus, the result holds for $n=1$. Assume that the result is true for n :

$$
1 \cdot 5+2 \cdot 6+3 \cdot 7+\cdots+n(n+4)=\frac{n(n+1)(2 n+13)}{6}
$$

I will prove it for $n+1$:

$$
\begin{gathered}
1 \cdot 5+2 \cdot 6+3 \cdot 7+\cdots+n(n+4)+(n+1)(n+5)=\frac{n(n+1)(2 n+13)}{6}+(n+1)(n+5)= \\
(n+1)\left(\frac{n(2 n+13)}{6}+(n+5)\right)=(n+1)\left(\frac{n(2 n+13)+6(n+5)}{6}\right)=(n+1)\left(\frac{2 n^{2}+19 n+30}{6}\right)= \\
(n+1)\left(\frac{(n+2)(2 n+15)}{6}\right)=\frac{(n+1)(n+2)(2 n+15)}{6} .
\end{gathered}
$$

This proves the result for $n+1$, so the result is true for all $n \geq 1$, by induction.
11. Prove that the sum of the cubes of three consecutive positive integers is divisible by 9 .

I'll use induction.
The first three consecutive positive integers are 1,2 , and 3 , and

$$
1^{3}+2^{3}+3^{3}=36
$$

This is divisible by 9 .
Take $n>1$, and assume the result is true for n. In other words, assume that

$$
n^{3}+(n+1)^{3}+(n+2)^{3} \quad \text { is divisible by } \quad 9
$$

I want to prove the result for $n+1$: I want to show that $(n+1)^{3}+(n+2)^{3}+(n+3)^{3}$ is divisible by 9 . Note that
$n^{3}+(n+1)^{3}+(n+2)^{3}=3 n^{3}+9 n^{2}+15 n+9 \quad$ and $\quad(n+1)^{3}+(n+2)^{3}+(n+3)^{3}=3 n^{3}+18 n^{2}+42 n+36$.
Thus,

$$
\begin{gathered}
{\left[(n+1)^{3}+(n+2)^{3}+(n+3)^{3}\right]-\left[n^{3}+(n+1)^{3}+(n+2)^{3}\right]=\left(3 n^{3}+18 n^{2}+42 n+36\right)-\left(3 n^{3}+9 n^{2}+15 n+9\right)=} \\
9 n^{2}+27 n+27
\end{gathered}
$$

Hence,
$(n+1)^{3}+(n+2)^{3}+(n+3)^{3}=\left[n^{3}+(n+1)^{3}+(n+2)^{3}\right]+9 n^{2}+27 n+27=\left[n^{3}+(n+1)^{3}+(n+2)^{3}\right]+9\left(n^{2}+3 n+3\right)$.
$n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 by the induction hypothesis, and $9\left(n^{2}+3 n+3\right)$ is divisible by
9. Hence, the sum $(n+1)^{3}+(n+2)^{3}+(n+3)^{3}$ is divisible by 9 . This proves the result for $n+1$, so the result is true for all $n \geq 1$, by induction.
12. A sequence of integers is defined by

$$
\begin{gathered}
x_{0}=6, \quad x_{1}=17 \\
x_{n}=x_{n-1}+12 x_{n-2} \quad \text { for } n \geq 2
\end{gathered}
$$

Prove that

$$
x_{n}=5 \cdot 4^{n}+(-3)^{n} \quad \text { for } \quad n \geq 0
$$

Use induction. For $n=0$, the formula gives

$$
5 \cdot 4^{0}+(-3)^{0}=5+1=6=x_{0}
$$

For $n=1$, the formula gives

$$
5 \cdot 4^{1}+(-3)^{1}=17=x_{1}
$$

Now assume the formula holds for all $k<n$. In particular, it is true for $n-1$ and for $n-2$. Then

$$
\begin{aligned}
x+n & =x_{n-1}+12 x_{n-2} \\
& =\left[5 \cdot 4^{n-1}+(-3)^{n-1}\right]+12\left[5 \cdot 4^{n-2}+(-3)^{n-2}\right] \\
& =\left[5 \cdot 4^{n-1}+60 \cdot 4^{n-2}\right]+\left[(-3)^{n-1}+12 \cdot(-3)^{n-2}\right] \\
& =5 \cdot 4^{n-2}(4+12)+(-3)^{n-2}[(-3)+12] \\
& =5 \cdot 4^{n-2} \cdot 4^{2}+(-3)^{n-2} \cdot(-3)^{2} \\
& =5 \cdot 4^{n}+(-3)^{n}
\end{aligned}
$$

This proves the result for n, so the formula holds for all $n \geq 0$ by induction. $\quad \square$
13. Prove that if $n \geq 4$, then

$$
(2 n)!\geq 10^{n}
$$

For $n=4$,

$$
(2 n)!=8!=40320, \quad \text { while } \quad 10^{4}=10000
$$

The result holds for $n=4$.
Assume that $n \geq 4$ and the result is true for n :

$$
(2 n)!\geq 10^{n}
$$

I will prove the result for $n+1$:

$$
\begin{aligned}
{[2(n+1)]!} & =(2 n+2)! \\
& =(2 n+2)(2 n+1)(2 n)! \\
& \geq(2 n+2)(2 n+1) \cdot 10^{n} \\
& \geq 10 \cdot 9 \cdot 10^{n} \\
& \geq 10^{n+1}
\end{aligned}
$$

Note that $2 n+2 \geq 10$ and $2 n+1 \geq 9$ follow from $n \geq 4$.
This proves the result for $n+1$, so the result is true for all $n \geq 4$ by induction.
14. Suppose that A is a set and $|A|=3$. Which set has more elements $-\mathcal{P}(A)$ or $A \times A$?
$|\mathcal{P}(A)|=2^{3}=8$, while $|A \times A|=3 \cdot 3=9$. So $A \times A$ has more elements.
15. Let A and B be sets. Prove that $(A-B) \cap(B-A)=\emptyset$.

