Review Problems for the Final

These problems are intended to help you study. The fact that a problem occurs here does not mean that there will be a similar problem on the test. And the absence of a problem from this review sheet does not mean that there won't be a problem of that kind on the test.

- 1. Find the coefficient of $x^{16}y^{15}$ in the expansion of $(2x^2 + y^3)^{13}$.
- 2. Find the number of elements of $\{1, 2, \dots 2000\}$ which are divisible by either 8 or by 22.
- 3. Prove that if $n \in \mathbb{Z}^+$, then $12 \mid n^4 n^2$.
- 4. Define

$$x_1 = 1$$
, $x_k = 1 + x_1 x_2 \cdots x_{k-1}$ for $k > 1$.

Prove that for $n \ge 1$,

$$\sum_{k=1}^{n} \frac{1}{x_k} = 2 - \frac{1}{x_1 x_2 \cdots x_n}.$$

5. Let f_n denote the n^{th} Fibonacci number. Simplify $f_{3n+10} - f_{3n+7} - f_{3n+8}$ to a single Fibonacci number, assuming that $n \ge 0$.

- 6. Find all integers $n \in \mathbb{Z}^+$ such that $n+1 \mid n^2+1$.
- 7. Find (387, 927) and express it as an integer linear combination of 387 and 927.
- 8. Find all pairs of positive integers (m, n) such that

$$[m, n] - (m, n) = 65.$$

- 9. (a) Explain why the Diophantine equation 6x + 14y = 7 has no solutions.
- (b) Solve the Diophantine equation 6x + 25y = 7.
- 10. Solve the Diophantine equation $x^2 + 2y^2 = 3xy + 2$.
- 11. Find all integer solutions (positive or negative) to the Diophantine equation $x^2 + 4y^2 = 17$.
- 12. Use Fermat factorization to factor 43621.
- 13. Solve the system of congruences

$$x = 6 \pmod{12} x = 3 \pmod{5} x = 4 \pmod{11}$$

- 14. Solve $3x + 4y = 7 \pmod{8}$. Include ranges for the parameters which give all the distinct solutions mod 8, without duplication.
- 15. If n is an integer, can $n^4 + n^2 + 1$ be divisible by 5?
- 16. Prove that if $x = a \pmod{b}$, $x = a \pmod{c}$, and (b, c) = 1, then $x = a \pmod{bc}$.
- 17. (a) List the numbers in $\{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ which are invertible mod 9.

(b) A number $u \in \{0, 1, ..., n-1\}$ which is invertible mod n is a **primitive root** mod n if the powers u, u^2 , u^3 , ... of u give all the numbers which are invertible mod n. Show that 2 is a primitive root mod 9.

(c) Show by computation that there is no primitive root mod 8.

18. 2063 and 3041 are primes. Prove without computation that

 $2063^{3040} + 3041^{2062} = 1 \pmod{2063 \cdot 3041}$.

19. Reduce $\frac{5062!}{5002!}$ mod 61 to a number in the range $\{0, 1, \dots, 60\}$.

20. Solve the system of congruences

21. Compute $\phi(864)$, $\sigma(864)$, and $\tau(864)$.

22. Calvin Butterball says: "If n > 1, the factors of n come in pairs $\{a, b\}$, where n = ab. Hence, $\tau(n)$ must be even." Is he right?

23. For what positive integers n does $\phi(5n) = 5\phi(n)$?

24. Let $n \ge 2$. Consider the set S of integers in $\{1, 2, ..., n-1\}$ which are relatively prime to n. Prove that the sum of the elements of S is $\frac{n \cdot \phi(n)}{2}$.

- 25. Find the last three digits of 7^{8403} .
- 26. Show that if $\sigma(n) = 36$, then n = 22.

27. Prove that if n is an integer and $3 \not| n$, then $n^{37} - n$ is divisible by 54.

28. Show that $2^{31} - 1$ has no prime factors less than 500.

29. Find the decoding transformation for the block cipher

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 17 & 3 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} \pmod{26}.$$

30. Consider the exponential cipher which uses the prime p = 3121 and the exponent e = 11.

- (a) Encipher the word FOOD.
- (b) Find the deciphering transformation.

31. For an RSA cipher, it is known that the modulus is n = 240181, and $\phi(240181) = 239200$. Find the primes p and q such that n = pq.

32. Find all solutions to the congruence

$$x^2 = 74 \pmod{203}$$
.

Note: $203 = 7 \cdot 29$.

33. Find a solution to $x^2 = 208 \pmod{289}$ by lifting a solution to the congruence mod 17.

34. Suppose that p is an odd prime and $p = 19 \pmod{20}$. Compute $\left(\frac{-5}{p}\right)$.

- 35. Compute $\left(\frac{180}{211}\right)$.
- 36. Compute $\left(\frac{375}{461}\right)$.
- 37. Convert $(5573)_6$ to base 10.
- 38. Convert 2781 to base 5.
- 39. Express 0.26 in base 5.
- 40. Find a decimal fraction in lowest terms equal to $(0.2\overline{56})_7$.
- 41. Express $(.1\overline{25})_6$ as a decimal fraction in lowest terms.
- 42. If b is an integer and b > 1, find a decimal fraction equal to $(0.\overline{1})_b$.
- 43. Find the finite continued fraction expansion for $\frac{271}{43}$.
- 44. (a) Find the first 5 convergents of $[7; \overline{5, 10}]$.
- (b) Find the exact value of $x = [7; \overline{5, 10}]$.
- 45. Find the first 10 terms of the continued fraction expansion of $\sqrt[3]{114}$.
- 46. (a) Find the continued fraction expansion of $\sqrt{7}$. Find the convergents c_0, \ldots, c_8 .

(b) Use the convergents of the continued fraction expansion of $\sqrt{7}$ to find a solution to the Fermat-Pell equation $x^2 - 7y^2 = 1$.

- 47. Find the convergents of the finite continued fraction [1; 1, 4, 1, 4, 1, 4].
- 48. Find the exact value of the periodic continued fraction $[1; \overline{2, 5}]$.
- 49. Find the rational number $\frac{p}{q}$ in lowest terms with $q \leq 50$ which best approximates $\frac{\pi}{e}$.

Solutions to the Review Problems for the Final

1. Find the coefficient of $x^{16}y^{15}$ in the expansion of $(2x^2 + y^3)^{13}$.

I'll get a $x^{16}y^{15}$ term by taking $(2x^2)^8$ and $(y^3)^5$. Thus, the coefficient is $\binom{13}{8} \cdot 2^8 = 329472$.

