
Math 393
10-11-2020

Review Problems for the Final

These problems are intended to help you study. The fact that a problem occurs here does not mean
that there will be a similar problem on the test. And the absence of a problem from this review sheet does
not mean that there won’t be a problem of that kind on the test.

1. Find the coefficient of x16y15 in the expansion of (2x2 + y3)13.

2. Find the number of elements of {1, 2, . . .2000} which are divisible by either 8 or by 22.

3. Prove that if n ∈ Z
+, then 12 | n4 − n2.

4. Define

x1 = 1, xk = 1 + x1x2 · · ·xk−1 for k > 1.

Prove that for n ≥ 1,
n
∑

k=1

1

xk

= 2− 1

x1x2 · · ·xn

.

5. Let fn denote the nth Fibonacci number. Simplify f3n+10 − f3n+7 − f3n+8 to a single Fibonacci number,
assuming that n ≥ 0.

6. Find all integers n ∈ Z
+ such that n+ 1 | n2 + 1.

7. Find (387, 927) and express it as an integer linear combination of 387 and 927.

8. Find all pairs of positive integers (m,n) such that

[m,n]− (m,n) = 65.

9. (a) Explain why the Diophantine equation 6x+ 14y = 7 has no solutions.

(b) Solve the Diophantine equation 6x+ 25y = 7.

10. Solve the Diophantine equation x2 + 2y2 = 3xy + 2.

11. Find all integer solutions (positive or negative) to the Diophantine equation x2 + 4y2 = 17.

12. Use Fermat factorization to factor 43621.

13. Solve the system of congruences
x = 6 (mod 12)

x = 3 (mod 5)

x = 4 (mod 11)

.

14. Solve 3x+ 4y = 7 (mod 8). Include ranges for the parameters which give all the distinct solutions mod
8, without duplication.

15. If n is an integer, can n4 + n2 + 1 be divisible by 5?

16. Prove that if x = a (mod b), x = a (mod c), and (b, c) = 1, then x = a (mod bc).

17. (a) List the numbers in {0, 1, 2, 3, 4, 5, 6, 7, 8} which are invertible mod 9.
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(b) A number u ∈ {0, 1, . . . , n − 1} which is invertible mod n is a primitive root mod n if the powers u,
u2, u3, . . . of u give all the numbers which are invertible mod n. Show that 2 is a primitive root mod 9.

(c) Show by computation that there is no primitive root mod 8.

18. 2063 and 3041 are primes. Prove without computation that

20633040 + 30412062 = 1 (mod 2063 · 3041) .

19. Reduce
5062!

5002!
mod 61 to a number in the range {0, 1, . . . , 60}.

20. Solve the system of congruences

2x + 3y = 4 (mod 5)
x + 2y = 3 (mod 5)

.

21. Compute φ(864), σ(864), and τ(864).

22. Calvin Butterball says: “If n > 1, the factors of n come in pairs {a, b}, where n = ab. Hence, τ(n) must
be even.” Is he right?

23. For what positive integers n does φ(5n) = 5φ(n)?

24. Let n ≥ 2. Consider the set S of integers in {1, 2, . . . , n− 1} which are relatively prime to n. Prove that

the sum of the elements of S is
n · φ(n)

2
.

25. Find the last three digits of 78403.

26. Show that if σ(n) = 36, then n = 22.

27. Prove that if n is an integer and 3 6 |n, then n37 − n is divisible by 54.

28. Show that 231 − 1 has no prime factors less than 500.

29. Find the decoding transformation for the block cipher

[

c1
c2

]

=

[

17 3
5 2

] [

p1
p2

]

(mod 26) .

30. Consider the exponential cipher which uses the prime p = 3121 and the exponent e = 11.

(a) Encipher the word FOOD.

(b) Find the deciphering transformation.

31. For an RSA cipher, it is known that the modulus is n = 240181, and φ(240181) = 239200. Find the
primes p and q such that n = pq.

32. Find all solutions to the congruence

x2 = 74 (mod 203) .

Note: 203 = 7 · 29.

33. Find a solution to x2 = 208 (mod 289) by lifting a solution to the congruence mod 17.

34. Suppose that p is an odd prime and p = 19 (mod 20). Compute







−5

p





.
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35. Compute







180

211





.

36. Compute







375

461





.

37. Convert (5573)6 to base 10.

38. Convert 2781 to base 5.

39. Express 0.26 in base 5.

40. Find a decimal fraction in lowest terms equal to (0.256)7.

41. Express (.125)6 as a decimal fraction in lowest terms.

42. If b is an integer and b > 1, find a decimal fraction equal to (0.1)b.

43. Find the finite continued fraction expansion for
271

43
.

44. (a) Find the first 5 convergents of [7; 5, 10].

(b) Find the exact value of x = [7; 5, 10].