I want to prove that $(A-B) \cap(B-A)$ is empty. Suppose on the contrary that $x \in(A-B) \cap(B-A)$.
Since $x \in A-B$, I have $x \in A$ and $x \notin B$. Since $x \in B-A$, I have $x \in B$ and $x \notin A$. But in particular, I have the contrary assertions " $x \in A$ " and " $x \notin A$ ". This contradiction shows that $(A-B) \cap(B-A)=\emptyset$. [
16. Let A, B, and C be sets.
(a) Draw a general Venn diagram for $A-(B-C)$.
(b) Prove that $A-(B-C)=(A \cap C) \cup(A-B)$.
(a)

(b) Before starting the proof, I'll prove an easy lemma.

Lemma. $x \notin B-C$ if and only if $x \notin B$ or $x \in C$.
Proof. Now $x \notin B-C$ means $\neg x \in B-C$. By definition of complement, this is equivalent to $\neg(x \in$ $B \wedge \neg x \in C)$. By DeMorgan, this is equivalent to $x \notin B$ or $x \in C$.

Let $x \in A-(B-C)$. By definition of complement, $x \in A$ and $x \notin B-C$. By the lemma, $x \notin B-C$ gives $x \notin B$ or $x \in C$.

Suppose first that $x \notin B$. Since $x \in A$, the definition of complement gives $x \in A-B$.
Next, suppose $x \in C$. Since $x \in A$, the definition of intersection gives $x \in A \cap C$.
By the definition of union, $x \in(A \cap C) \cup(A-B)$. This proves that $A-(B-C) \subset(A \cap C) \cup(A-B)$.
Conversely, suppose $x \in(A \cap C) \cup(A-B)$. By definition of union, I have $x \in A \cap C$ or $x \in A-B$.
Suppose first that $x \in A \cap C$. By definition of intersection, $x \in A$ and $x \in C$. Now " $x \notin B$ or $x \in C$ " is true, so by the lemma $x \notin(B-C)$. By definition of complement, $x \in A-(B-C)$.

Next, suppose $x \in A-B$. By definition of complement, $x \in A$ and $x \notin B$. Now " $x \notin B$ or $x \in C$ " is true, so by the lemma $x \notin(B-C)$. By definition of complement, $x \in A-(B-C)$.

In both cases, $x \in A-(B-C)$. This proves that $x \in(A \cap C) \cup(A-B) \subset A-(B-C)$.
Hence, $A-(B-C)=(A \cap C) \cup(A-B)$.

Here is an alternate proof written in a different style:

$$
\begin{aligned}
x \in A-(B-C) & \leftrightarrow x \in A \wedge x \notin(B-C) & \text { Definition of complement } \\
& \leftrightarrow x \in A \wedge \neg(x \in(B-C)) & \text { Definition of } \notin \\
& \leftrightarrow x \in A \wedge \neg(x \in B \wedge x \notin C) & \text { Definition of complement } \\
& \leftrightarrow x \in A \wedge(\neg x \in B \vee \neg x \notin C) & \text { DeMorgan's law } \\
& \leftrightarrow x \in A \wedge(\neg x \in B \vee \neg \neg x \in C) & \text { Definition of } \notin \\
& \leftrightarrow x \in A \wedge(\neg x \in B \vee x \in C) & \text { Double negation } \\
& \leftrightarrow(x \in A \wedge \neg x \in B) \vee(x \in A \wedge x \in C) & \text { Distributivity } \\
& \leftrightarrow x \in A \wedge x \notin B) \vee(x \in A \wedge x \in C) & \text { Definition of } \notin \\
& \leftrightarrow x \in(A-B) \vee(x \in A \wedge x \in C) & \text { Definition of complement } \\
& \leftrightarrow x \in(A-B) \vee x \in A \cap C & \text { Definition of } \cap \\
& \leftrightarrow x \in A \cap C \vee x \in(A-B) & \text { Commutativity } \\
& \leftrightarrow x \in(A \cap C) \cup(A-B) & \text { Definition of } \cup
\end{aligned}
$$

Therefore, $A-(B-C)=(A \cap C) \cup(A-B)$.
17. Prove that $[-1,2] \cup[0,4]=[-1,4]$.

Let $x \in[-1,2] \cup[0,4]$. Then $x \in[-1,2]$ or $x \in[0,4]$.
Suppose $x \in[-1,2]$. Then

$$
-1 \leq x \leq 2 \leq 4
$$

Hence, $x \in[-1,4]$.
Suppose $x \in[0,4]$. Then

$$
-1 \leq 0 \leq x \leq 4
$$

Hence, $x \in[-1,4]$.
In both cases, $x \in[-1,4]$.
Thus, $[-1,2] \cup[0,4] \subset[-1,4]$.
Conversely, let $x \in[-1,4]$, so $-1 \leq x \leq 4$. Thus, $-1 \leq x$ and $x \leq 4$. I'll consider two cases.
Suppose $x \leq 1$. Then

$$
-1 \leq x \leq 1 \leq 2
$$

Hence, $x \in[-1,2] \subset[-1,2] \cup[0,4]$.
Suppose $x>1$. Then

$$
0 \leq 1<x \leq 4
$$

Hence, $x \in[0,4] \subset[-1,2] \cup[0,4]$.
This proves that $[-1,4] \subset[-1,2] \cup[0,4]$. Hence, $[-1,2] \cup[0,4]=[-1,4]$.
18. Prove that $(-4,6) \cap(1,8)=(1,6)$.