2. Find the number of elements of $\{1, 2, \dots 2000\}$ which are divisible by either 8 or by 22.

The number of elements of $\{1, 2, \dots 2000\}$ which are divisible by 8 is

$$\left[\frac{2000}{8}\right] = 250.$$

The number of elements of $\{1, 2, \dots 2000\}$ which are divisible by 22 is

$$\left[\frac{2000}{22}\right] = [90.90909\ldots] = 90.$$

The number of elements of $\{1, 2, ..., 2000\}$ which are divisible by both 8 and 22 is the number divisible by their least common multiple, and [8, 22] = 88. The number of elements of $\{1, 2, ..., 2000\}$ which are divisible by 88 is

$$[2000\,88] = [22.72727\ldots] = 22.$$

The number divisible by both is counted in both the number divisible by 8 and the number divisible by 22. So it must be subtracted off once to get the number divisible by either 8 or 22:

$$250 + 90 - 22 = 318.$$

3. Prove that if $n \in \mathbb{Z}^+$, then $12 \mid n^4 - n^2$.

For n = 1, I have $n^4 - n^2 = 1^4 - 1^2 = 0$, and $12 \mid 0$. Suppose $12 \mid n^4 - n^2$. I want to show that $12 \mid (n+1)^4 - (n+1)^2$. Now

$$(n+1)^4 - (n+1)^2 = (n^4 + 4n^3 + 6n^2 + 4n + 1) - (n^2 + 2n + 1)$$

= $(n^4 - n^2) + (4n^3 + 6n^2 + 2n)$
= $(n^4 - n^2) + 2n(2n^2 + 3n + 1)$
= $(n^4 - n^2) + 2n(n+1)(2n+1)$

I know that $12 \mid n^4 - n^2$ by induction.

To show that $12 \mid 2n(n+1)(2n+1)$, you can take several approaches. One approach is to consider $n = 0, 1, ..., 11 \mod 12$ and show that you always get 0. A sneakier approach is to note that

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
$$12(1^{2} + 2^{2} + 3^{2} + \dots + n^{2}) = 2n(n+1)(2n+1)$$

In any event, since $12 \mid n^4 - n^2$ and $12 \mid 2n(n+1)(2n+1)$, I have $12 \mid (n+1)^4 - (n+1)^2$. This completes the induction step and the proof. \Box

4. Define

$$x_1 = 1, \quad x_k = 1 + x_1 x_2 \cdots x_{k-1} \quad \text{for} \quad k > 1$$

Prove that for $n \ge 1$,

$$\sum_{k=1}^{n} \frac{1}{x_k} = 2 - \frac{1}{x_1 x_2 \cdots x_n}.$$

For n = 1,

$$\sum_{k=1}^{1} \frac{1}{x_k} = \frac{1}{x_1} = \frac{1}{1} = 1,$$
$$2 - \frac{1}{x_1} = 2 - \frac{1}{1} = 1.$$

The result is true for n = 1.

Let n > 1, and assume that the result holds for n - 1:

$$\sum_{k=1}^{n-1} \frac{1}{x_k} = 2 - \frac{1}{x_1 x_2 \cdots x_{n-1}}.$$

Then

$$\sum_{k=1}^{n} \frac{1}{x_k} = \sum_{k=1}^{n-1} \frac{1}{x_k} + \frac{1}{x_n} = 2 - \frac{1}{x_1 x_2 \cdots x_{n-1}} + \frac{1}{x_n} = 2 - \frac{1}{x_1 x_2 \cdots x_{n-1}} = 2 - \frac{1}{x_1 x_2 \cdots x_{n-1} x_n}.$$

(The second equality used the induction hypothesis, the third equality came from combining fractions over a common denominator, and the fourth equality came from the definition of the x's.)

Therefore, the result holds for n, so it's true for all $n \ge 1$, by induction. \square

5. Let f_n denote the n^{th} Fibonacci number. Simplify $f_{3n+10} - f_{3n+7} - f_{3n+8}$ to a single Fibonacci number, assuming that $n \ge 0$.

$$f_{3n+10} - f_{3n+7} - f_{3n+8} = f_{3n+10} - (f_{3n+7} + f_{3n+8}) = f_{3n+10} - f_{3n+9} = f_{3n+8}. \quad \Box$$

6. Find all integers $n \in \mathbb{Z}^+$ such that $n+1 \mid n^2+1$.

Suppose $n + 1 \mid n^2 + 1$. Then

$$n+1 \mid n^2+1 = (n^2+2n+1) - 2n = (n+1)^2 - 2n$$

But $n+1 \mid (n+1)^2$, so $n+1 \mid 2n$. Say k(n+1) = 2n, where $k \in \mathbb{Z}^+$. If $k \ge 2$, then

$$\begin{split} k(n+1) &\geq 2(n+1) \\ &2n \geq 2(n+1) \\ &2n \geq 2(n+1) > 2n \end{split}$$

This is a contradiction. Hence, k = 1. This means that 1(n+1) = 2n, so n = 1.

7. Find (387, 927) and express it as an integer linear combination of 387 and 927.

927	-	12
387	2	5
153	2	2
81	1	1
72	1	1
9	8	0

$$(-5)(927) + (12)(387) = 9 = (387, 927).$$

8. Find all pairs of positive integers (m, n) such that

$$[m, n] - (m, n) = 65$$

Note that $(m, n) \mid m \mid [m, n]$. Hence,

$$(m,n) \mid [m,n] - (m,n) = 65.$$

Now 65 has 4 positive divisors: 1, 5, 13, and 65. I consider each of these cases.

Case 1. (m, n) = 1.

Using $[m, n] = \frac{mn}{(m, n)}$, I get [m, n] = mn. So

$$[m, n] - (m, n) = 65$$
$$mn - 1 = 65$$
$$mn = 66$$

m and n are relatively prime ((m, n) = 1) positive integers whose product is 66. This gives me the following pairs (ignoring order):

$$(m, n) = (1, 66), (2, 33), (3, 22), (6, 11).$$

Case 2. (m, n) = 5.

 $(m,n) \mid m$, so m = (m,n)a = 5a. Likewise, $(m,n) \mid n$, so n = (m,n)b = 5b. Since I've divided m and n by their greatest common divisor, I must have (a,b) = 1.

