
Math 310
9-30-2020

Review Problems for Test 1

These problems are provided to help you study. The presence of a problem on this handout does not
imply that there will be a similar problem on the test. And the absence of a topic does not imply that it
won’t appear on the test.

1. Show that ¬(P → Q) is equivalent to ¬(¬P ∨Q).

2. Show that [(¬P ∨Q) ∧ (¬Q ∨R)] → (P → R) is a tautology.

3. (a) Suppose P is false and P ∨ ¬Q is true. Tell whether Q is true, false, or its truth or falsity can’t be
determined.

(b) Suppose R is false and ¬P ∧ (Q∨R) is true. Tell whether Q is true, false, or its truth or falsity can’t be
determined.

(c) Suppose P → (Q ∨R) is false. Tell whether R is true, false, or its truth or falsity can’t be determined.

4. In each case, determine whether the statement is true or false.

(a) “If
d

dx
cosx = sinx for all x, then

d

dx
tanx = cotx for all x.”

(b) “If Phoebe Small’s dog needs a bath, then π 6= 3.14.”

(c) “For all x, if |x− 7| = 9, then x = 16.”

5. Translate each statement into logical notation, if A(x) means “x is an abelian group” and C(x) means “x
is a cyclic group”.

Note: You don’t need to know what “abelian group” or “cyclic group” mean to do this.

(a) Every cyclic group is abelian.

(b) There is an abelian group which is cyclic.

(c) Not every abelian group is cyclic.

6. Express the negation of each statement in words in such a way that only simple statements are negated.

(a) Calvin is sleepy or Bonzo is late.

(b) If Phoebe does not buy the cookies, then Calvin goes home.

(c) Bonzo orders the stromboli if and only if Calvin does not eat the parmigiana.

7. Express the negation of each statement in words.

(a) Some cakes and some pies enjoy bowling.

(b) Every vegetable is puzzled by some calculus problem.

(c) There’s a roast beef sandwich which is admired by everyone.

8. Write the negation of each statement, simplifying your answer so that only simple statements are negated.

(a) (P ∧ ¬Q) → R

(b) P ↔ (Q ∨R)
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9. Write the negation of each statement, simplifying your answer so that only simple statements are negated.

(a) ∀x(P (x) ∧Q(X) ∧ ¬R(x))

(b) ∀x∃y ((P (x) ∧ P (y)) → ¬Q(x, y))

10. The square of a real number is nonnegative: If w ∈ R, then w2 ≥ 0.
This fact is often useful in proving other inequalities.

(a) Explain what is wrong with this statement: “If w ∈ R, then w2 is positive.”

(b) Prove that if x ∈ R, then

x2 + 25 ≥ 10x.

(c) Prove that if x ∈ R, then

(x4 + 2x2 + 1) +
1

x4 + 2x2 + 1
≥ 2.

11. Use the Triangle Inequality to prove:

(a) If x ∈ R, then |(x− 1)2|+ |2x| ≥ x2 + 1.

(b) If x, y, z ∈ R, then

|(x − y)(x+ y)|+ |(y − z)(y + z)| ≥ |(x− z)(x+ z)|.

12. A real number x is rational if it can be written in the form x =
a

b
, where a and b are integers. (It’s

implicit in this that b 6= 0. For if b = 0, then
a

b
is undefined, and it can’t be equal to the real number x.)

(a) Prove that the sum of two rational numbers is rational.

(b) Prove that the product of two rational numbers is rational.

13. Prove that if a1, a2, b1, b2 ∈ R, then

(a1b1 + a2b2)
2 ≤ (a2

1
+ a2

2
)(b2

1
+ b2

2
).

(This is called the Cauchy-Schwartz Inequality.)

Hint: Start with (a1b2 − a2b1)
2 ≥ 0.

14. Prove: B ∧ F .

Premises:







A ∧B

(E ∨ ¬F ) → C

(A ∨D) → ¬C
.

15. Prove: D Premises:







A ∧ ¬C
¬D → (B ∨ C)

¬A ∨ ¬B
.

16. Prove: C Premises:







¬A → (C ∧D)
A → B

¬B
.

17. Prove: ¬D Premises:







A ↔ B

¬(A → B) ∨ (B → ¬C)
D → (A ∧ C)

.

18. Criticize the following “proof” and write a correct proof. What fundamental logical error is being made?
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“To prove: sinx tanx = secx− cosx.

sinx tan x = secx− cosx

sinx ·
sinx

cosx
=

1

cosx
− cosx

cosx · sinx ·
sinx

cosx
= cosx ·

(

1

cosx
− cosx

)

(sinx)2 = 1− (cos x)2

The last statement is true, so the original statement is true.”

19. Is the following statement true or false?

“If 2x+ 1 = 7, then either x = 3 or x = −3.”