45. Find the first 10 terms of the continued fraction expansion of 3
√
114.

46. (a) Find the continued fraction expansion of
√
7. Find the convergents c0, . . . , c8.

(b) Use the convergents of the continued fraction expansion of
√
7 to find a solution to the Fermat-Pell

equation x2 − 7y2 = 1.

47. Find the convergents of the finite continued fraction [1; 1, 4, 1, 4, 1, 4].

48. Find the exact value of the periodic continued fraction [1; 2, 5].

49. Find the rational number
p

q
in lowest terms with q ≤ 50 which best approximates

π

e
.

Solutions to the Review Problems for the Final

1. Find the coefficient of x16y15 in the expansion of (2x2 + y3)13.

I’ll get a x16y15 term by taking (2x2)8 and (y3)5. Thus, the coefficient is
(

13

8

)

· 28 = 329472.

2. Find the number of elements of {1, 2, . . .2000} which are divisible by either 8 or by 22.

The number of elements of {1, 2, . . .2000} which are divisible by 8 is

[

2000

8

]

= 250.

The number of elements of {1, 2, . . .2000} which are divisible by 22 is

[

2000

22

]

= [90.90909 . . .] = 90.
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The number of elements of {1, 2, . . .2000} which are divisible by both 8 and 22 is the number divisible by
their least common multiple, and [8, 22] = 88. The number of elements of {1, 2, . . .2000} which are divisible
by 88 is

[ 200088] = [22.72727 . . .] = 22.

The number divisible by both is counted in both the number divisible by 8 and the number divisible by
22. So it must be subtracted off once to get the number divisible by either 8 or 22:

250 + 90− 22 = 318.

3. Prove that if n ∈ Z
+, then 12 | n4 − n2.

For n = 1, I have n4 − n2 = 14 − 12 = 0, and 12 | 0.
Suppose 12 | n4 − n2. I want to show that 12 | (n+ 1)4 − (n+ 1)2. Now

(n+ 1)4 − (n+ 1)2 = (n4 + 4n3 + 6n2 + 4n+ 1)− (n2 + 2n+ 1)

= (n4 − n2) + (4n3 + 6n2 + 2n)

= (n4 − n2) + 2n(2n2 + 3n+ 1)

= (n4 − n2) + 2n(n+ 1)(2n+ 1)

I know that 12 | n4 − n2 by induction.
To show that 12 | 2n(n + 1)(2n + 1), you can take several approaches. One approach is to consider

n = 0, 1, . . . , 11 mod 12 and show that you always get 0. A sneakier approach is to note that

12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

12(12 + 22 + 32 + · · ·+ n2) = 2n(n+ 1)(2n+ 1)

In any event, since 12 | n4−n2 and 12 | 2n(n+1)(2n+1), I have 12 | (n+1)4− (n+1)2. This completes
the induction step and the proof.

4. Define
x1 = 1, xk = 1 + x1x2 · · ·xk−1 for k > 1.

Prove that for n ≥ 1,
n
∑

k=1

1

xk

= 2− 1

x1x2 · · ·xn

.

For n = 1,
1

∑

k=1

1

xk

=
1

x1

=
1

1
= 1,

2− 1

x1

= 2− 1

1
= 1.

The result is true for n = 1.
Let n > 1, and assume that the result holds for n− 1:

n−1
∑

k=1

1

xk

= 2− 1

x1x2 · · ·xn−1

.
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Then
n
∑

k=1

1

xk

=

n−1
∑

k=1

1

xk

+
1

xn

= 2− 1

x1x2 · · ·xn−1

+
1

xn

=

2− xn − x1x2 · · ·xn−1

x1x2 · · ·xn−1xn

= 2− 1

x1x2 · · ·xn−1xn

.

(The second equality used the induction hypothesis, the third equality came from combining fractions
over a common denominator, and the fourth equality came from the definition of the x’s.)

Therefore, the result holds for n, so it’s true for all n ≥ 1, by induction.

5. Let fn denote the nth Fibonacci number. Simplify f3n+10 − f3n+7 − f3n+8 to a single Fibonacci number,
assuming that n ≥ 0.

f3n+10 − f3n+7 − f3n+8 = f3n+10 − (f3n+7 + f3n+8) = f3n+10 − f3n+9 = f3n+8.

6. Find all integers n ∈ Z
+ such that n+ 1 | n2 + 1.

Suppose n+ 1 | n2 + 1. Then

n+ 1 | n2 + 1 = (n2 + 2n+ 1)− 2n = (n+ 1)2 − 2n.

But n+ 1 | (n+ 1)2, so n+ 1 | 2n.
Say k(n+ 1) = 2n, where k ∈ Z

+. If k ≥ 2, then

k(n+ 1) ≥ 2(n+ 1)

2n ≥ 2(n+ 1)

2n ≥ 2(n+ 1) > 2n

This is a contradiction. Hence, k = 1. This means that 1(n+ 1) = 2n, so n = 1.