Moreover,

So

$$[m, n] = \frac{mn}{(m, n)} = \frac{(5a)(5b)}{5} = 5ab.$$
$$[m, n] - (m, n) = 65$$
$$5ab - 5 = 65$$
$$5ab = 70$$
$$ab = 14$$

a and b are relatively prime positive integers whose product is 14. This gives me the following pairs (ignoring order):

(a,b) = (1,14), (2,7).

If (a, b) = (1, 14), then multiplying by 5 gives (m, n) = (5, 70). If (a, b) = (2, 7), then multiplying by 5 gives (m, n) = (10, 35).

Case 3. (m, n) = 13.

 $(m,n) \mid m$, so m = (m,n)a = 13a. Likewise, $(m,n) \mid n$, so n = (m,n)b = 13b. Since I've divided m and n by their greatest common divisor, I must have (a,b) = 1.

Moreover,

$$[m,n] = \frac{mn}{(m,n)} = \frac{(13a)(13b)}{13} = 13ab.$$
$$[m,n] - (m,n) = 65$$
$$13ab - 13 = 65$$
$$13ab = 78$$

$$ab = 6$$

a and b are relatively prime positive integers whose product is 6. This gives me the following pairs (ignoring order):

$$(a,b) = (1,6), (2,3).$$

 \mathbf{So}

If (a, b) = (1, 6), then multiplying by 13 gives (m, n) = (13, 78). If (a, b) = (2, 3), then multiplying by 13 gives (m, n) = (26, 39).

Case 4. (m, n) = 65.

 $(m,n) \mid m$, so m = (m,n)a = 65a. Likewise, $(m,n) \mid n$, so n = (m,n)b = 65b. Since I've divided m and n by their greatest common divisor, I must have (a,b) = 1.

Moreover,

$$[m,n] = \frac{mn}{(m,n)} = \frac{(65a)(65b)}{65} = 65ab$$

So

$$[m, n] - (m, n) = 65$$

 $65ab - 65 = 65$
 $65ab = 130$
 $ab = 2$

a and b are relatively prime positive integers whose product is 2. The only solution (ignoring order) is (a, b) = (1, 2).

If (a, b) = (1, 2), then multiplying by 65 gives (m, n) = (65, 130).

All together, the solutions are:

(m,n) = (1,66), (2,33), (3,22), (6,11), (5,70), (10,35), (13,78), (26,39), (65,130).

9. (a) Explain why the Diophantine equation 6x + 14y = 7 has no solutions.

(b) Solve the Diophantine equation 6x + 25y = 7.

(a) If (x, y) is a solution, then 2 | 6x + 14y, but 2 / 7, contradicting the fact that 6x + 14y = 7.

(b) $(6, 25) = 1 \mid 7$, so there are solutions.

I could find a particular solution by inspection; instead, I'll do it systematically using the Extended Euclidean algorithm.

25	-	4
6	4	1
1	6	0

Thus,

$$(6)(-4) + (25)(1) = 1.$$

Multiply by 7:

$$(6)(-28) + (25)(7) = 7.$$

Thus, $x_0 = -28$, $y_0 = 7$ is a particular solution. The general solution is

$$x = -28 + 25s, \quad y = 7 - 6s.$$

10. Solve the Diophantine equation $x^2 + 2y^2 = 3xy + 2$.

Rewrite the equation as

$$x^{2} - 3xy + 2y^{2} = 3$$
, or $(x - y)(x - 2y) = 2$

There are 4 possibilities, corresponding to the four ways of factoring 2 into a product of 2 integers.

Case 1: x - y = 1 and x - 2y = 2.

Adding the equations gives y = -1, and so x = 0.

Case 2: x - y = 2 and x - 2y = 1.

Adding the equations gives y = 1, and so x = 3.

Case 3: x - y = -1 and x - 2y = -2.

Adding the equations gives y = 1, and so x = 0.

Case 4: x - y = -2 and x - 2y = -1.

Adding the equations gives y = -1, and so x = -1.

The solutions are (0, -1), (3, 1), (0, 1), and (-1, -1).

11. Find all integer solutions (positive or negative) to the Diophantine equation $x^2 + 4y^2 = 17$.

Note that $|x| < \sqrt{17}$ and $|y| < \frac{\sqrt{17}}{2}$, so I can simply check cases. Note also that $4y^2$ is even and 17 is odd, so x^2 must be odd, and hence x must be odd. Finally, if x works, so does -x, and likewise for y and -y. Therefore, I only need to check positive numbers.

Putting all these constraints together, I find that I only need to try x = 1 and x = 3. If x = 1, then $4y^2 = 17 - x^2 = 16$, so $y = \pm 2$. This gives the four solutions (1, 2), (1, -2), (-1, 2), (-1, -2).

If x = 3, then $4y^2 = 17 - 9 = 8$. This has no integer solutions. The only solutions are (1, 2), (1, -2), (-1, 2), (-1, -2).

12. Use Fermat factorization to factor 43621.

Since $\sqrt{43621} \approx 208.85641$, I'll start at n = 209.

n	$n^2 - 43621$	$\sqrt{n^2 - 43621}$
209	60	7.74596
210	479	21.88606
211	900	30

I have

$$30^{2} = 211^{2} - 43621$$

$$43621 = 211^{2} - 30^{2}$$

$$43621 = (211 + 30)(211 - 30)$$

$$43621 = 241 \cdot 181$$

You can check that 241 and 181 are prime. \Box

13. Solve the system of congruences

 $x = 6 \pmod{12}$ $x = 3 \pmod{5}$. $x = 4 \pmod{11}$

The moduli are relatively prime. The Chinese Remainder Theorem implies that there is a unique solution mod $12 \cdot 5 \cdot 11 = 660$.

 $x = 6 \pmod{12}$ implies that x = 6 + 12s. So

$$6 + 12s = 3 \pmod{5}$$

 $1 + 2s = 3 \pmod{5}$
 $2s = 2 \pmod{5}$
 $s = 1 \pmod{5}$

This means that s = 1 + 5t, so

x = 6 + 12(1 + 5t) = 18 + 60t.

Then

$$18 + 60t = 4 \pmod{11}$$

7 + 5t = 4 (mod 11)
5t = 8 (mod 11)
t = 6 (mod 11)

This means that t = 6 + 11u, so

$$x = 18 + 60(6 + 11u) = 378 + 660u.$$

Therefore, $x = 378 \pmod{660}$.