Let $x \in(-4,6) \cap(1,8)$. I'll show that $x \in(1,6)$.
Since $x \in(-4,6) \cap(1,8)$, the definition of intersection gives $x \in(-4,6)$ and $x \in(1,8)$. The definition of intervals gives $-4<x<6$ and $1<x<8$, so $-4<x$ and $x<6$ and $1<x$ and $x<8$.

In particular, $1<x$ and $x<6$ give $1<x<6$, so $x \in(1,6)$.
Next, let $x \in(1,6)$. I'll show that $x \in(-4,6) \cap(1,8)$.
Since $x \in(1,6)$, I have $1<x<6$. First,

$$
-4<1<x<6
$$

So $x \in(-4,6)$.

Next,

$$
1<x<6<8
$$

So $x \in(1,8)$.
By definition of intersection, $x \in(-4,6) \cap(1,8)$.
Since $(-4,6) \cap(1,8)$ and $(1,6)$ are contained in each other, I have $(-4,6) \cap(1,8)=(1,6)$.
19. In each case, give a counterexample to the statement.
(a) "If $n \in \mathbb{Z}$, then $n^{2}+120 \geq 22 n$."
(b) "If $\frac{d}{d x} f(x)=3 x^{2}+4 x$, then $f(x)=x^{3}+2 x^{2}$."
(c) "If a, b, and c are positive integers, then $\left.\left(a^{b}\right)^{c}=a^{(} b^{c}\right)$."
(a) If $n=11$, then $n^{2}+120=241$, but $22 n=242$, so $n^{2}+120 \nsupseteq 22 n$.
(b) $\frac{d}{d x}\left(x^{3}+2 x^{2}+1\right)=3 x^{2}+4 x$, but $x^{3}+2 x^{2}+1 \neq x^{3}+2 x^{2}$.
(c)

$$
\left.\left(2^{2}\right)^{3}=4^{3}=64, \quad \text { but } \quad 2^{(} 2^{3}\right)=2^{8}=256 . \quad \square
$$

20. Bonzo McTavish observes that if n is an integer, then

$$
2 \cdot(2 n+3)+(-4) \cdot(n+1)=2
$$

He concludes that $(2 n+3, n+1)$ is either 1 or 2 . Can $(2 n+3, n+1)=2$? Why or why not?
The equation $2 \cdot(2 n+3)+(-4) \cdot(n+1)=2$ only shows that $(2 n+3, n+1)$ could be either 1 or 2 . It does not mean that both of these numbers are possible.

In fact,

$$
(2 n+3)+(-2) \cdot(n+1)=1
$$

Since $(2 n+3, n+1)$ divides both $2 n+3$ and $n+1$, it must divide $(2 n+3)+(-2) \cdot(n+1)=1$; since $(2 n+3, n+1)$ is positive, $(2 n+3, n+1)=1$.

Thus, $(2 n+3, n+1)$ is never equal to 2 .
21. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
f(x, y)=\left(x+y^{3}, x^{2}\right)
$$

Prove by example that f is neither injective nor surjective.

$$
f(1,0)=\left(1+0^{3}, 1^{2}\right)=(1,1) \quad \text { and } \quad f(-1, \sqrt[3]{2})=\left(-1+(\sqrt[3]{2})^{3},(-1)^{2}\right)=(1,1)
$$

Since f takes the different inputs $(1,0)$ and $(-1, \sqrt[3]{2})$ to the same output $(1,1), f$ is not injective.
$f(x, y)=\left(x+y^{3}, x^{2}\right)$, so the second component of $f(x, y)$ cannot be negative. Therefore, for no (x, y) does $f(x, y)=(0,-1)$. Hence, f is not surjective. $\quad \square$
22. Define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
g(x, y)=\left(x+y^{3}, x^{3}\right)
$$

Prove that g is bijective by:
(a) Proving that g is injective and surjective.
(b) Constructing an inverse for g.
(a) Suppose that $g(a, b)=g(c, d)$. This means that

$$
\left(a+b^{3}, a^{3}\right)=\left(c+d^{3}, c^{3}\right)
$$

Equating the second components, I get $a^{3}=c^{3}$, so $a=c$. Equating the first components gives $a+b^{3}=$ $c+d^{3}$. But $a=c$, so $b^{3}=d^{3}$, and therefore $b=d$.

Hence, $(a, b)=(c, d)$, which proves that g is injective.
Next, take $(a, b) \in \mathbb{R}^{2}$. I want to find (x, y) such that $g(x, y)=(a, b)$.
I'll work backwards, then check by plugging back in. I want

$$
\left(x+y^{3}, x^{3}\right)=(a, b), \quad \text { or } \quad x+y^{3}=a \quad \text { and } \quad x^{3}=b
$$

The second component equation gives $x=b^{1 / 3}$. Plugging this into the first component equation gives

$$
b^{1 / 3}+y^{3}=a, \quad \text { or } \quad y^{3}=a-b^{1 / 3}
$$

Thus, $y=\left[a-b^{1 / 3}\right]^{1 / 3}$.
Now I'll check that this works:

$$
g\left(b^{1 / 3},\left[a-b^{1 / 3}\right]^{1 / 3}\right)=\left(b^{1 / 3}+\left(\left[a-b^{1 / 3}\right]^{1 / 3}\right)^{3},\left(b^{1 / 3}\right)^{3}\right)=\left(b^{1 / 3}+a-b^{1 / 3}, b\right)=(a, b)
$$

This proves that g is surjective.
(b) To guess an inverse, I use the same approach I used above to show that g is surjective. I'll repeat it so you can see how the whole proof would look like in this case.