20. In calculus you learn that a differentiable function is constant if and only if its derivative is identically

0. Use this fact to prove that tan−1 x+ tan−1
1

x
=

π

2
for all x 6= 0.

Hint: First show by computation that the derivative of tan−1 x+tan−1
1

x
is 0. This shows that it equals

a constant k. Find the value of k by setting x = 1.

21. An integer n is divisible by 3 if n = 3m for some integer m.

(a) Using this definition, prove that if n is divisible by 3, then 2n2 + 7n+ 9 is divisible by 3.

(b) Calvin Butterball complains that 2 · 22 +7 · 2+ 9 = 31, which is not divisible by 3. Does he have a valid
complaint?

(c) Show that the following statement is false: “If n is divisible by 3, then 2n2 + 7n + 1 is divisible by 3.”
(Notice that the statement is an if-then statement. When is an if-then statement false?)

22. Prove that if x2 + 5x− 2 6> 12, then x 6> 2.

23. Prove: P → (Q ∧R) Premises:







P → S

S → R

(¬Q ∨ ¬T ) → ¬S
.

24. Prove: P → (Q ∧ S) Premises:

{

(¬Q ∨R) → ¬P
R ∨ S

.

25. Prove: (A ∨B) → E.

Premises:







A → E

B → (¬C → D)
¬C ∧ ¬D

.

26. Prove that if x > 4, then x3 + 3x+ 5 > 78.

27. (a) Prove that there is an integer which is divisible by both 4 and 6 but is not divisible by 24.

(b) Prove that there is an integer which is divisible by both 4 and 6 and is greater than 24 but is not divisible
by 24.

(c) Prove that there is an x ∈ R such that x3 > 100x2.

(d) Prove that there is an x ∈ R such that

x2 + 0.12 < 0.7x.

28. Prove that there is an x ∈ R such that x = (sinx)2.
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29. When the Mean Value Theorem is applied to the function f(x) =
x2

2
+sinx on the interval [0, π], it says

that there is a number c such that

π

2
= c− cos c, where 0 < c < π.

Calvin Butterball complains: “There must be something wrong — you can’t solve this equation alge-
braically for c.” Does Calvin have a valid objection?

30. Suppose that f : R → R is a continuous function, and

f(3) = 17 and f(7) = −11.

Prove that there is an x such that 3 ≤ x ≤ 7 and x · f(x) = 0.

31. Suppose that f is a continuous function satisfying

f(3) = 100 and f(7) = 12.

Prove that f(x)− x2 = 0 for some x ∈ [3, 7].

32. Give an ǫ-δ proof that lim
x→2

(x2 − 7x) = −10.

33. Give an ǫ-δ proof that lim
x→3

x+ 7

x− 1
= 5.

34. Give an ǫ-δ proof that lim
x→1

(3x2 + 4x) = 7.

35. Give an ǫ-δ proof that lim
x→1

1

x
= 1.

Solutions to the Review Problems for Test 1

1. Show that ¬(P → Q) is equivalent to ¬(¬P ∨Q).

P Q P → Q ¬(P → Q) ¬P ¬P ∨Q ¬(¬P ∨Q)

T T T F F T F

T F F T F F T

F T T F T T F

F F T F T T F

The columns for ¬(P → Q) and ¬(¬P ∨Q) are identical, so the statements are logically equivalent.

2. Show that [(¬P ∨Q) ∧ (¬Q ∨R)] → (P → R) is a tautology.
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P Q R ¬P ¬Q ¬P ∨Q ¬Q ∨R P → R

T T T F F T T T

T T F F F T F F

T F T F T F T T

T F F F T F T F

F T T T F T T T

F T F T F T F T

F F T T T T T T

F F F T T T T T

(¬P ∨Q) ∧ (¬Q ∨R) [(¬P ∨Q) ∧ (¬Q ∨R)] → (P → R)

T T

F T

F T

F T

T T

F T

T T

T T

The column for [(¬P ∨Q) ∧ (¬Q ∨ R)] → (P → R) contains only T’s, so the statement is a tautology.

3. (a) Suppose P is false and P ∨ ¬Q is true. Tell whether Q is true, false, or its truth or falsity can’t be
determined.

(b) Suppose R is false and ¬P ∧ (Q∨R) is true. Tell whether Q is true, false, or its truth or falsity can’t be
determined.

(c) Suppose P → (Q ∨R) is false. Tell whether R is true, false, or its truth or falsity can’t be determined.

(a) Since P ∨¬Q is true, P is true or ¬Q is true. But P is false. Hence, ¬Q is true. Therefore, Q is false.

(b) Since ¬P ∧ (Q∨R) is true, ¬P is true and Q∨R is true. (Only the second part is relevant.) Since Q∨R

is true, Q is true or R is true. Since R is false, Q must be true.

(c) Since P → (Q∨R) is false, P is true and Q∨R is false. (Only the second part is relevant.) Since Q∨R

is false, both Q and R must be false — and so in particular, R is false.