14. Solve $3x + 4y = 7 \pmod{8}$. Include ranges for the parameters which give all the distinct solutions mod 8, without duplication.

Since $(3,4,8) = 1 \mid 7$, there are $1 \cdot 8 = 8$ distinct solutions mod 8. Write the congruence as the Diophantine equation

$$3x + 4y + 8z = 7.$$

Let w = 3x + 4y. Then

$$w + 8z = 7.$$

By inspection, $w_0 = -1$, $z_0 = 1$ is a particular solution. The general solution is

$$w = -1 + 8s, \quad z = 1 - s.$$

Therefore,

$$-1 + 8s = 3x + 4y.$$

By inspection, $x_0 = 1$, $y_0 = -1 + 2s$ is a particular solution. The general solution is

$$x = 1 + 4t, \quad y = -1 + 2s - 3t.$$

Reducing mod 8,

$$x = 1 + 4t \pmod{8}, \quad y = 7 + 2s + 5t \pmod{8}$$

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t	s	x	y	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	1	7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	1	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	2	1	3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	3	1	5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	5	4	
1 3 5 2	1	1	5	6	
1 3 5 2	1	2	5	0	
	1	3	5	2	

The parameter ranges t = 0, 1, s = 0, 1, 2, 3 give the 8 distinct solutions:

15. If n is an integer, can $n^4 + n^2 + 1$ be divisible by 5?

$n \pmod{5}$	0	1	2	3	4
$n^4 + n^2 + 1 \pmod{5}$	1	3	1	1	3

The table shows that for all $n, n^4 + n^2 + 1 \neq 0 \pmod{5}$. Therefore, $n^4 + n^2 + 1$ is never divisible by 5.

16. Prove that if $x = a \pmod{b}$, $x = a \pmod{c}$, and (b, c) = 1, then $x = a \pmod{bc}$.

 $x = a \pmod{b}$ means that $b \mid x - a$ and $x = a \pmod{c}$ means that $c \mid x - a$. Also, (b, c) = 1 implies that

bm + cn = 1 for some m, n.

Multiply by x - a:

bm(x-a) + cn(x-a) = x - a.

 $b \mid b$ and $c \mid x - a$ imply that $bc \mid bm(x - a)$. Also, $c \mid c$ and $b \mid x - a$ imply that $bc \mid cn(x - a)$. Thus,

 $bc \mid bm(x-a) + cn(x-a) = x - a.$

Hence, $x = a \pmod{bc}$. \square

17. (a) List the numbers in $\{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ which are invertible mod 9.

(b) A number $u \in \{0, 1, ..., n-1\}$ which is invertible mod n is a **primitive root** mod n if the powers u, u^2 , u^3 , ... of u give all the numbers which are invertible mod n. Show that 2 is a primitive root mod 9.

(c) Show by computation that there is no primitive root mod 8.

(a) The numbers which are invertible mod 9 are those which are relatively prime to 9:

(b)

$$2^1 = 2$$
, $2^2 = 4$, $2^3 = 8$, $2^4 = 7$, $2^5 = 5$, $2^6 = 1$.

I've gotten all of the numbers in $\{1, 2, 4, 5, 7, 8\}$ by taking powers of 2, so 2 is a primitive root mod 9.

(c) The numbers in $\{0, 1, 2, 3, 4, 5, 6, 7\}$ which are invertible mod 8 are 1, 3, 5, and 7. However,

 $1^2 = 1 \pmod{8}, \quad 3^2 = 1 \pmod{8}, \quad 5^2 = 1 \pmod{8}, \quad 7^2 = 1 \pmod{8}.$

Therefore, you can't get all four of 1, 3, 5, and 7 by taking powers of any of these elements. Hence, there is no primitive root mod 8. \Box

Note: If $n \in \mathbb{Z}^+$, then n has a primitive root if and only if $n = 1, 2, 4, p^k, 2p^k$, where p is an odd prime.

18. 2063 and 3041 are primes. Prove without computation that

 $2063^{3040} + 3041^{2062} = 1 \pmod{2063 \cdot 3041}.$

By Fermat's theorem with the prime 3041,

$$2063^{3040} = 1 \pmod{3041}$$
, so $2063^{3040} + 3041^{2062} = 1 \pmod{3041}$

By Fermat's theorem with the prime 2063,

$$3041^{2062} = 1 \pmod{2063}$$
, so $2063^{3040} + 3041^{2062} = 1 \pmod{2063}$.

Since 2063 and 3041 are distinct primes, they're relatively prime. Hence,

$$2063^{3040} + 3041^{2062} = 1 \pmod{2063 \cdot 3041}$$

Remark: This result is true with any two distinct primes in place of 2063 and 3041. □

19. Reduce $\frac{5062!}{5002!}$ mod 61 to a number in the range $\{0, 1, \dots, 60\}$.

$$\frac{5062!}{5002!} = 5003 \cdot 5004 \cdots 5062.$$

Since $82 \cdot 61 = 5002$ and $83 \cdot 61 = 5063$, the numbers 5003, 5004, ..., 5062 must reduce mod 61 to 1, 2, ..., 60. By Wilson's theorem,

$$\frac{5062!}{5002!} = 5003 \cdot 5004 \cdots 5062 = 1 \cdot 2 \cdots 60 = 60! = -1 = 60 \pmod{61}.$$

20. Solve the system of congruences

Write the system in matrix form:

$$\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \pmod{5}.$$

Solve the system by inverting the coefficient matrix:

$$\begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 2 & 3\\1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 4\\3 \end{bmatrix} = \frac{1}{1} \cdot \begin{bmatrix} 2 & 2\\4 & 2 \end{bmatrix} \begin{bmatrix} 4\\3 \end{bmatrix} = \begin{bmatrix} 4\\2 \end{bmatrix} \pmod{5}.$$

Note: You can also solve using Cramer's rule or row reduction. Or you can solve the second equation to get $x = 3y + 3 \pmod{5}$, and plug this into the first equation and solve for y.

21. Compute $\phi(864)$, $\sigma(864)$, and $\tau(864)$

 $864 = 2^5 \cdot 3^3$, so

$$\phi(864) = 864 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) = 288,$$

$$\sigma(864) = \left(\frac{2^6 - 1}{2 - 1}\right) \left(\frac{3^4 - 1}{3 - 1}\right) = (63)(40) = 2520,$$

$$\tau(864) = (5 + 1)(3 + 1) = 24. \quad \Box$$

22. Calvin Butterball says: "If n > 1, the factors of n come in pairs $\{a, b\}$, where n = ab. Hence, $\tau(n)$ must be even." Is he right?