I have $g(x, y)=\left(x+y^{3}, x^{3}\right)$, and I want a formula for $g^{-1}(a, b)=(p, q)$. This means I want p and q in terms of a and b. Working backwards,

$$
\begin{aligned}
g^{-1}(a, b) & =(p, q) \\
g\left[g^{-1}(a, b)\right] & =g(p, q) \\
(a, b) & =\left(p+q^{3}, p^{3}\right)
\end{aligned}
$$

So

$$
p+q^{3}=a \quad \text { and } \quad p^{3}=b
$$

The second equation gives $p=b^{1 / 3}$. Plugging this into the first equation and solving gives $q=[a-$ $\left.b^{1 / 3}\right]^{1 / 3}$. So define

$$
g^{-1}(a, b)=\left(b^{1 / 3},\left[a-b^{1 / 3}\right]^{1 / 3}\right)
$$

Now check that g and g^{-1} really are inverses:
$\left.g\left(g^{-1}(a, b)\right)=g\left(b^{1 / 3},\left[a-b^{1 / 3}\right]^{1 / 3}\right)=\left(b^{1 / 3}+\left(\left[a-b^{1 / 3}\right]^{1 / 3}\right)^{3}\right),\left[b^{1 / 3}\right]^{3}\right)=\left(b^{1 / 3}+a-b^{1 / 3}, b\right)=(a, b)$.
$g^{-1}(g(x, y))=g^{-1}\left(x+y^{3}, x^{3}\right)=\left(\left[x^{3}\right]^{1 / 3},\left[\left(x+y^{3}\right)-\left[x^{3}\right]^{1 / 3}\right]^{1 / 3}\right)=\left(x,\left(x+y^{3}-x\right)^{1 / 3}\right)=\left(x,\left[y^{3}\right]^{1 / 3}\right)=(x, y)$.
g and g^{-1} are inverses, so g is bijective.
23. Define $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
h(x, y)=\left(x+3 y+2, x^{3}+5\right)
$$

Prove that h is surjective.
Let $(a, b) \in \mathbb{R}^{2}$. I need to find $(x, y) \in \mathbb{R}^{2}$ such that $h(x, y)=(a, b)$.
I'll work backwards to guess formulas for x and y in terms of a and b, then confirm that my guesses work.

I want $h(x, y)=(a, b)$, so

$$
\left(x+3 y+2, x^{3}+5\right)=(a, b), \quad \text { or } \quad x+3 y+2=a \quad \text { and } \quad x^{3}+5=b
$$

The second equation gives $x=(b-5)^{1 / 3}$; plugging this into the first equation, I get

$$
(b-5)^{1 / 3}+3 y+2=a, \quad \text { or } \quad y=\frac{1}{3}\left(a-2-(b-5)^{1 / 3}\right)
$$

Now I'll check that these formulas for x and y work:

$$
\begin{gathered}
h\left((b-5)^{1 / 3}, \frac{1}{3}\left(a-2-(b-5)^{1 / 3}\right)\right)=\left((b-5)^{1 / 3}+3 \cdot \frac{1}{3}\left(a-2-(b-5)^{1 / 3}\right)+2,\left((b-5)^{1 / 3}\right)^{3}+5\right)= \\
\left((b-5)^{1 / 3}+a-2-(b-5)^{1 / 3}+2, b-5+5\right)=(a, b)
\end{gathered}
$$

This proves that h is surjective.
24. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=2 e^{x}+x^{3}+4 x+\sin x
$$

Prove that f is injective.
It is too hard to do this directly, so I'll use calculus. Suppose $f(a)=f(b)$ and $a \neq b$. There is no harm in assuming $a<b$ - if instead $b<a$, then just rewrite the rest of the proof with a and b switched.

Since f is differentiable, I can apply Rolle's Theorem to f on the interval $[a, b]$ to conclude that $f^{\prime}(c)=0$ for some c in (a, b).

But

$$
f^{\prime}(x)=2 e^{x}+3 x^{2}+4+\cos x
$$

Now for all x, I have $2 e^{x}>0,3 x^{2} \geq 0$, and $\cos x \geq-1$. So

$$
f^{\prime}(x)=2 e^{x}+3 x^{2}+4+\cos x>0+0+4+(-1)=3
$$

This contradicts $f^{\prime}(c)=0$. It follows that $a=b$, so f is injective.
25. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=2 x^{3}+\tan ^{-1} x
$$

Prove that f is surjective.
Let $y \in \mathbb{R}$. I must show that $f(x)=y$ for some $x \in \mathbb{R}$.
Note that

$$
\lim _{x \rightarrow \infty}\left(2 x^{3}+\tan ^{-1} x\right)=+\infty \quad \text { and } \quad \lim _{x \rightarrow-\infty}\left(2 x^{3}+\tan ^{-1} x\right)=-\infty
$$

Therefore, there are numbers a and b such that

$$
f(a)<y<f(b)
$$

Since f is continuous, by the Intermediate Value Theorem there is a number x between a and b such that $f(x)=y$. Hence, f is surjective.
26. Prove that $\{0,1\} \times \mathbb{R}$ has the same cardinality as \mathbb{R}.
$\{0,1\} \times \mathbb{R}$ consists of all ordered pairs $(0, x)$ or $(1, x)$, where $x \in \mathbb{R}$. Thus, $\{0,1\} \times \mathbb{R}$ looks like two copies of the real line:

$$
\begin{aligned}
& \{1\} \times R \longleftrightarrow \\
& \{0\} \times R \longleftrightarrow
\end{aligned}
$$