7. Find (387, 927) and express it as an integer linear combination of 387 and 927.

927 - 12

387 2 5

153 2 2

81 1 1

72 1 1

9 8 0

(−5)(927) + (12)(387) = 9 = (387, 927).

8. Find all pairs of positive integers (m,n) such that

[m,n]− (m,n) = 65.
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Note that (m,n) | m | [m,n]. Hence,

(m,n) | [m,n]− (m,n) = 65.

Now 65 has 4 positive divisors: 1, 5, 13, and 65. I consider each of these cases.

Case 1. (m,n) = 1.

Using [m,n] =
mn

(m,n)
, I get [m,n] = mn. So

[m,n]− (m,n) = 65

mn− 1 = 65

mn = 66

m and n are relatively prime ((m,n) = 1) positive integers whose product is 66. This gives me the
following pairs (ignoring order):

(m,n) = (1, 66), (2, 33), (3, 22), (6, 11).

Case 2. (m,n) = 5.

(m,n) | m, so m = (m,n)a = 5a. Likewise, (m,n) | n, so n = (m,n)b = 5b. Since I’ve divided m and n
by their greatest common divisor, I must have (a, b) = 1.

Moreover,

[m,n] =
mn

(m,n)
=

(5a)(5b)

5
= 5ab.

So
[m,n]− (m,n) = 65

5ab− 5 = 65

5ab = 70

ab = 14

a and b are relatively prime positive integers whose product is 14. This gives me the following pairs
(ignoring order):

(a, b) = (1, 14), (2, 7).

If (a, b) = (1, 14), then multiplying by 5 gives (m,n) = (5, 70).
If (a, b) = (2, 7), then multiplying by 5 gives (m,n) = (10, 35).

Case 3. (m,n) = 13.

(m,n) | m, so m = (m,n)a = 13a. Likewise, (m,n) | n, so n = (m,n)b = 13b. Since I’ve divided m and
n by their greatest common divisor, I must have (a, b) = 1.

Moreover,

[m,n] =
mn

(m,n)
=

(13a)(13b)

13
= 13ab.

So
[m,n]− (m,n) = 65

13ab− 13 = 65

13ab = 78

ab = 6

a and b are relatively prime positive integers whose product is 6. This gives me the following pairs
(ignoring order):

(a, b) = (1, 6), (2, 3).
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If (a, b) = (1, 6), then multiplying by 13 gives (m,n) = (13, 78).
If (a, b) = (2, 3), then multiplying by 13 gives (m,n) = (26, 39).

Case 4. (m,n) = 65.

(m,n) | m, so m = (m,n)a = 65a. Likewise, (m,n) | n, so n = (m,n)b = 65b. Since I’ve divided m and
n by their greatest common divisor, I must have (a, b) = 1.

Moreover,

[m,n] =
mn

(m,n)
=

(65a)(65b)

65
= 65ab.

So
[m,n]− (m,n) = 65

65ab− 65 = 65

65ab = 130

ab = 2

a and b are relatively prime positive integers whose product is 2. The only solution (ignoring order) is
(a, b) = (1, 2).

If (a, b) = (1, 2), then multiplying by 65 gives (m,n) = (65, 130).

All together, the solutions are:

(m,n) = (1, 66), (2, 33), (3, 22), (6, 11), (5, 70), (10, 35), (13, 78), (26, 39), (65, 130).

9. (a) Explain why the Diophantine equation 6x+ 14y = 7 has no solutions.

(b) Solve the Diophantine equation 6x+ 25y = 7.

(a) If (x, y) is a solution, then 2 | 6x+ 14y, but 2 6 | 7, contradicting the fact that 6x+ 14y = 7.

(b) (6, 25) = 1 | 7, so there are solutions.
I could find a particular solution by inspection; instead, I’ll do it systematically using the Extended

Euclidean algorithm.

25 - 4

6 4 1

1 6 0

Thus,
(6)(−4) + (25)(1) = 1.

Multiply by 7:
(6)(−28) + (25)(7) = 7.

Thus, x0 = −28, y0 = 7 is a particular solution. The general solution is

x = −28 + 25s, y = 7− 6s.

10. Solve the Diophantine equation x2 + 2y2 = 3xy + 2.

Rewrite the equation as

x2 − 3xy + 2y2 = 3, or (x − y)(x− 2y) = 2.
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There are 4 possibilities, corresponding to the four ways of factoring 2 into a product of 2 integers.

Case 1: x− y = 1 and x− 2y = 2.

Adding the equations gives y = −1, and so x = 0.

Case 2: x− y = 2 and x− 2y = 1.

Adding the equations gives y = 1, and so x = 3.

Case 3: x− y = −1 and x− 2y = −2.

Adding the equations gives y = 1, and so x = 0.

Case 4: x− y = −2 and x− 2y = −1.

Adding the equations gives y = −1, and so x = −1.