Calvin is forgetting that a and b could be equal. In fact, $\tau(n)$ is even provided that n is not a perfect square; otherwise, $\tau(n)$ is odd. (Try writing a careful proof of this.) For example $\tau(4) = 3$.

23. For what positive integers n does $\phi(5n) = 5\phi(n)$?

If $5 \not| n$, then (n, 5) = 1, so

$$\phi(5n) = \phi(5)\phi(n) = 4\phi(n) \neq 5\phi(n).$$

On the other hand, suppose 5 | n. I can write $n = 5^k m$, where $k \ge 1$ and (m, 5) = 1. Then

$$5\phi(n) = 5\phi(5^k m) = 5\phi(5^k)\phi(m) = 5(5^k - 5^{k-1})\phi(m) = (5^{k+1} - 5^k)\phi(m)$$
$$\phi(5n) = \phi(5^{k+1}m) = \phi(5^{k+1})\phi(m) = (5^{k+1} - 5^k)\phi(m).$$

Therefore, $5\phi(n) = \phi(5n)$. Hence, $\phi(5n) = 5\phi(n)$ if and only if $5 \mid n$.

24. Let $n \ge 2$. Consider the set S of integers in $\{1, 2, \ldots, n-1\}$ which are relatively prime to n. Prove that the sum of the elements of S is $\frac{n \cdot \phi(n)}{2}$.

The case n = 2 can be proved directly: The only positive integer in $\{1\}$ relatively prime to 2 is 1, and $\frac{2 \cdot \phi(2)}{2} = 1.$ So assume n > 2.

First, note that if $m \in S$, then $n - m \in S$. For

$$(m, n) = (m, n - m) = (m + (n - m), n - m) = (n, n - m).$$

Thus, (m, n) = 1 if and only if (n - m, n) = 1.

This means that the integers in S occur in pairs $\{m, n-m\}$.

I claim that that the elements of such a pair are distinct. Suppose on the contrary that m = n - m, so $m = \frac{n}{2}$.

If n is odd, then $\frac{n}{2}$ is not an integer, but m is, and I have a contradiction.

If n is even, then $\frac{\tilde{n}}{2}$ is an integer that divides n (since $2 \cdot \frac{n}{2} = n$). Moreover, since n > 2, I have $\frac{n}{2} > 1$. This means that $\left(\frac{n}{2}, n\right) = \frac{n}{2} \neq 1$, so $m = \frac{n}{2} \notin S$, another contradiction. Thus, S can be broken down into pairs (m, n - m). The sum of the two elements in each pair is

Thus, S can be broken down into pairs (m, n - m). The sum of the two elements in each pair is m + (n - m) = n. Since $|S| = \phi(n)$, there must be $\frac{\phi(n)}{2}$ pairs. Therefore, the sum of the elements of S is $n \cdot \frac{\phi(n)}{2}$, as I wanted to show. \Box

25. Find the last three digits of 7^{8403} .

 $\phi(1000) = 400$, so by Euler's theorem,

$$(7^{8403} = (7^{400})^2 1 \cdot 7^3 = 1^{21} \cdot 343 = 343 \pmod{1000}$$

The last three digits of 7^{8403} are 343.

26. Show that if $\sigma(n) = 36$, then n = 22.

Write the prime factorization of n:

$$n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}.$$

Then

$$\sigma(n) = (1 + p_1 + \dots + p_1^{r_1})(1 + p_2 + \dots + p_2^{r_2}) \cdots (1 + p_k + \dots + p_k^{r_k}).$$

Here is a table of values of $1 + p + \cdots + p^n$ for various primes p:

	n = 1	n=2	n = 3	n = 4	n = 5
p=2	3	7	15	31	63
p = 3	4	13	40	121	364
p = 5	6	31	156	781	3906
p = 7	8	57	400	2801	19608
p = 11	12	133	1464	16105	177156
p = 13	14	183	2380	30941	402234
p = 17	18	307	5220	88741	1508598
p = 19	20	381	7240	137561	2613660

Note that 36 does not occur in the first column, since 36 - 1 = 35 is not prime. Clearly, the numbers in each row and column increase. Thus, any factors of 36 that *could* occur must be in the table.

The divisors of 36 that occur in the table are 3, 4, 6, 12, and 18.

18 can't be part of the factorization of $\sigma(n) = 36$, since I don't have any way of getting a factor of 2.

6 can't be part of the factorization, since I can only get the remaining factor of 6 as 6 or as $2 \cdot 3$. I can't use 6 a second time, and I can't get a factor of 2.

4 can't be part of the factorization, since I can only get the remaining factor of 9 as 9 or as $3 \cdot 3$. There is no 9 in the table, and I can't use 3 twice.

The only possibility is that $\sigma(n) = 3 \cdot 12$; consulting the table, this means that $n = 2 \cdot 11 = 22$.

27. Prove that if n is an integer and $3 \not/ n$, then $n^{37} - n$ is divisible by 54.

To say that $n^{37} - n$ is divisible by 54 is the same as saying that $n^{37} = n \pmod{54}$. Since $54 = 2 \cdot 27$ and (2, 27) = 1, it suffices to prove that $n^{37} = n \pmod{2}$ and $n^{37} = n \pmod{27}$.

Since 2 is prime, $n^2 = n \pmod{2}$ by a corollary to Fermat's theorem.

 $(n, 27) \mid 27$, so (n, 27) = 1, 3, 9, 27. If $(n, 27) \neq 1$, then $3 \mid (n, 27) \mid n$, which contradicts the assumption that $3 \nmid n$. Therefore, (n, 27) = 1.

Hence, I may apply Euler's theorem: $\phi(27) = 18$, so $n^{18} = 1 \pmod{27}$. Then

 $n^{36} = 1 \pmod{27}$, and $n^{37} = n \pmod{27}$.

Since $n^2 = n \pmod{2}$ and $n^{37} = n \pmod{27}$, it follows that $n^{37} = n \pmod{54}$. Note that the result may not hold if $3 \mid n$. For example, $9^{37} - 9 = 18 \pmod{54}$.