4. In each case, determine whether the statement is true or false.

(a) “If
d

dx
cosx = sinx for all x, then

d

dx
tanx = cotx for all x.”

(b) “If Phoebe Small’s dog needs a bath, then π 6= 3.14.”

(c) “For all x, if |x− 7| = 9, then x = 16.”
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(a) Since
d

dx
cosx 6= sinx — in fact,

d

dx
cosx = − sinx — the if-part of the conditional is false. Hence, the

conditional is true (regardless of the fact that the then-part is false).

(b) The then-part of the conditional is true: π is only approximately equal to 3.14. Hence, the conditional is
true (regardless of whether the if-part is true or false).

(c) In this case, the conditional is inside a quantifier. I can’t determine the truth or falsity of the if-part or
the then-part separately. So I have to think about whether the statement is true mathematically.

|x− 7| = 9
x− 7 = ±9

ւ ց
x− 7 = 9 x− 7 = −9
x = 16 x = −2

I can see that the statement is not universally true — it is not true for all x. If x = −2, then the if-part
is true, but the then-part is false, making the conditional false. (The statement is true if x = 16.)

5. Translate each statement into logical notation, if A(x) means “x is an abelian group” and C(x) means “x
is a cyclic group”.

(a) Every cyclic group is abelian.

(b) There is an abelian group which is cyclic.

(c) Not every abelian group is cyclic.

(a)
∀x(C(x) → A(x))

(b)
∃x(A(x) ∧ C(x))

(c)
¬∀x(A(x) → C(x))

6. Express the negation of each statement in words in such a way that only simple statements are negated.

(a) Calvin is sleepy or Bonzo is late.

(b) If Phoebe does not buy the cookies, then Calvin goes home.

(c) Bonzo orders the stromboli if and only if Calvin does not eat the parmigiana.

(a) The negation is “Calvin isn’t sleepy and Bonzo isn’t late”.

(b) The original statement is equivalent to “Phoebe buys the cookies or Calvin goes home”. Hence, the
negation is “Phoebe doesn’t buy the cookies and Calvin doesn’t go home”.

(c) You could translate the original statement into a conjunction of two conditionals, each of which can be
translated as a disjunction as in part (b). However, it’s simpler to note that the original biconditional is
true exactly when both pieces have the same truth values, and false otherwise. Hence, the negation should
be true exactly when the two pieces have opposite truth values, and false otherwise.

If I negate one piece of the biconditional, it has the effect of making the biconditional true exactly when
the original pieces have opposite truth values. It follows that negating one piece of the biconditional gives
the negation of the original biconditional: ¬(P ↔ Q) ↔ (¬P ↔ Q).
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Hence, the negation of the original statement is “Bonzo does not order the stromboli if and only if
Calvin does not eat the parmigiana”.

7. Express the negation of each statement in words.

(a) Some cakes and some pies enjoy bowling.

(b) Every vegetable is puzzled by some calculus problem.

(c) There’s a roast beef sandwich which is admired by everyone.

(a) Let
C(x) = “x is a cake”

P (x) = “x is a pie”

B(x) = “x enjoys bowling”

The given statement is
[∃x(C(x) ∧B(x))] ∧ [∃y(P (y) ∧B(y))]

Negate and simplify:

¬([∃x(C(x) ∧B(x))] ∧ [∃y(P (y) ∧B(y))]) ↔ (DeMorgan)
[¬∃x(C(x) ∧B(x))] ∨ [¬∃y(P (y) ∧B(y))] ↔ (Negate a quantifier)
[∀x¬(C(x) ∧B(x))] ∨ [∀y¬(P (y) ∧B(y))] ↔ (DeMorgan)

[∀x(¬C(x) ∨ ¬B(x))] ∨ [∀y(¬P (y) ∨ ¬B(y))]

The last expression is hard to say in words. It’s easier to take the second expression, which would be:
“No cakes enjoy bowling or no pies enjoy bowling”.

(b) Let
V (x) = “x is a vegetable”

C(x) = “x is a calculus problem”

P (x, y) = “x is puzzled by y”

The given statement is
∀x(V (x) → ∃y(C(y) ∧ P (x, y))

Negate and simplify:

¬∀x(V (x) → ∃y(C(y) ∧ P (x, y)) ↔ (Negate a quantifier)
∃x¬(V (x) → ∃y(C(y) ∧ P (x, y)) ↔ (Cond. disjunction)
∃x¬(¬V (x) ∨ ∃y(C(y) ∧ P (x, y)) ↔ (DeMorgan)
∃x(V (x) ∧ ¬∃y(C(y) ∧ P (x, y)) ↔ (Negate a quantifier)
∃x(V (x) ∧ ∀y¬(C(y) ∧ P (x, y)) ↔ (DeMorgan)
∃x(V (x) ∧ ∀y(¬C(y) ∨ ¬P (x, y))

The negation is “There’s a vegetable which isn’t puzzled by any calculus problem”. (Presumably, that
vegetable got an A in calculus.)