The solutions are (0,−1), (3, 1), (0, 1), and (−1,−1).

11. Find all integer solutions (positive or negative) to the Diophantine equation x2 + 4y2 = 17.

Note that |x| <
√
17 and |y| <

√
17

2
, so I can simply check cases. Note also that 4y2 is even and 17 is

odd, so x2 must be odd, and hence x must be odd. Finally, if x works, so does −x, and likewise for y and
−y. Therefore, I only need to check positive numbers.

Putting all these constraints together, I find that I only need to try x = 1 and x = 3.

If x = 1, then 4y2 = 17 − x2 = 16, so y = ±2. This gives the four solutions (1, 2), (1,−2), (−1, 2),
(−1,−2).

If x = 3, then 4y2 = 17− 9 = 8. This has no integer solutions.

The only solutions are (1, 2), (1,−2), (−1, 2), (−1,−2).

12. Use Fermat factorization to factor 43621.

Since
√
43621 ≈ 208.85641, I’ll start at n = 209.

n n2 − 43621
√
n2 − 43621

209 60 7.74596 . . .

210 479 21.88606 . . .

211 900 30

I have

302 = 2112 − 43621

43621 = 2112 − 302

43621 = (211 + 30)(211− 30)

43621 = 241 · 181

You can check that 241 and 181 are prime.
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13. Solve the system of congruences
x = 6 (mod 12)

x = 3 (mod 5)

x = 4 (mod 11)

.

The moduli are relatively prime. The Chinese Remainder Theorem implies that there is a unique
solution mod 12 · 5 · 11 = 660.

x = 6 (mod 12) implies that x = 6 + 12s. So

6 + 12s = 3 (mod 5)

1 + 2s = 3 (mod 5)

2s = 2 (mod 5)

s = 1 (mod 5)

This means that s = 1 + 5t, so

x = 6 + 12(1 + 5t) = 18 + 60t.

Then
18 + 60t = 4 (mod 11)

7 + 5t = 4 (mod 11)

5t = 8 (mod 11)

t = 6 (mod 11)

This means that t = 6 + 11u, so

x = 18 + 60(6 + 11u) = 378 + 660u.

Therefore, x = 378 (mod 660).

14. Solve 3x+ 4y = 7 (mod 8). Include ranges for the parameters which give all the distinct solutions mod
8, without duplication.

Since (3, 4, 8) = 1 | 7, there are 1 · 8 = 8 distinct solutions mod 8.
Write the congruence as the Diophantine equation

3x+ 4y + 8z = 7.

Let w = 3x+ 4y. Then
w + 8z = 7.

By inspection, w0 = −1, z0 = 1 is a particular solution. The general solution is

w = −1 + 8s, z = 1− s.

Therefore,
−1 + 8s = 3x+ 4y.

By inspection, x0 = 1, y0 = −1 + 2s is a particular solution. The general solution is

x = 1 + 4t, y = −1 + 2s− 3t.

Reducing mod 8,
x = 1 + 4t (mod 8) , y = 7 + 2s+ 5t (mod 8) .
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The parameter ranges t = 0, 1, s = 0, 1, 2, 3 give the 8 distinct solutions:

t s x y

0 0 1 7

0 1 1 1

0 2 1 3

0 3 1 5

1 0 5 4

1 1 5 6

1 2 5 0

1 3 5 2

15. If n is an integer, can n4 + n2 + 1 be divisible by 5?

n (mod 5) 0 1 2 3 4

n4 + n2 + 1 (mod 5) 1 3 1 1 3

The table shows that for all n, n4 + n2 + 1 6= 0 (mod 5). Therefore, n4 + n2 + 1 is never divisible by 5.

16. Prove that if x = a (mod b), x = a (mod c), and (b, c) = 1, then x = a (mod bc).

x = a (mod b) means that b | x − a and x = a (mod c) means that c | x − a. Also, (b, c) = 1 implies
that

bm+ cn = 1 for some m,n.

Multiply by x− a:
bm(x− a) + cn(x− a) = x− a.

b | b and c | x− a imply that bc | bm(x− a). Also, c | c and b | x− a imply that bc | cn(x− a).
Thus,

bc | bm(x− a) + cn(x− a) = x− a.

Hence, x = a (mod bc).

17. (a) List the numbers in {0, 1, 2, 3, 4, 5, 6, 7, 8} which are invertible mod 9.

(b) A number u ∈ {0, 1, . . . , n − 1} which is invertible mod n is a primitive root mod n if the powers u,
u2, u3, . . . of u give all the numbers which are invertible mod n. Show that 2 is a primitive root mod 9.

(c) Show by computation that there is no primitive root mod 8.

(a) The numbers which are invertible mod 9 are those which are relatively prime to 9:

1, 2, 4, 5, 7, 8.