28. Convert $(5573)_6$ to base 10.

6	5	5	7	3
		30	210	1302
	5	35	217	1305

Hence, $(5573)_6 = 1305$.

29. Show that $2^{31} - 1$ has no prime factors less than 500.

Since 31 is prime, divisors of $2^{31} - 1$ have the form $2 \cdot 31k + 1 = 62k + 1$. I check numbers of this form less than 500:

n	62n + 1	Result
1	63	63 isn't prime
2	125	125 isn't prime
3	187	187 isn't prime
4	249	249 isn't prime
5	311	$311 \not 2^{31} - 1$
6	373	$373 \not 2^{31} - 1$
7	435	435 isn't prime
8	497	497 isn't prime

Thus, $2^{31} - 1$ has no prime factors less than 500. In fact, $2^{31} - 1$ is prime.

30. Find the decoding transformation for the block cipher

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 17 & 3 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} \pmod{26}.$$

The determinant of the coefficient matrix is $17 \cdot 2 - 3 \cdot 5 = 19$, and (19, 26) = 1. Hence, the matrix is invertible.

26	-	11
19	1	8
7	2	3
5	1	2
2	2	1
1	2	0

$$(-8) \cdot 26 + 11 \cdot 19 = 1$$

 $11 \cdot 19 = 1 \pmod{26}$

Hence, $19^{-1} = 11 \pmod{26}$. Therefore,

$$\begin{bmatrix} 17 & 3\\ 5 & 2 \end{bmatrix}^{-1} = 11 \cdot \begin{bmatrix} 2 & -33\\ -5 & 17 \end{bmatrix} = \begin{bmatrix} 22 & -343\\ -55 & 187 \end{bmatrix} = \begin{bmatrix} 22 & 21\\ 23 & 5 \end{bmatrix}.$$

The decoding transformation is

$$\begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \begin{bmatrix} 22 & 21 \\ 23 & 5 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \pmod{26}. \square$$

- 31. Consider the exponential cipher which uses the prime p = 3121 and the exponent e = 11.
- (a) Encipher the word FOOD.
- (b) Find the deciphering transformation.
- (a) Since 2525 < 3121 < 252525, I use blocks of two letters. FOOD becomes $0514 \ 1403$.

I'll do the first block by way of example. I'll do the computation the way you would do it on a calculator which can't accomodate very big numbers.

$$514^{11} = (514^3)^3(514^2) = (2034)^3(2032) = (2034^2)(2034 \cdot 2032) = (1831)(884) = 1926 \pmod{3121}$$

Similarly,

$$1403^{11} = 592 \pmod{3121}.$$

The ciphertext is 1926 0592. \Box

(b) I need d such that $de = 1 \pmod{3120}$, i.e. such that $11d = 1 \pmod{3120}$. Use the Extended Euclidean algorithm:

3120	-	851
11	283	3
7	1	2
4	1	1
3	1	1
1	3	0

Thus,

$$(-3)(3120) + (851)(11) = 1 \pmod{3120}$$
, or $(851)(11) = 1 \pmod{3120}$.

Thus, d = 851, and the decoding transformation is

$$P = C^{851} \pmod{3121}$$
.

32. For an RSA cipher, it is known that the modulus is n = 240181, and $\phi(240181) = 239200$. Find the primes p and q such that n = pq.

Note that

$$\phi(n) = \phi(pq) = (p-1)(q-1) = pq - p - q + 1 = n - (p+q) + 1.$$

Thus,

$$p + q = n - \phi(n) + 1 = 240181 - 239200 + 1 = 982.$$

Next,

$$(p-q)^{2} = p^{2} - 2pq + q^{2} = (p^{2} + 2pq + q^{2}) - 4pq = (p+q)^{2} - 4n.$$

Hence,

$$p - q = \sqrt{(p+q)^2 - 4n} = \sqrt{982^2 - 4 \cdot 240181} = 60.$$

Then

$$p = \frac{1}{2} \left((p+q) + (p-q) \right) = \frac{1}{2} \left(982 + 60 \right) = 521,$$
$$q = \frac{1}{2} \left((p+q) - (p-q) \right) = \frac{1}{2} \left(982 - 60 \right) = 461. \quad \Box$$

33. Find all solutions to the congruence

$$x^2 = 74 \pmod{203}$$
.

Note: $203 = 7 \cdot 29$.

I'll begin by solving the congruence mod 7 and mod 29.

$$x^2 = 74 = 4 \pmod{7}$$
.

The solutions are obviously $x = 2 \pmod{7}$ and $x = -2 = 5 \pmod{7}$.

$$x^2 = 74 = 16 \pmod{29}$$
.

The solutions are obviously $x = 4 \pmod{29}$ and $x = -4 = 25 \pmod{29}$.

(In cases where you couldn't find solutions to these by inspection, you'd probably need to make a table of squares.)

Next, I combine solutions mod 7 with solutions mod 29 using the Chinese Remainder theorem. First,

$$\begin{array}{cccc} x=2 \pmod{7} \\ x=4 \pmod{29} \\ \\ m & 7 & 29 \\ p & 29 & 7 \\ s & 1^{-1}=1 \pmod{7} & 7^{-1}=25 \pmod{29} \\ a & 2 & 4 \end{array}$$

$$x = 29 \cdot 1 \cdot 2 + 7 \cdot 25 \cdot 4 = 758 = 149 \pmod{203}.$$

Hence, $x = -149 = 54 \pmod{203}$ is another solution. Next,

$$x = 2 \pmod{7}$$
$$x = 25 \pmod{29}$$

Note that I don't use $x = 5 \pmod{7}$ and $x = 25 \pmod{29}$, because these are negatives of the solutions I used first, so I'll just get 149 and 54 again.

 $\begin{array}{ccccc} m & 7 & 29 \\ p & 29 & 7 \\ s & 1^{-1} \equiv 1 \pmod{7} & 7^{-1} \equiv 25 \pmod{29} \\ a & 2 & 25 \end{array}$

 $x = 29 \cdot 1 \cdot 2 + 7 \cdot 25 \cdot 25 = 4433 = 170 \pmod{203}$.

Hence, $x = -170 = 33 \pmod{203}$ is another solution. All together, the solutions are $x = 33, 54, 149, 170 \pmod{203}$.

34. Find a solution to $x^2 = 208 \pmod{289}$ by lifting a solution to the congruence mod 17.

Consider

$$x^2 = 208 = 4 \pmod{17}$$
.