(c) Let
R(x) = “x is a roast beef sandwich”

A(x, y) = “x is admired by y”

The given statement is
∃x[R(x) ∧ ∀yA(x, y)]
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Negate and simplify:

¬∃x[R(x) ∧ ∀yA(x, y)] ↔ (Negate a quantifier)
∀x¬[R(x) ∧ ∀yA(x, y)] ↔ (DeMorgan)
∀x[¬R(x) ∨ ¬∀yA(x, y)] ↔ (Negate a quantifier)
∀x[¬R(x) ∨ ∃y¬A(x, y)]

The negation is “Every roast beef sandwich is not admired by someone”. (Personally, I never met a
roast beef sandiwch I didn’t like.)

8. Write the negation of each statement, simplifying your answer so that only simple statements are negated.

(a) (P ∧ ¬Q) → R

(b) P ↔ (Q ∨R)

(a)
¬ [(P ∧ ¬Q) → R] ↔ ¬ [¬(P ∧ ¬Q) ∨R] (Conditional disjunction)

↔ ¬¬(P ∧ ¬Q) ∧ ¬R (DeMorgan)
↔ (P ∧ ¬Q) ∧ ¬R (Double negation)

(b)
¬ [P ↔ (Q ∨R)] ↔ ¬ [(P → (Q ∨R)) ∧ ((Q ∨R) → P )] (Biconditional)

↔ ¬ (P → (Q ∨R)) ∨ ¬ ((Q ∨R) → P ) (DeMorgan)
↔ ¬ (¬P ∨ (Q ∨R)) ∨ ¬ (¬(Q ∨R) ∨ P ) (Cond. disjunction)
↔ (¬¬P ∧ ¬(Q ∨R)) ∨ (¬¬(Q ∨R) ∧ ¬P ) (DeMorgan)
↔ (P ∧ ¬(Q ∨R)) ∨ ((Q ∨R) ∧ ¬P ) (Double negation)
↔ (P ∧ (¬Q ∧ ¬R)) ∨ ((Q ∨R) ∧ ¬P ) (DeMorgan)

9. Write the negation of each statement, simplifying your answer so that only simple statements are negated.

(a) ∀x(P (x) ∧Q(X) ∧ ¬R(x))

(b) ∀x∃y ((P (x) ∧ P (y)) → ¬Q(x, y))

(a)
¬∀x(P (x) ∧Q(X) ∧ ¬R(x)) ↔ ∃x¬(P (x) ∧Q(X) ∧ ¬R(x)) (Negate a quantifier)

↔ ∃x (¬P (x) ∨ ¬Q(x) ∨ ¬¬R(x)) (DeMorgan)
↔ ∃x (¬P (x) ∨ ¬Q(x) ∨R(x)) (Double negation)

(b)

¬∀x∃y ((P (x) ∧ P (y)) → ¬Q(x, y)) ↔ ∃x¬∃y ((P (x) ∧ P (y)) → ¬Q(x, y)) (Negate a quantifier)
↔ ∃x∀y¬ ((P (x) ∧ P (y)) → ¬Q(x, y)) (Negate a quantifier)
↔ ∃x∀y¬ (¬ (P (x) ∧ P (y)) ∨ ¬Q(x, y)) (Cond. disjunction)
↔ ∃x∀y (¬¬ (P (x) ∧ P (y)) ∧ ¬¬Q(x, y)) (DeMorgan)
↔ ∃x∀y ((P (x) ∧ P (y)) ∧Q(x, y)) (Double negation)

10. The square of a real number is nonnegative: If w ∈ R, then w2 ≥ 0.
This fact is often useful in proving other inequalities.

(a) Explain what is wrong with this statement: “If w ∈ R, then w2 is positive.”

(b) Prove that if x ∈ R, then
x2 + 25 ≥ 10x.
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(c) Prove that if x ∈ R, then

(x4 + 2x2 + 1) +
1

x4 + 2x2 + 1
≥ 2.

(a) “If w ∈ R, then w2 is positive” is false: If w = 0, then w2 = 0, and 0 is not positive.

(b)
(x− 5)2 ≥ 0

x2 − 10x+ 25 ≥ 0

x2 + 25 ≥ 10x

(c) Note that (x2 + 1)2 = x4 + 2x2 + 1. So

(

(x2 + 1)−
1

x2 + 1

)2

≥ 0

(x2 + 1)2 − 2 +
1

(x2 + 1)2
≥ 0

(x2 + 1)2 +
1

(x2 + 1)2
≥ 2

(x4 + 2x2 + 1)2 +
1

x4 + 2x2 + 1
≥ 2

11. Use the Triangle Inequality to prove:

(a)
|(x− 1)2|+ |2x| ≥ x2 + 1.