I'll use the Schröder-Bernstein theorem.
Define $f: \mathbb{R} \rightarrow\{0,1\} \times \mathbb{R}$ by

$$
f(x)=(0, x)
$$

If $f(a)=f(b)$, then $(0, a)=(0, b)$, so $a=b$. Therefore, f is injective.
Define $g:\{0,1\} \times \mathbb{R} \rightarrow \mathbb{R}$ by

$$
g(0, x)=\arctan x-\frac{\pi}{2} \quad \text { and } \quad g(1, x)=\arctan x+\frac{\pi}{2}
$$

g maps the first copy of \mathbb{R} to $(-\pi, 0)$ and the second copy to $(0, \pi)$. Here's the picture:

To show that g is injective, suppose $g(a, b)=g(c, d)$. I must show that $(a, b)=(c, d)$.
First, I'll show that $a=c . a$ and c are each either 0 or 1 . If $a \neq c$, then one is 0 and the other is 1 .
Suppose $a=0$ and $c=1$. Then

$$
g(a, b)=g(0, b)=\arctan b-\frac{\pi}{2} \quad \text { and } \quad g(c, d)=g(1, d)=\arctan d+\frac{\pi}{2}
$$

Now

$$
-\frac{\pi}{2}<\arctan b<\frac{\pi}{2}, \quad \text { so } \quad-\pi<\arctan b-\frac{\pi}{2}<0 \quad \text { and } \quad-\pi<g(a, b)<0
$$

Likewise,

$$
-\frac{\pi}{2}<\arctan d<\frac{\pi}{2}, \quad \text { so } \quad 0<\arctan d+\frac{\pi}{2}<\pi \quad \text { and } \quad 0<g(c, d)<\pi
$$

But $-\pi<g(a, b)<0$ and $0<g(c, d)<\pi$ contradict the assumption that $g(a, b)=g(c, d)$. Hence, $a=0$ and $c=1$ is impossible.

A symmetrical argument shows that $a=1$ and $c=0$ is impossible.
Therefore, either $a=c=0$ or $a=c=1$.
Suppose $a=c=0$. Then

$$
g(a, b)=g(0, b)=\arctan b-\frac{\pi}{2} \quad \text { and } \quad g(c, d)=g(0, d)=\arctan d-\frac{\pi}{2}
$$

Now $g(a, b)=g(c, d)$, so

$$
\arctan b-\frac{\pi}{2}=\arctan d-\frac{\pi}{2}, \quad \arctan b=\arctan d, \quad b=d
$$

Since $a=c=0$, it follows that $(a, b)=(c, d)$.
A similar argument shows that if $a=c=1$, then $(a, b)=(c, d)$.
Hence, g is injective.
Therefore, by the Schröder-Bernstein theorem, $\{0,1\} \times \mathbb{R}$ has the same cardinality as $\mathbb{R} . \quad \square$
27. Prove by constructing a bijection that $|[-1,3]|=|[3,5]|$.

Define $f:[-1,3] \rightarrow[3,5]$ by

$$
f(x)=\frac{1}{2} x+\frac{7}{2}
$$

Note that if $x \in[-1,3]$, then

$$
\begin{aligned}
-1 \leq x & \leq 3 \\
-\frac{1}{2} \leq \frac{1}{2} x & \leq \frac{3}{2} \\
3 \leq \frac{1}{2} x+\frac{7}{2} & \leq 5 \\
3 \leq f(x) & \leq 5
\end{aligned}
$$

Hence, $f(x) \in[3,5]$, so f does map $[-1,3]$ into $[3,5]$.
Define $g:[3,5] \rightarrow[-1,3]$ by

$$
g(x)=2 x-7
$$

Note that if $x \in[3,5]$, then

$$
\begin{aligned}
3 \leq x & \leq 5 \\
6 \leq 2 x & \leq 10 \\
-1 \leq 2 x-7 & \leq 3 \\
-1 \leq f(x) & \leq 3
\end{aligned}
$$

Hence, $g(x) \in[-1,3]$, so f does map $[3,5]$ into $[-1,3]$.
I have

$$
\begin{gathered}
f(g(x))=f(2 x-7)=\frac{1}{2}(2 x-7)+\frac{7}{2}=x-\frac{7}{2}+\frac{7}{2}=x \\
g(f(x))=g\left(\frac{1}{2} x+\frac{7}{2}\right)=2\left(\frac{1}{2} x+\frac{7}{2}\right)-7=x+7-7=x
\end{gathered}
$$

Hence, f and g are inverses, so they are bijections. Therefore, $|[-1,3]|=|[3,5]|$.
28. Prove that $[1,4] \cup(5,6)$ has the same cardinality as $(2,3) \cup\{7\}$.