Obviously, $x = 2 \pmod{17}$ is a solution. Method 1. Try to find a solution of the form y = 2 + 17k to the original congruence:

$$y^{2} = 208 \pmod{289}$$
$$(2 + 17k)^{2} = 208 \pmod{289}$$
$$4 + 68k + 289k^{2} = 208 \pmod{289}$$
$$68k = 204 \pmod{289}$$
$$68k = 68 \cdot 3 \pmod{289}$$

I cancel the factor of 68, dividing the modulus by (289, 68) = 17. This gives

$$k=3 \pmod{17}.$$

So one solution is obtained by taking k = 3, which gives

$$y = 2 + 17 \cdot 3 = 53 \pmod{289}$$
.

Method 2. Use the algorithm given by the proof of the theorem on lifting solutions to polynomial congruences.

Let $f'(x) = x^2 - 208$, so f'(x) = 2x.

$$f'(2) = 4, \quad f(2) = -204.$$

Note that $17 \not| 4$. Solve:

$$4t = -\frac{-204}{17} = 12 \pmod{17}$$

$$t = 3 \pmod{17}$$

A solution to the original congruence is given by

$$x = 2 + 17 \cdot 3 = 53 \pmod{289}$$
.

The other solution is $-53 = 236 \pmod{289}$.

35. Suppose that p is an odd prime and $p = 19 \pmod{20}$. Compute $\left(\frac{-5}{p}\right)$. First, $\left(\frac{-5}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{5}{p}\right)$. Since $p = 19 \pmod{20}$, I may write p = 19 + 20s. Then $p = 3 \pmod{4}$, so $\left(\frac{-1}{p}\right) = -1$. Similarly, $\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right)$. But p = 19 + 20s shows that $p = 4 \pmod{5}$, so $\left(\frac{p}{5}\right) = \left(\frac{4}{5}\right) = 1$. Therefore, $\left(\frac{-5}{p}\right) = (-1)(1) = -1$.

$$\begin{pmatrix} \frac{180}{211} \end{pmatrix} = \begin{pmatrix} \frac{5 \cdot 36}{211} \end{pmatrix} = \begin{pmatrix} \frac{5}{211} \end{pmatrix} \begin{pmatrix} \frac{36}{211} \end{pmatrix} = \begin{pmatrix} \frac{5}{211} \end{pmatrix} \cdot 1 = \begin{pmatrix} \frac{5}{211} \end{pmatrix} .$$
Since $5 = 4 \cdot 1 + 1$,
$$\begin{pmatrix} \frac{5}{211} \end{pmatrix} = \begin{pmatrix} \frac{211}{5} \end{pmatrix} = \begin{pmatrix} \frac{1}{5} \end{pmatrix} = 1.$$
Therefore, $\begin{pmatrix} \frac{180}{211} \end{pmatrix} = 1$.

37. Compute $\left(\frac{375}{461}\right)$.

I'll use Jacobi symbols to simplify the computation:

$$\begin{pmatrix} \frac{375}{461} \end{pmatrix} = \begin{pmatrix} \frac{25 \cdot 15}{461} \end{pmatrix} = \begin{pmatrix} \frac{15}{461} \end{pmatrix} = \begin{pmatrix} \frac{461}{15} \end{pmatrix} = \begin{pmatrix} \frac{11}{15} \end{pmatrix} =$$
$$\begin{pmatrix} \frac{11}{3} \end{pmatrix} \begin{pmatrix} \frac{11}{5} \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{5} \end{pmatrix} = (-1)(1) = -1. \quad \Box$$

38. Convert 2781 to base 5.

5	2781	-
5	556	1
5	111	1
5	22	1
5	4	2
5	0	4

Thus, $2781 = (42111)_5$.

39. Express 0.26 in base 5.

a	x	bx
-	0.26	1.3
1	0.3	1.5
1	0.5	2.5
2	0.5	2.5
2	0.5	2.5

Thus, $0.26 = (0.11222...)_5 = (0.11\overline{2})_5$.

40. Find a decimal fraction in lowest terms equal to $(0.2\overline{56})_7$.

Let $x = (0.2\overline{56})_7$. Then $49x = (25.6\overline{56})_7$, so

$$49x = (25.6\overline{56})_7$$

$$x = (0.2\overline{56})_7$$

$$48x = (25.4)_7$$

$$48x = 2 \cdot 7 + 5 + 4 \cdot \frac{1}{7}$$

$$48x = \frac{137}{7}$$

$$x = \frac{137}{336} \Box$$

41. Express $(.1\overline{25})_6$ as a decimal fraction in lowest terms.

Let $x = (.1\overline{25})_6$. Then $36x = (12.5\overline{25})_6$, so

$$\begin{array}{rcl} 36x & = & (12.5\overline{25})_6 \\ x & = & (.1\overline{25})_6 \\ \overline{35x} & = & (12.4)_6 \end{array}$$

Now

$$(12.4)_6 = 1 \cdot 6^1 + 2 \cdot 6^0 + 4 \cdot \frac{1}{6} = 8 + \frac{2}{3} = \frac{26}{3}.$$

Hence,

$$35x = \frac{26}{3}, \quad x = \frac{26}{105}.$$

42. If b is an integer and b > 1, find a decimal fraction equal to $(0.\overline{1})_b$.

$$(0.\overline{1})_b = \frac{1}{b} + \frac{1}{b^2} + \frac{1}{b^3} + \dots = \frac{1}{b} \cdot \sum_{n=0}^{\infty} \left(\frac{1}{b}\right)^n = \frac{1}{b} \cdot \frac{1}{1 - \frac{1}{b}} = \frac{1}{b - 1}.$$

43. Find the finite continued fraction expansion for $\frac{271}{43}$.

	а	q		
	271	-		
	43	6		
	13	3		
	4	3		
	1	4		
$\frac{271}{43} = [6; 3]$	[3, 3, 4] = 6	$3 + \frac{1}{3 + 3}$	$\frac{1}{3+\frac{1}{4}}.$	

44. (a) Find the first 5 convergents of $[7; \overline{5, 10}]$.

(b) Find the exact value of $x = [7; \overline{5, 10}]$.