(b)
21 = 2, 22 = 4, 23 = 8, 24 = 7, 25 = 5, 26 = 1.
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I’ve gotten all of the numbers in {1, 2, 4, 5, 7, 8} by taking powers of 2, so 2 is a primitive root mod 9.

(c) The numbers in {0, 1, 2, 3, 4, 5, 6, 7} which are invertible mod 8 are 1, 3, 5, and 7. However,

12 = 1 (mod 8) , 32 = 1 (mod 8) , 52 = 1 (mod 8) , 72 = 1 (mod 8) .

Therefore, you can’t get all four of 1, 3, 5, and 7 by taking powers of any of these elements. Hence,
there is no primitive root mod 8.

Note: If n ∈ Z
+, then n has a primitive root if and only if n = 1, 2, 4, pk, 2pk, where p is an odd prime.

18. 2063 and 3041 are primes. Prove without computation that

20633040 + 30412062 = 1 (mod 2063 · 3041) .

By Fermat’s theorem with the prime 3041,

20633040 = 1 (mod 3041) , so 20633040 + 30412062 = 1 (mod 3041) .

By Fermat’s theorem with the prime 2063,

30412062 = 1 (mod 2063) , so 20633040 + 30412062 = 1 (mod 2063) .

Since 2063 and 3041 are distinct primes, they’re relatively prime. Hence,

20633040 + 30412062 = 1 (mod 2063 · 3041) .

Remark: This result is true with any two distinct primes in place of 2063 and 3041.

19. Reduce
5062!

5002!
mod 61 to a number in the range {0, 1, . . . , 60}.

5062!

5002!
= 5003 · 5004 · · ·5062.

Since 82 · 61 = 5002 and 83 · 61 = 5063, the numbers 5003, 5004, . . . , 5062 must reduce mod 61 to 1, 2,
. . . , 60. By Wilson’s theorem,

5062!

5002!
= 5003 · 5004 · · ·5062 = 1 · 2 · · · 60 = 60! = −1 = 60 (mod 61) .

20. Solve the system of congruences

2x + 3y = 4 (mod 5)
x + 2y = 3 (mod 5)

.

Write the system in matrix form:

[

2 3
1 2

] [

x
y

]

=

[

4
3

]

(mod 5) .
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Solve the system by inverting the coefficient matrix:

[

x
y

]

=

[

2 3
1 2

]

−1 [

4
3

]

=
1

1
·
[

2 2
4 2

] [

4
3

]

=

[

4
2

]

(mod 5) .

Note: You can also solve using Cramer’s rule or row reduction. Or you can solve the second equation
to get x = 3y + 3 (mod 5), and plug this into the first equation and solve for y.

21. Compute φ(864), σ(864), and τ(864)

864 = 25 · 33, so
φ(864) = 864

(

1− 1

2

)(

1− 1

3

)

= 288,

σ(864) =

(

26 − 1

2− 1

)(

34 − 1

3− 1

)

= (63)(40) = 2520,

τ(864) = (5 + 1)(3 + 1) = 24.

22. Calvin Butterball says: “If n > 1, the factors of n come in pairs {a, b}, where n = ab. Hence, τ(n) must
be even.” Is he right?

Calvin is forgetting that a and b could be equal. In fact, τ(n) is even provided that n is not a perfect
square; otherwise, τ(n) is odd. (Try writing a careful proof of this.) For example τ(4) = 3.

23. For what positive integers n does φ(5n) = 5φ(n)?

If 5 6 |n, then (n, 5) = 1, so
φ(5n) = φ(5)φ(n) = 4φ(n) 6= 5φ(n).

On the other hand, suppose 5 | n. I can write n = 5km, where k ≥ 1 and (m, 5) = 1. Then

5φ(n) = 5φ(5km) = 5φ(5k)φ(m) = 5(5k − 5k−1)φ(m) = (5k+1 − 5k)φ(m),

φ(5n) = φ(5k+1m) = φ(5k+1)φ(m) = (5k+1 − 5k)φ(m).

Therefore, 5φ(n) = φ(5n).
Hence, φ(5n) = 5φ(n) if and only if 5 | n.

24. Let n ≥ 2. Consider the set S of integers in {1, 2, . . . , n− 1} which are relatively prime to n. Prove that

the sum of the elements of S is
n · φ(n)

2
.

The case n = 2 can be proved directly: The only positive integer in {1} relatively prime to 2 is 1, and
2 · φ(2)

2
= 1.

So assume n > 2.
First, note that if m ∈ S, then n−m ∈ S. For

(m,n) = (m,n−m) = (m+ (n−m), n−m) = (n, n−m).

Thus, (m,n) = 1 if and only if (n−m,n) = 1.
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This means that the integers in S occur in pairs {m,n−m}.
I claim that that the elements of such a pair are distinct. Suppose on the contrary that m = n−m, so

m =
n

2
.

If n is odd, then
n

2
is not an integer, but m is, and I have a contradiction.