Define $f:[1,4] \cup(5,6) \rightarrow(2,3) \cup\{7\}$ by

$$
f(x)=0.1 x+2
$$

Note that if $x \in[1,4] \cup(5,6)$, then

$$
\begin{aligned}
1 \leq x & <6 \\
0.1 \leq 0.1 x & <0.6 \\
2.1 \leq 0.1 x+2 & <2.6 \\
2<2.1 \leq f(x) & <2.6<3
\end{aligned}
$$

Therefore, $f(x) \in(2,3) \cup\{7\}$, so f does map $[1,4] \cup(5,6)$ into $(2,3) \cup\{7\}$.
If $f\left(x_{1}\right)=f\left(x_{2}\right)$, then

$$
\begin{aligned}
0.1 x_{1}+2 & =0.1 x_{2}+2 \\
0.1 x_{1} & =0.1 x_{2} \\
x_{1} & =x_{2}
\end{aligned}
$$

Therefore, f is injective.
Define $g:(2,3) \cup\{7\} \rightarrow[1,4] \cup(5,6)$ by

$$
g(x)=0.2 x+1
$$

If $x \in(2,3) \cup\{7\}$, then

$$
\begin{aligned}
2<x & \leq 7 \\
0.4<0.2 x & \leq 1.4 \\
1.4<0.2 x+1 & \leq 2.4 \\
1<1.4<g(x) & \leq 2.4<4
\end{aligned}
$$

Therefore, $g(x) \in[1,4] \cup(5,6)$, so g does map $(2,3) \cup\{7\}$ into $[1,4] \cup(5,6)$.
If $g\left(x_{1}\right)=g\left(x_{2}\right)$, then

$$
\begin{aligned}
0.2 x_{1}+1 & =0.2 x_{2}+1 \\
0.2 x_{1} & =0.2 x_{2} \\
x_{1} & =x_{2}
\end{aligned}
$$

Therefore, g is injective.
By the Schröder-Bernstein theorem, $[1,4] \cup(5,6)$ has the same cardinality as $(2,3) \cup\{7\}$.
29. Define a relation on \mathbb{R} by

$$
x \sim y \quad \text { means } \quad(\sin x)(\sin y) \geq 0
$$

Take each axiom for an equivalence relation. If the axiom holds, prove it; if the axiom does not hold, give a counterexample.

The graph of this relation is pretty complicated; I'll give it even though it's not necessary for the problem, since it's kind of interesting.

In this contour plot, the light areas represent points (x, y) where $f(x, y)=(\sin x)(\sin y)$ is positive; dark areas represents points where the function is negative. Thus, if a point (x, y) is in a light area, then $x \sim y$.

For reflexivity, note that $(\sin x)(\sin x)=(\sin x)^{2} \geq 0$ for all $x \in \mathbb{R}$. Therefore, $x \sim x$ for all $x \in \mathbb{R}$, and the relation is reflexive.

Suppose $x \sim y$. Then $(\sin x)(\sin y) \geq 0$, so $(\sin y)(\sin x) \geq 0$, and hence $y \sim x$. Therefore, \sim is symmetric.

On the other hand,

$$
\begin{aligned}
\left(\sin \frac{\pi}{2}\right)(\sin 0) & =(1)(0)=0 \geq 0, \quad \text { so } \quad \frac{\pi}{2} \sim 0, \\
(\sin 0)\left(\sin -\frac{\pi}{2}\right) & =(0)(-1)=0 \geq 0, \quad \text { so } \quad 0 \sim-\frac{\pi}{2}
\end{aligned}
$$

But

$$
\left(\sin \frac{\pi}{2}\right)\left(\sin -\frac{\pi}{2}\right)=(1)(-1)=-1 \nsupseteq 0, \quad \text { so } \quad \frac{\pi}{2} \nsim-\frac{\pi}{2} .
$$

Hence, \sim is not transitive. Thus, \sim is not an equivalence relation.
30. Consider the equivalence relation defined by writing $x \sim y$ to mean $x=y(\bmod 3)$ on the set

$$
S=\{-3,-2,0,2,4,5,6,10,17,18,22\}
$$

List the elements of the equivalence classes.

$$
\{-3,0,6,18\}, \quad\{-2,4,10,22\}, \quad\{2,5,17\} .
$$

31. A relation is defined on \mathbb{R}^{2} by

$$
(a, b) \sim(c, d) \quad \leftrightarrow \quad a|d|=c|b| .
$$

Check each axiom for an equivalence relation. If the axiom holds, prove it. If the axiom doesn't hold, give a specific counterexample.

If $(a, b) \in \mathbb{R}^{2}$, then

$$
a|b|=a|b|
$$

Hence, $(a, b) \sim(a, b)$, and \sim is reflexive.
Suppose $(a, b) \sim(c, d)$. Then

$$
a|d|=c|b| \quad \text { so } \quad c|b|=a|d|
$$

Hence, $(c, d) \sim(a, b)$, and \sim is symmetric.
$(1,3) \sim(0,0)$ because $1 \cdot|0|=0=3 \cdot|0|$.
$(0,0) \sim(1,2)$ because $0 \cdot|2|=0=1 \cdot|0|$.
But $(1,3) \nsim(1,2)$, because $1 \cdot|2|=2$ while $1 \cdot|3|=3$. Hence, \sim is not transitive. \square
32. Define a relation \sim on \mathbb{R} by

$$
x \sim y \quad \text { means } \quad x^{3}-x \leq y^{3}-y
$$

Check each axiom for a partial order. If the axiom holds, prove it; if the axiom does not hold, give a counterexample.

If $x \in \mathbb{R}$, then $x^{3}-x \leq x^{3}-x$, so $x \sim x$. Therefore, reflexivity holds.

Take $x=0$ and $y=1 . x^{3}-x=0$ and $y^{3}-y=0$, so $x^{3}-x \leq y^{3}-y$ and $y^{3}-y \leq x^{3}-x$. Thus, $x \sim y$ and $y \sim x$. However, $x \neq y$. Therefore, antisymmetry fails.