(b) If x, y, z ∈ R, then
|(x − y)(x+ y)|+ |(y − z)(y + z)| ≥ |(x− z)(x+ z)|.

Recall that the Triangle Inequality says that if x, y ∈ R, then

|x|+ |y| ≥ |x+ y|.

(a) If x ∈ R, then |(x− 1)2|+ |2x| ≥ x2 + 1.

|(x− 1)2|+ |2x| = |x2 − 2x+ 1|+ |2x| ≥ |(x2 − 2x+ 1) + 2x| = |x2 + 1| = x2 + 1.

(I can remove the absolute values in the last step because x2 + 1 is always positive.)

(b)

|(x−y)(x+y)|+ |(y−z)(y+z)| = |x2−y2|+ |y2−z2| ≥ |(x2−y2)+(y2−z2)| = |x2−z2| = |(x−z)(x+z)|.

12. A real number x is rational if it can be written in the form x =
a

b
, where a and b are integers. (It’s

implicit in this that b 6= 0. For if b = 0, then
a

b
is undefined, and it can’t be equal to the real number x.)

(a) Prove that the sum of two rational numbers is rational.
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(b) Prove that the product of two rational numbers is rational.

(a) Let x and y be rational numbers. I must prove that x+ y is rational.

Since x is rational, I can write x =
a

b
, where a and b are integers. Since y is rational, I can write y =

c

d
,

where c and d are integers. Then

x+ y =
a

b
+

c

d
=

ad+ bc

bd
.

Since a, b, c, and d are integers, ad + bc and bd are integers. Note that bd 6= 0 — for otherwise, either

b = 0 and
a

b
is undefined, or d = 0 and

c

d
is undefined.

Since x+ y has been expressed as a quotient of two integers, x+ y is rational.

(b) Since x is rational, I can write x =
a

b
, where a and b are integers. Since y is rational, I can write y =

c

d
,

where c and d are integers. Then

xy =
a

b
·
c

d
=

ac

bd
.

Since a, b, c, and d are integers, ac and bd are integers. Note that bd 6= 0 — for otherwise, either b = 0

and
a

b
is undefined, or d = 0 and

c

d
is undefined.

Since xy has been expressed as a quotient of two integers, xy is rational.

13. Prove that if a1, a2, b1, b2 ∈ R, then

(a1b1 + a2b2)
2 ≤ (a21 + a22)(b

2

1 + b22).

(This is called the Cauchy-Schwartz Inequality.)

Since a square is always nonnegative, I have

(a1b2 − a2b1)
2 ≥ 0

a2
1
b2
2
− 2a1a2b1b2 + a2

2
b2
1
≥ 0

a2
1
b2
2
+ a2

2
b2
1
≥ 2a1a2b1b2

a2
1
b2
1
+ a2

1
b2
2
+ a2

2
b2
1
+ a2

2
b2
2
≥ a2

1
b2
1
+ 2a1a2b1b2 + a2

2
b2
2

(a2
1
+ a2

2
)(b2

1
+ b2

2
) ≥ (a1b1 + a2b2)

2

I found this proof by starting with the inequality and working backwards on scratch paper. Be careful
when you’re writing a proof that you do not start with what you’re trying to prove.

14. Prove: B ∧ F .

Premises:







A ∧B

(E ∨ ¬F ) → C

(A ∨D) → ¬C
.

1. A ∧B Premise
2. (E ∨ ¬F ) → C Premise
3. (A ∨D) → ¬C Premise
4. A Decomposing a conjunction (1)
5. A ∨D Constructing a disjunction (4)
6. ¬C Modus ponens (3, 5)
7. ¬(E ∨ ¬F ) Modus tollens (2, 6)
8. ¬E ∧ F DeMorgan (8)
9. F Decomposing a conjunction (8)
10. B Decomposing a conjunction (1)
11. B ∧ F Constructing a conjunction (9, 10)
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15. Prove: D.

Premises:







A ∧ ¬C
¬D → (B ∨C)

¬A ∨ ¬B
.

1. A ∧ ¬C Premise
2. ¬D → (B ∨ C) Premise
3. ¬A ∨ ¬B Premise
4. A Decomposing a conjunction (1)
5. ¬C Decomposing a conjunction (1)
6. ¬B Disjunctive syllogism (3,4)
7. ¬B ∧ ¬C Constructing a conjunction (5,6)
8. ¬(B ∨ C) DeMorgan (7)
9. D Modus tollens (2,8)

16. Prove: C.

Premises:







¬A → (C ∧D)
A → B

¬B
.

1. A → B Premise
2. ¬B Premise
3. ¬A Modus tollens (1,3)
4. ¬A → (C ∧D) Premise
5. C ∧D Modus ponens (3,4)
6. C Decomposing a conjunction (5)

17. Prove: ¬D.

Premises:







A ↔ B

¬(A → B) ∨ (B → ¬C)
D → (A ∧ C)

.