(a)

a_k	p_k	q_k	c_k	
7	7	1	7	
5	36	5	$\frac{36}{5}$	
10	367	51	$\frac{367}{51}$	
5	1871	260	$\frac{1871}{260}$	
10	19077	2651	$\frac{19077}{2651}$	

(b)

$$x = 7 + \frac{1}{5 + \frac{1}{10 + \frac{1}{5 + \ddots}}}.$$

Therefore,

$$x - 7 = \frac{1}{5 + \frac{1}{10 + \frac{1}{5 + \frac$$

Thus,

$$(5x + 16)(x - 7) = x + 3$$

$$5x^{2} - 19x - 112 = x + 3$$

$$5x^{2} - 20x - 115 = 0$$

$$x^{2} - 4x - 23 = 0$$

This gives the roots

$$x = \frac{4 \pm \sqrt{16 + 92}}{2} = 2 \pm 3\sqrt{3}.$$

Since x is obviously positive, it follows that $x = 2 + 3\sqrt{3}$.

45. Find the first 10 terms of the continued fraction expansion of $\sqrt[3]{114}$.

x_k	a_k
4.84881	4
1.17812	1
5.61409	5
1.62843	1
1.59127	1
1.69128	1
1.44659	1
2.23921	2
4.18051	4
5.53997	5
1.85197	1

46. (a) Find the continued fraction expansion of $\sqrt{7}$. Find the convergents c_0, \ldots, c_8 .

(b) Use the convergents of the continued fraction expansion of $\sqrt{7}$ to find a solution to the Fermat-Pell equation $x^2 - 7y^2 = 1$.

(a) I'll use the recursion formula

$$x_0 = x, \quad a_0 = [x_0],$$

 $x_k = \frac{1}{x_{k-1} - a_{k-1}}, \quad a_k = [x_k], \quad k \ge 1$

Note that since $\sqrt{7}$ is a quadratic irrational, I can stop once I see that the expansion has repeated.

x	a
$\sqrt{7}$	2
$\frac{1}{\sqrt{7}-2} \approx 1.54858$	1
≈ 1.82288	1
≈ 1.21525	1
≈ 4.64575	4
≈ 1.54858	1
≈ 1.82288	1

Thus, $\sqrt{7} = [2; \overline{1, 1, 1, 4}]$. The convergents are

a_k	$p_k \qquad q_k$		c_k
2	2	1	2
1	3	1	3
1	5	2	$\frac{5}{2}$
1	8	3	$\frac{8}{3}$
4	37	14	$\frac{37}{14}$
1	45	17	$\frac{45}{17}$
1	82	31	$\frac{82}{31}$
1	127	48	$\frac{127}{48}$
4	590	223	$\frac{590}{223}$

Note that $\sqrt{7} \approx 2.64575$, while $\frac{590}{223} \approx 2.64574$. \Box

(b) Since the period is 4, which is even, the numerator p_3 and denominator q_3 give a solution:

 $8^2 - 7 \cdot 3^2 = 1.$

47. Find the convergents of the finite continued fraction [1; 1, 4, 1, 4, 1, 4].

a_k	p_k	q_k	c_k	
1	1	1	1	
1	2	1	2	
4	9	5	$\frac{9}{5}$	
1	11	6	$\frac{11}{6}$	
4	53	29	$\frac{53}{29}$	
1	64	35	$\frac{64}{35}$	
4	309	169	$\frac{309}{169}$	Г

48. Find the exact value of the periodic continued fraction $[1; \overline{2, 5}]$.

Write $x = [1; \overline{2, 5}]$, so

$$x = 1 + \frac{1}{2 + \frac{1}{5 + \frac{1}{1 + \frac{1}{2 + \ddots}}}}.$$

Let
$$y = [\overline{2, 5}]$$
, so $x = 1 + \frac{1}{y}$. Then
 $y = 2 + \frac{1}{5 + \frac{1}{2 + \frac{1}{5 + \frac{1}{5 + \frac{1}{5}}}}} = 2 + \frac{1}{5 + \frac{1}{y}} = 2 + \frac{1}{\frac{5y + 1}{y}} = 2 + \frac{y}{5y + 1} = \frac{2(5y + 1) + y}{5y + 1} = \frac{11y + 2}{5y + 1}.$

Clear the fraction to obtain a quadratic:

$$5y^2 + y = 11y + 2$$
, $5y^2 - 10y - 2 = 0$.

The solutions are

$$y = \frac{10 \pm \sqrt{140}}{10}.$$

y must be positive, so

$$y = \frac{10 + \sqrt{140}}{10} = \frac{10 + 2\sqrt{35}}{10} = \frac{5 + \sqrt{35}}{5}.$$

Hence,

$$x = 1 + \frac{1}{\frac{5+\sqrt{35}}{5}} = 1 + \frac{5}{5+\sqrt{35}} = \frac{10+\sqrt{35}}{5+\sqrt{35}} = \frac{-3+\sqrt{35}}{2}.$$

49. Find the rational number $\frac{p}{q}$ in lowest terms with $q \leq 50$ which best approximates $\frac{\pi}{e}$.

x	a	p	q	с	error
1.15573	1	1	1	1	0.015573
6.42148	6	7	6	$\frac{7}{6}$	0.01094
2.37259	2	15	13	$\frac{15}{13}$	0.00188
2.68389	2	37	32	$\frac{37}{32}$	0.00052
1.46223	1	52	45	$\frac{52}{45}$	0.00017
2.16342	2	141	122	$\frac{141}{122}$	0.00001

I computed the first six convergents for the continued fraction expansion for $\frac{\pi}{e}$. I conjecture that $\frac{52}{45}$ is the best rational approximation with denominator less than or equal to 50. Suppose that $\frac{p}{q}$ is a better approximation, and $q \leq 50$. Then

$$\left|\frac{\pi}{e} - \frac{p}{q}\right| < \left|\frac{\pi}{e} - \frac{52}{45}\right| \approx 0.00017.$$

Now $q \leq 50$, so

$$\frac{1}{2q^2} \ge \frac{1}{5000} = 0.0002.$$

Hence,

$$\frac{1}{2q^2} > \left|\frac{\pi}{e} - \frac{p}{q}\right|.$$

Therefore, $\frac{p}{q}$ must be a convergent. However, the table shows that no convergent with denominator less than or equal to 50 approximates $\frac{\pi}{e}$ better than $\frac{52}{45}$. Hence, there is no such $\frac{p}{q}$, and $\frac{52}{45}$ is the best rational approximation with denominator less than or equal to 50. \square

The best thing for being sad is to learn something. - MERLYN, in T.H. WHITE'S The Once and Future King