Suppose that $x \sim y$ and $y \sim z$. This means that

$$
x^{3}-x \leq y^{3}-y \quad \text { and } \quad y^{3}-y \leq z^{3}-z .
$$

Therefore, $x^{3}-x \leq z^{3}-z$, so $x \sim z$. Hence, the relation is transitive. $\quad \square$
33. Define a relation \sim on \mathbb{R}^{2} by

$$
(a, b) \sim(c, d) \quad \text { means } \quad a b \geq c d
$$

Check each axiom for a partial order. If the axiom holds, prove it; if the axiom does not hold, give a counterexample.

For all $(a, b) \in \mathbb{R}^{2}$, I have $a b \geq a b$, so $(a, b) \sim(a, b)$. The relation is reflexive.
I have $(1,0) \sim(0,1)$, since $1 \cdot 0 \geq 0 \cdot 1$. I have $(0,1) \sim(1,0)$, since $0 \cdot 1 \geq 1 \cdot 0$. But $(1,0) \neq(0,1)$. Hence, the relation is not antisymmetric.

Suppose $(a, b),(c, d),(e, f) \in \mathbb{R}^{2}$, and $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$. Then

$$
a b \geq c d \quad \text { and } \quad c d \geq e f, \quad \text { so } \quad a b \geq e f
$$

Hence, $(a, b) \sim(e, f)$, so the relation is transitive.
34. Prove that the square of an odd number leaves a remainder of 1 when it's divided by 4 .

Let $2 n+1$ be an odd number, where $n \in \mathbb{Z}$. Then

$$
(2 n+1)^{2}=4 n^{2}+4 n+1=4\left(n^{2}+n\right)+1
$$

Therefore, when $(2 n+1)^{2}$ is divided by 4 , the remainder is 1 .
35. Prove that if n is an integer, then $n^{2}+n+3$ does not leave a remainder of 1 or 2 when it's divided by 5 .

I consider the cases $n=0,1,2,3,4 \bmod 5$. Since I'm interested in the remainder when $n^{3}+n+3$ is divided by 5 , I look at $n^{2}+n+3 \bmod 5$. Here's the table:

n	0	1	2	3	4
$n^{2}+n+3 \quad(\bmod 5)$	3	0	4	0	3

The table shows that $n^{2}+n+3$ never equals 1 or $2 \bmod 5$. This completes the proof. $\quad \square$
36. Prove that if $m, n \in \mathbb{Z}$ and neither m nor n is divisible by 3 , then $m^{2}+n^{2}$ is not divisible by 3 .

Since $3 \not \backslash m$, I have $m=1$ or $2 \bmod 3$. Likewise, since $3 \not \backslash n$, I have $n=1$ or $2 \bmod 3$.

$m(\bmod 3)$	1	2
$m^{2}(\bmod 3)$	1	1

$n(\bmod 3)$	1	2
$n^{2}(\bmod 3)$	1	1

It follows that $m^{2}+n^{2}=2(\bmod 3)$, so $3 \not \backslash m^{2}+n^{2}$.
37. Compute $(1021,129)$.

Use the Euclidean algorithm:

1021	-
129	7
118	1
11	10
8	1
3	2
2	1
1	2

Thus, $(1021,129)=1$.
38. Using the fact that $(x, y)=m x+n y$ for some $m, n \in \mathbb{Z}$, prove:
(a) If d is a common divisor of a and b, then $d \mid(a, b)$.
(b) If $a, b, c \in \mathbb{Z}$ and $a>0$, then $(a b, a c)=a(b, c)$.
(a) Write $(a, b)=m a+n b$, where $m, n \in \mathbb{Z}$. Then $d \mid a$ and $d \mid b$, so $d \mid m a+n b=(a, b)$.
(b) I'll show that $(a b, a c)$ and $a(b, c)$ divide each other. Since they are both positive numbers, it will follow that they're equal.
$(b, c) \mid b$ and $(b, c) \mid c$, so $a(b, c) \mid a b$ and $a(b, c) \mid a c$. Therefore, $a(b, c)$ is a common divisor of $a b$ and $a c$, so $a(b, c) \mid(a b, a c)$.

On the other hand, I have $(b, c)=m b+n c$ for some $m, n \in \mathbb{Z}$. So $a(b, c)=m(a b)+n(a c)$. Now $(a b, a c) \mid a b$ and $(a b, a c) \mid a c$, so

$$
(a b, a c) \mid m(a b)+n(a c)=a(b, c)
$$

Therefore, $a(b, c)=(a b, a c)$.
39. If $a, b, m, n \in \mathbb{Z}$ and $a m+b n=6$, does it follow that $(m, n)=6$?

No. For example, take $a=1, b=1, m=2$, and $n=4$. Then

$$
a m+b n=1 \cdot 2+1 \cdot 4=6
$$

But $(m, n)=(2,4)=2$.
40. Prove that if $n \in \mathbb{Z}$, then $\left(2 n^{2}+8 n+1, n+4\right)=1$.