1. A ↔ B Premise
2. ¬(A → B) ∨ (B → ¬C) Premise
3. D → (A ∧ C) Premise
4. A → B Definition of biconditional (1)
5. B → ¬C Disjunctive syllogism (2,4)
6. A → ¬C Rule of syllogism (4,5)
7. ¬A ∨ ¬C Conditional disjunction (6)
8. ¬(A ∧ C) DeMorgan (7)
9. ¬D Modus tollens (3,8)

18. Criticize the following “proof” and write a correct proof. What fundamental logical error is being made?

“To prove: sinx tanx = secx− cosx.

11



sinx tan x = secx− cosx

sinx ·
sinx

cosx
=

1

cosx
− cosx

cosx · sinx ·
sinx

cosx
= cosx ·

(

1

cosx
− cosx

)

(sinx)2 = 1− (cos x)2

The last statement is true, so the original statement is true.”

You can’t prove something by assuming — starting with — what you want to prove. This is called
begging the question, and it is a fundamental and very serious error of logic.

(The fact that the derivation ended in a true statement proves nothing, because a true conclusion can
be deduced from a false premise.)

Here’s a correct proof of the identity:

sinx tanx = sinx ·
sinx

cosx
=

(sinx)2

cosx
=

1− (cosx)2

cosx
=

1

cosx
−

(cos x)2

cosx
= secx− cosx.

19. Is the following statement true or false?

“If 2x+ 1 = 7, then either x = 3 or x = −3.”

If “2x+ 1 = 7” is false, then the conditional is true.
On the other hand, if “2x+ 1 = 7” is true, then it follows by basic algebra that x = 3. Therefore, the

disjunction “x = 3 or x = −3” is true. Hence, the conditional is true.
Therefore, the conditional is true.

20. In calculus you learn that a differentiable function is constant if and only if its derivative is identically

0. Use this fact to prove that tan−1 x+ tan−1
1

x
=

π

2
for all x 6= 0.

Let f(x) = tan−1 x+ tan−1
1

x
. Then

f ′(x) =
1

1 + x2
+

−
1

x2

1 +
1

x2

=
1

1 + x2
+

−1

x2 + 1
= 0.

Hence, f(x) is constant — say f(x) = tan−1 x+ tan−1
1

x
= k. Setting x = 1, I have

tan−1 1 + tan−1 1 = k, so
π

2
= k.

Hence, tan−1 x+ tan−1
1

x
=

π

2
.

21. An integer n is divisible by 3 if n = 3m for some integer m.

(a) Using this definition, prove that if n is divisible by 3, then 2n2 + 7n+ 9 is divisible by 3.

(b) Calvin Butterball complains that 2 · 22 +7 · 2+ 9 = 31, which is not divisible by 3. Does he have a valid
complaint?

12



(c) Show that the following statement is false: “If n is divisible by 3, then 2n2 + 7n + 1 is divisible by 3.”
(Notice that the statement is an if-then statement. When is an if-then statement false?)

(a) Suppose n is divisible by 3. Let n = 3m, where m is an integer. Then

2n2 + 7n+ 9 = 2(3m)2 + 7(3m) + 9 = 18m2 + 21m+ 9 = 3(6m2 + 7m+ 3).

Since 2n2 + 7n+ 9 has been expressed as 3 times an integer, 2n2 + 7n+ 9 is divisible by 3.

(b) The statement in (a) said that if n is divisible by 3, then 2n2 + 7n+ 9 is divisible by 3. Calvin is using
n = 2, which is not divisible by 3. So he has no right to expect that 2 · 22 +7 · 2+ 9 = 31 should be divisible
by 3.

(c) An if-then statement is false provided that the “if” part is true and the “then” part is false. So I need a
value of n which is divisible by 3, for which 2n2 + 7n+ 1 is not divisible by 3.

By trial and error, 3 is divisible by 3, but 2 · 32 + 7 · 3 + 1 = 40 is not divisible by 3. This shows that
statement is false.

Lots of values will work — for instance, 6 is divisible by 3, but 2 · 62 +7 · 6+ 1 = 115 is not divisible by
3.

22. Prove that if x2 + 5x− 2 6> 12, then x 6> 2.

I will prove the contrapositive: If x > 2, then x2 + 5x− 2 > 12.
If x > 2, then

x2 > 4 and 5x > 10.

Adding these inequalities, I obtain
x2 + 5x > 14.

Subtracting 2 from both sides yields

x2 + 5x− 2 > 12.

23. Prove: P → (Q ∧R).

Premises:







P → S

S → R

(¬Q ∨ ¬T ) → ¬S
.

This is a conditional proof; I’ll begin by assuming P , and I’ll try to prove Q ∧R.