If n is even, then
n

2
is an integer that divides n (since 2 · n

2
= n). Moreover, since n > 2, I have

n

2
> 1.

This means that
(n

2
, n

)

=
n

2
6= 1, so m =

n

2
/∈ S, another contradiction.

Thus, S can be broken down into pairs (m,n − m). The sum of the two elements in each pair is

m + (n −m) = n. Since |S| = φ(n), there must be
φ(n)

2
pairs. Therefore, the sum of the elements of S is

n · φ(n)
2

, as I wanted to show.

25. Find the last three digits of 78403.

φ(1000) = 400, so by Euler’s theorem,

78403 = (7400)21 · 73 = 121 · 343 = 343 (mod 1000) .

The last three digits of 78403 are 343.

26. Show that if σ(n) = 36, then n = 22.

Write the prime factorization of n:
n = pr11 pr22 · · · prk

k
.

Then
σ(n) = (1 + p1 + · · ·+ pr11 )(1 + p2 + · · ·+ pr22 ) · · · (1 + pk + · · ·+ prk

k
).

Here is a table of values of 1 + p+ · · ·+ pn for various primes p:

n = 1 n = 2 n = 3 n = 4 n = 5

p = 2 3 7 15 31 63

p = 3 4 13 40 121 364

p = 5 6 31 156 781 3906

p = 7 8 57 400 2801 19608

p = 11 12 133 1464 16105 177156

p = 13 14 183 2380 30941 402234

p = 17 18 307 5220 88741 1508598

p = 19 20 381 7240 137561 2613660

Note that 36 does not occur in the first column, since 36 − 1 = 35 is not prime. Clearly, the numbers
in each row and column increase. Thus, any factors of 36 that could occur must be in the table.

The divisors of 36 that occur in the table are 3, 4, 6, 12, and 18.
18 can’t be part of the factorization of σ(n) = 36, since I don’t have any way of getting a factor of 2.
6 can’t be part of the factorization, since I can only get the remaining factor of 6 as 6 or as 2 · 3. I can’t

use 6 a second time, and I can’t get a factor of 2.
4 can’t be part of the factorization, since I can only get the remaining factor of 9 as 9 or as 3 · 3. There

is no 9 in the table, and I can’t use 3 twice.

13



The only possibility is that σ(n) = 3 · 12; consulting the table, this means that n = 2 · 11 = 22.

27. Prove that if n is an integer and 3 6 |n, then n37 − n is divisible by 54.

To say that n37 − n is divisible by 54 is the same as saying that n37 = n (mod 54). Since 54 = 2 · 27
and (2, 27) = 1, it suffices to prove that n37 = n (mod 2) and n37 = n (mod 27).

Since 2 is prime, n2 = n (mod 2) by a corollary to Fermat’s theorem.
(n, 27) | 27, so (n, 27) = 1, 3, 9, 27. If (n, 27) 6= 1, then 3 | (n, 27) | n, which contradicts the assumption

that 3 6 |n. Therefore, (n, 27) = 1.
Hence, I may apply Euler’s theorem: φ(27) = 18, so n18 = 1 (mod 27). Then

n36 = 1 (mod 27) , and n37 = n (mod 27) .

Since n2 = n (mod 2) and n37 = n (mod 27), it follows that n37 = n (mod 54).
Note that the result may not hold if 3 | n. For example, 937 − 9 = 18 (mod 54).

28. Convert (5573)6 to base 10.

5   35   217   1305

30   210   1302

6     5     5       7        3

Hence, (5573)6 = 1305.

29. Show that 231 − 1 has no prime factors less than 500.

Since 31 is prime, divisors of 231 − 1 have the form 2 · 31k + 1 = 62k + 1. I check numbers of this form
less than 500:

n 62n+ 1 Result

1 63 63 isn’t prime

2 125 125 isn’t prime

3 187 187 isn’t prime

4 249 249 isn’t prime

5 311 311 6 | 231 − 1

6 373 373 6 | 231 − 1

7 435 435 isn’t prime

8 497 497 isn’t prime

Thus, 231 − 1 has no prime factors less than 500. In fact, 231 − 1 is prime.

30. Find the decoding transformation for the block cipher
[

c1
c2

]

=

[

17 3
5 2

] [

p1
p2

]

(mod 26) .
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The determinant of the coefficient matrix is 17 · 2 − 3 · 5 = 19, and (19, 26) = 1. Hence, the matrix is
invertible.

26 - 11

19 1 8

7 2 3

5 1 2

2 2 1

1 2 0

(−8) · 26 + 11 · 19 = 1

11 · 19 = 1 (mod 26)

Hence, 19−1 = 11 (mod 26).
Therefore,

[

17 3
5 2

]

−1

= 11 ·
[

2 −33
−5 17

]

=

[

22 −343
−55 187

]

=

[

22 21
23 5

]

.