Note that

$$
\left(2 n^{2}+8 n+1\right)-(2 n)(n+4)=1
$$

Now $\left(2 n^{2}+8 n+1, n+4\right) \mid 2 n^{2}+8 n+1$ and $\left(2 n^{2}+8 n+1, n+4\right) \mid n+4$. From the equation above, it follows that $\left(2 n^{2}+8 n+1, n+4\right) \mid 1$. Hence, $\left(2 n^{2}+8 n+1, n+4\right)=1$. \quad
41. Prove that if $x, y>0$, then $x^{2}+\frac{y^{2}}{x^{2}} \geq 2 y$.

$$
\begin{aligned}
\left(x^{2}-y\right)^{2} & \geq 0 \\
x^{4}-2 x^{2} y+y^{2} & \geq 0 \\
x^{4}+y^{2} & \geq 2 x^{2} y \\
x^{2}+\frac{y^{2}}{x^{2}} & \geq 2 y \quad \square
\end{aligned}
$$

42. Prove that if $x>0$, then $x^{3}+e^{2 x}>1$.

Let $f(x)=x^{3}+e^{2 x}-1$. Then $f^{\prime}(x)=3 x^{2}+2 e^{2 x}$, and $f^{\prime}(x)>0$ for all x. Thus, f is always increasing. But $f(0)=0$, so if $x>0$, then $f(x)>0$. Hence, if $x>0$, then $x^{3}+e^{2 x}-1>0$, i.e. $x^{3}+e^{2 x}>1$. \quad.
43. Prove that if $x>0$, then

$$
x \ln x \geq x-1
$$

[Hint: Find the absolute min of $f(x)=x \ln x-x+1$.]
Following the hint, I take $f(x)=x \ln x-x+1$. Note that the domain of f is $x>0$. The derivative is

$$
f^{\prime}(x)=1+\ln x-1=\ln x
$$

The only critical point is $x=1$.

The function decreases for $x \leq 1$ and increases for $x \geq 1 . x=1$ is a local min; since it's the only critical point, it's an absolute min.

Now $f(1)=1 \ln 1-1+1=0$. Since this is the absolute min, $f(x) \geq 0$ for all $x>0$. In other words, $x \ln x-x+1 \geq 0$ for $x>0$, or $x \ln x \geq x-1$ for $x>0$.

Remark. Many inequalities involving real functions can be proved using calculus in this way by finding absolute maxima or minima.
44. Use the limit definition to prove that

$$
\lim _{x \rightarrow \infty} \frac{8 x^{3}+1}{2 x^{3}}=4
$$

Let $\epsilon>0$. Set $M=\frac{1}{\sqrt[3]{2 \epsilon}}$. Suppose that $n>M$. Note that since $\epsilon>0$, it follows that $M>0$, so $n>0$.

Then

$$
\begin{aligned}
n & >\frac{1}{\sqrt[3]{2 \epsilon}} \\
n^{3} & >\frac{1}{2 \epsilon} \\
\epsilon & >\frac{1}{2 n^{3}} \\
\epsilon & >\left|\frac{1}{2 n^{3}}\right| \\
\epsilon & >\left|\frac{8 n^{3}+1-8 n^{3}}{2 n^{3}}\right| \\
\epsilon & >\left|\frac{8 n^{3}+1}{2 n^{3}}-4\right|
\end{aligned}
$$

This proves that $\lim _{x \rightarrow \infty} \frac{8 x^{3}+1}{2 x^{3}}=4$.
45. Phoebe Small has proved that

$$
\bigcup_{n=1}^{\infty}\left[0, \frac{n}{n+6}\right]=[0,1)
$$

But Bonzo McTavish is confused. "The point 0.9 is in $[0,1]$. But for $n=1$, the interval $\left[0, \frac{n}{n+6}\right]$ is $\left[0, \frac{1}{7}\right]$, and that doesn't contain 0.9." Does Bonzo have a valid objection?

Bonzo is confused. For 0.9 to be in $\bigcup_{n=1}^{\infty}\left[0, \frac{n}{n+6}\right]$, it does not need to be in all the intervals in the union - it only has to be in at least one of the intervals.

In fact, $0.9 \in\left[0, \frac{55}{55+6}\right]$. (Can you prove that if $n>54$, then $0.9 \in\left[0, \frac{n}{n+6}\right]$?)
And Phoebe's claim is correct - see if you can prove it.
46. Prove that $\bigcap_{n=1}^{\infty}\left[1,2+e^{-n}\right]=[1,2]$.

Let $x \in[1,2]$, so $1 \leq x \leq 2$. Since $e^{-n}>0$ for all n, I have

$$
1 \leq x \leq 2<2+e^{-n} \quad \text { for all } n
$$

Therefore, $x \in\left[1,2+e^{-n}\right]$ for all n, so $x \in \bigcap_{n=1}^{\infty}\left[1,2+e^{-n}\right]$.
This proves that $[1,2] \subset \bigcap_{\substack{n=1 \\ \infty}}^{\infty}\left[1,2+e^{-n}\right]$.
Conversely, suppose $x \in \bigcap_{n=1}^{\infty}\left[1,2+e^{-n}\right]$. Then $x \in\left[1,2+e^{-n}\right]$ for all n, so

$$
1 \leq x \leq 2+e^{-n} \quad \text { for all } n
$$

Suppose that $x>2$. Note that

$$
\lim _{n \rightarrow \infty}\left(2+e^{-n}\right)=2
$$

In the limit definition, let $\epsilon=x-2$. Then there is a number M such that if $n>M$,

$$
\epsilon=x-2>\left|\left(2+e^{-n}\right)-2\right|=\left|e^{-n}\right|=e^{-n} .
$$

Then

$$
\begin{aligned}
x-2 & >e^{-n} \\
x & >2+e^{-n}
\end{aligned}
$$

But this contradicts the fact that $x \leq 2+e^{-n}$ for all n.
Therefore, $x \leq 2$. Since $1 \leq x$, I have $1 \leq x \leq 2$, and so $x \in[1,2]$. This proves that $\bigcap_{n=1}^{\infty}\left[1,2+e^{-n}\right] \subset[1,2]$.
Hence, $\bigcap_{n=1}^{\infty}\left[1,2+e^{-n}\right]=[1,2]$.

The best thing for being sad is to learn something. - Merlyn, in T. H. White's The Once and Future King