1. P Premise for conditional proof
2. P → S Premise
3. S Modus ponens (1,2)
4. S → R Premise
5. R Modus ponens (3,4)
6. (¬Q ∨ ¬T ) → ¬S Premise
7. ¬(¬Q ∨ ¬T ) Modus tollens (3,6)
8. Q ∧ T DeMorgan (7)
9. Q Decomposing a conjunction (8)
10. Q ∧R Constructing a conjunction (5,9)
11. P → (Q ∧R) Conditional proof (1,10)
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24. Prove: P → (Q ∧ S).

Premises:

{

(¬Q ∨R) → ¬P
R ∨ S

.

1. P Premise for conditional proof
2. (¬Q ∨R) → ¬P Premise
3. R ∨ S Premise
4. ¬(¬Q ∨R) Modus tollens (1,2)
5. Q ∧ ¬R DeMorgan (4)
6. Q Decomposing a conjunction (5)
7. ¬R Decomposing a conjunction (5)
8. S Disjunctive syllogism (3,7)
9. Q ∧ S Constructing a conjunction (5,8)
10. P → (Q ∧ S) Conditional proof (1,9)

25. Prove: (A ∨B) → E.

Premises:







A → E

B → (¬C → D)
¬C ∧ ¬D

.

1. A → E Premise
2. B → (¬C → D) Premise
3. ¬C ∧ ¬D Premise
4. A ∨B Premise for conditional proof
5. ¬(C ∨D) DeMorgan (3)
6. ¬(¬C → D) Conditional disjunction (5)
7. ¬B Modus tollens (2, 6)
8. A Disjunctive syllogism (4, 7)
9. E Modus ponens (1, 8)
10. (A ∨B) → E Conditional proof (4, 9)

26. Prove that if x > 4, then x3 + 3x+ 5 > 78.

Since x > 4, I have

x3 > 64 and 3x > 12.

In addition, 5 > 2. Adding these three inequalities, I obtain

x3 + 3x+ 5 > 64 + 12 + 2 = 78.

27. (a) Prove that there is an integer which is divisible by both 4 and 6 but is not divisible by 24.

(b) Prove that there is an integer which is divisible by both 4 and 6 and is greater than 24 but is not divisible
by 24.

(c) Prove that there is an x ∈ R such that x3 > 100x2.

(d) Prove that there is an x ∈ R such that

x2 + 0.12 < 0.7x.

14



(a) One way to do this is to take multiples of 6 and stop at the first multiple which is also divisible by 4. I
get 6, 12, 18, and so on, and I notice that 12 is divisible by 4.

12 is divisible by both 4 and 6, but is not divisible by 24.

(b) This time I take multiples of 6 greater than 24 and stop at the first multiple which is also divisible by 4.
I get 30, 36, 42, and so on, and I notice that 36 is divisible by 4.

36 is divisible by both 4 and 6, but is not divisible by 24.

(c) Lots of x’s work. I could figure out informally how to find one like this: “x3 > 100x2” can be written
as “x · x2 > 100x2”. The x2-terms match on the two sides, so for this to be true the x on the left should
be bigger than the 100 on the right. So I should take x to be a number bigger than 100. For instance, take
x = 200. Then

x3 = 2003 = 8 000 000, and 100x2 = 100 · 2002 = 4 000 000.

So 2003 > 100 · 2002, and x = 200 works.

(d) Note that

x2 + 0.12 < 0.7x implies x2 − 0.7x+ 0.12 < 0, or (x− 0.3)(x− 0.4) < 0.

The solution to this inequality is 0.3 < x < 0.4. Thus, for example, x = 0.35 makes the inequality true.
In fact, if x = 0.35,

x2 + 0.12 = 0.2425 and 0.7x = 0.245, so x2 + 0.12x < 0.7x.

28. Prove that there is an x ∈ R such that x = (sinx)2.

Let f(x) = x− (sinx)2. Then

f (π) = π − (sinπ)2 = π and f (−π) = −π − (sin(−π))2 = −π.

f is continuous, it is positive when x = π, and it is negative when x = −π. By the Intermediate Value
Theorem, there is an x ∈ [−π, π] such that f(x) = 0. Then x− (sinx)2 = 0, or x = (sinx)2.

29. When the Mean Value Theorem is applied to the function f(x) =
x2

2
+sinx on the interval [0, π], it says

that there is a number c such that

π

2
= c− cos c, where 0 < c < π.

Calvin Butterball complains: “There must be something wrong — you can’t solve this equation alge-
braically for c.” Does Calvin have a valid objection?

The Mean Value Theorem merely asserts that there is a number c satisfying the stated conditions;
it does not say that it will be easy to find c. While Calvin is correct that the equation can’t be solved
algebraically for c, the theorem didn’t promise that. Existence theorems often only assert that something
exists; that is not the same thing as saying how to find or construct it.

30. Suppose that f : R → R is a continuous function, and

f(3) = 17 and f(7) = −11.
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Prove that there is an x such that 3 ≤ x ≤ 7 and x · f(x) = 0.