The decoding transformation is

[

p1
p2

]

=

[

22 21
23 5

] [

c1
c2

]

(mod 26) .

31. Consider the exponential cipher which uses the prime p = 3121 and the exponent e = 11.

(a) Encipher the word FOOD.

(b) Find the deciphering transformation.

(a) Since 2525 < 3121 < 252525, I use blocks of two letters. FOOD becomes 0514 1403.
I’ll do the first block by way of example. I’ll do the computation the way you would do it on a calculator

which can’t accomodate very big numbers.

51411 = (5143)3(5142) = (2034)3(2032) = (20342)(2034 · 2032) = (1831)(884) = 1926 (mod 3121)

.
Similarly,

140311 = 592 (mod 3121) .

The ciphertext is 1926 0592.

(b) I need d such that de = 1 (mod 3120), i.e. such that 11d = 1 (mod 3120). Use the Extended Euclidean
algorithm:

3120 - 851

11 283 3

7 1 2

4 1 1

3 1 1

1 3 0

15



Thus,
(−3)(3120) + (851)(11) = 1 (mod 3120) , or (851)(11) = 1 (mod 3120) .

Thus, d = 851, and the decoding transformation is

P = C851 (mod 3121) .

32. For an RSA cipher, it is known that the modulus is n = 240181, and φ(240181) = 239200. Find the
primes p and q such that n = pq.

Note that
φ(n) = φ(pq) = (p− 1)(q − 1) = pq − p− q + 1 = n− (p+ q) + 1.

Thus,
p+ q = n− φ(n) + 1 = 240181− 239200+ 1 = 982.

Next,
(p− q)2 = p2 − 2pq + q2 = (p2 + 2pq + q2)− 4pq = (p+ q)2 − 4n.

Hence,

p− q =
√

(p+ q)2 − 4n =
√

9822 − 4 · 240181 = 60.

Then

p =
1

2
((p+ q) + (p− q)) =

1

2
(982 + 60) = 521,

q =
1

2
((p+ q)− (p− q)) =

1

2
(982− 60) = 461.

33. Find all solutions to the congruence

x2 = 74 (mod 203) .

Note: 203 = 7 · 29.

I’ll begin by solving the congruence mod 7 and mod 29.

x2 = 74 = 4 (mod 7) .

The solutions are obviously x = 2 (mod 7) and x = −2 = 5 (mod 7).

x2 = 74 = 16 (mod 29) .

The solutions are obviously x = 4 (mod 29) and x = −4 = 25 (mod 29).
(In cases where you couldn’t find solutions to these by inspection, you’d probably need to make a table

of squares.)
Next, I combine solutions mod 7 with solutions mod 29 using the Chinese Remainder theorem.
First,

x = 2 (mod 7)

x = 4 (mod 29)

m 7 29
p 29 7
s 1−1 = 1 (mod 7) 7−1 = 25 (mod 29)
a 2 4
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x = 29 · 1 · 2 + 7 · 25 · 4 = 758 = 149 (mod 203) .

Hence, x = −149 = 54 (mod 203) is another solution.
Next,

x = 2 (mod 7)

x = 25 (mod 29)

Note that I don’t use x = 5 (mod 7) and x = 25 (mod 29), because these are are negatives of the
solutions I used first, so I’ll just get 149 and 54 again.

m 7 29
p 29 7
s 1−1 = 1 (mod 7) 7−1 = 25 (mod 29)
a 2 25

x = 29 · 1 · 2 + 7 · 25 · 25 = 4433 = 170 (mod 203) .

Hence, x = −170 = 33 (mod 203) is another solution.
All together, the solutions are x = 33, 54, 149, 170 (mod 203).

34. Find a solution to x2 = 208 (mod 289) by lifting a solution to the congruence mod 17.

Consider
x2 = 208 = 4 (mod 17) .

Obviously, x = 2 (mod 17) is a solution.
Method 1. Try to find a solution of the form y = 2 + 17k to the original congruence:

y2 = 208 (mod 289)

(2 + 17k)2 = 208 (mod 289)

4 + 68k + 289k2 = 208 (mod 289)

68k = 204 (mod 289)

68k = 68 · 3 (mod 289)

I cancel the factor of 68, dividing the modulus by (289, 68) = 17. This gives

k = 3 (mod 17) .

So one solution is obtained by taking k = 3, which gives

y = 2 + 17 · 3 = 53 (mod 289) .

Method 2. Use the algorithm given by the proof of the theorem on lifting solutions to polynomial congru-
ences.

Let f ′(x) = x2 − 208, so f ′(x) = 2x.

f ′(2) = 4, f(2) = −204.

Note that 17 6 | 4.
Solve:

4t = −−204

17
= 12 (mod 17)

t = 3 (mod 17)
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A solution to the original congruence is given by

x = 2 + 17 · 3 = 53 (mod 289) .

The other solution is −53 = 236 (mod 289).