I have
x x · f(x)
3 3 · 17 = 51
7 7 · (−11) = −77

Since x ·f(x) is continuous, and since 51 > 0 > −77, the Intermediate Value Theorem implies that there
is an x such that 3 ≤ x ≤ 7 and x · f(x) = 0.

31. Suppose that f is a continuous function satisfying

f(3) = 100 and f(7) = 12.

Prove that f(x)− x2 = 0 for some x ∈ [3, 7].

The function g(x) = f(x)− x2 is continuous. Moreover,

g(3) = f(3)− 32 = 91 and g(7) = f(7)− 72 = −37.

By the Intermediate Value Theorem, g(x) = 0 for some x ∈ [3, 7]. Hence, f(x) − x2 = 0 for some
x ∈ [3, 7].

32. Give an ǫ-δ proof that lim
x→2

(x2 − 7x) = −10.

Let ǫ > 0. Set δ = min
(

1,
ǫ

4

)

. Assume δ > |x− 2| > 0.

First,
1 ≥ δ > |x− 2|

1 < x < 2

−4 < x− 5 < −3

Therefore, |x− 5| < 4.

Moreover,
ǫ

4
≥ δ > |x− 2|. Multiplying the last two inequalities, I get

ǫ = 4 ·
ǫ

4
> |x− 5||x− 2| = |x2 − 7x− (−10)|.

This proves that lim
x→2

(x2 − 7x) = −10.

33. Give an ǫ-δ proof that lim
x→3

x+ 7

x− 1
= 5.

Let ǫ > 0. Set δ = min
(

1,
ǫ

4

)

. Then

1 ≥ δ and
ǫ

4
≥ δ.

First,
1 ≥ δ > |x− 3|

2 < x < 4

1 < x− 1 < 3

1 >
1

x− 1
>

1

3

4 >
4

x− 1
>

4

3
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Hence,

4 >

∣

∣

∣

∣

4

x− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

−4

x− 1

∣

∣

∣

∣

.

Also,
ǫ

4
≥ δ > |x− 3|.

Multiplying the last two inequalities, I obtain

ǫ = 4 ·
ǫ

4
>

∣

∣

∣

∣

−4

x− 1

∣

∣

∣

∣

|x− 3|

=

∣

∣

∣

∣

−4x+ 12

x− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

(x+ 7)− 5(x− 1)

x− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

x+ 7

x− 1
− 5

∣

∣

∣

∣

This proves that lim
x→3

x+ 7

x− 1
= 5.

34. Give an ǫ-δ proof that lim
x→1

(3x2 + 4x) = 7.

Let ǫ > 0. Set δ = min
(

1,
ǫ

13

)

. Assume that δ > |x− 1| > 0.

Since 1 ≥ δ > |x− 1|, I have 0 < x < 2. Then

0 < 3x < 6, so 7 < 3x+ 7 < 13.

Therefore, |3x+ 7| < 13.

In addition,
ǫ

13
≥ δ > |x− 1|.

Multiplying the inequalities, I get

ǫ = 13 ·
ǫ

13
> |3x+ 7||x− 1| = |3x2 + 4x− 7|.

This proves that lim
x→1

(3x2 + 4x) = 7.

35. Give an ǫ-δ proof that lim
x→1

1

x
= 1.

I’ll do some scratchwork first. I want

ǫ >

∣

∣

∣

∣

1

x
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

1− x

x

∣

∣

∣

∣

= |x− 1| ·
1

|x|
.

In this case, I can’t make the usual assumption that 1 ≥ δ. This would give 1 > |x − 1|, or 0 < x < 2.

The problem is that the second term
1

|x|
becomes arbitrarily large near x = 0, because there is a vertical

asymptote there.

Thus, I have to make δ small enough to keep x away from x = 0. I’ll assume
1

2
≥ δ. Then

1

2
> |x− 1|,

so
1

2
< x <

3

2
, and 2 >

1

x
>

2

3
. Now

1

|x|
is bounded by 2.
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Here’s the proof.

Let ǫ > 0, and set δ = min

(

1

2
,
ǫ

2

)

. Assume δ > |x− 1| > 0.

Since
1

2
≥ δ > |x− 1|, I have

1

2
< x <

3

2
, and 2 >

1

x
>

2

3
.

Therefore,
1

|x|
< 2.

In addition, I have
ǫ

2
≥ δ > |x− 1|.

Multiplying the inequalities, I get

ǫ = 2 ·
ǫ

2
>

1

|x|
· |x− 1| =

∣

∣

∣

∣

1− x

x

∣

∣

∣

∣

=

∣

∣

∣

∣

1

x
− 1

∣

∣

∣

∣

.

This proves that lim
x→1

1

x
= 1.

Perhaps the most valuable result of all education is the ability to make yourself do the thing you have to do,

when it ought to be done, whether you like it or not. - Thomas Huxley
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