35. Suppose that p is an odd prime and p = 19 (mod 20). Compute







−5

p





.

First,







−5

p





 =







−1

p













5

p





.

Since p = 19 (mod 20), I may write p = 19 + 20s. Then p = 3 (mod 4), so







−1

p





 = −1.

Similarly,







5

p





 =




p

5



. But p = 19 + 20s shows that p = 4 (mod 5), so





p

5



 =







4

5





 = 1.

Therefore,







−5

p





 = (−1)(1) = −1.

36. Compute







180

211





.







180

211





 =







5 · 36
211





 =







5

211













36

211





 =







5

211





 · 1 =







5

211





 .

Since 5 = 4 · 1 + 1,






5

211





 =







211

5





 =







1

5





 = 1.

Therefore,







180

211





 = 1.

37. Compute







375

461





.

I’ll use Jacobi symbols to simplify the computation:






375

461





 =







25 · 15
461





 =







15

461





 =







461

15





 =







11

15





 =







11

3













11

5





 =







2

3













1

5





 = (−1)(1) = −1.

38. Convert 2781 to base 5.

5 2781 -

5 556 1

5 111 1

5 22 1

5 4 2

5 0 4
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Thus, 2781 = (42111)5.

39. Express 0.26 in base 5.

a x bx

- 0.26 1.3

1 0.3 1.5

1 0.5 2.5

2 0.5 2.5

2 0.5 2.5

Thus, 0.26 = (0.11222 . . .)5 = (0.112)5.

40. Find a decimal fraction in lowest terms equal to (0.256)7.

Let x = (0.256)7. Then 49x = (25.656)7, so

49x = (25.656)7

x = (0.256)7

48x = (25.4)7

48x = 2 · 7 + 5 + 4 · 1
7

48x =
137

7

x =
137

336

41. Express (.125)6 as a decimal fraction in lowest terms.

Let x = (.125)6. Then 36x = (12.525)6, so

36x = (12.525)6
x = (.125)6

35x = (12.4)6

Now

(12.4)6 = 1 · 61 + 2 · 60 + 4 · 1
6
= 8 +

2

3
=

26

3
.

Hence,

35x =
26

3
, x =

26

105
.

42. If b is an integer and b > 1, find a decimal fraction equal to (0.1)b.

(0.1)b =
1

b
+

1

b2
+

1

b3
+ · · · = 1

b
·

∞
∑

n=0

(

1

b

)n

=
1

b
· 1

1− 1

b

=
1

b− 1
.

19



43. Find the finite continued fraction expansion for
271

43
.

a q

271 -

43 6

13 3

4 3

1 4

271

43
= [6; 3, 3, 4] = 6 +

1

3 +
1

3 +
1

4

.

44. (a) Find the first 5 convergents of [7; 5, 10].

(b) Find the exact value of x = [7; 5, 10].

(a)

ak pk qk ck

7 7 1 7

5 36 5
36

5

10 367 51
367

51

5 1871 260
1871

260

10 19077 2651
19077

2651

(b)

x = 7+
1

5 +
1

10 +
1

5 +
. . .

.

Therefore,

x− 7 =
1

5 +
1

10 +
1

5 +
.. .

=
1

5 +
1

10 + (x− 7)

=
1

5 +
1

x+ 3

=
x+ 3

5x+ 16
.

Thus,
(5x+ 16)(x− 7) = x+ 3

5x2 − 19x− 112 = x+ 3

5x2 − 20x− 115 = 0

x2 − 4x− 23 = 0
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This gives the roots

x =
4±

√
16 + 92

2
= 2± 3

√
3.

Since x is obviously positive, it follows that x = 2 + 3
√
3.

45. Find the first 10 terms of the continued fraction expansion of 3
√
114.

xk ak

4.84881 4

1.17812 1

5.61409 5

1.62843 1

1.59127 1

1.69128 1

1.44659 1

2.23921 2

4.18051 4

5.53997 5

1.85197 1

46. (a) Find the continued fraction expansion of
√
7. Find the convergents c0, . . . , c8.

(b) Use the convergents of the continued fraction expansion of
√
7 to find a solution to the Fermat-Pell

equation x2 − 7y2 = 1.

(a) I’ll use the recursion formula

x0 = x, a0 = [x0],

xk =
1

xk−1 − ak−1

, ak = [xk], k ≥ 1.

Note that since
√
7 is a quadratic irrational, I can stop once I see that the expansion has repeated.

x a
√
7 2

1√
7− 2

≈ 1.54858 1

≈ 1.82288 1

≈ 1.21525 1

≈ 4.64575 4

≈ 1.54858 1

≈ 1.82288 1
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Thus,
√
7 = [2; 1, 1, 1, 4]. The convergents are

ak pk qk ck

2 2 1 2

1 3 1 3

1 5 2
5

2

1 8 3
8

3

4 37 14
37

14

1 45 17
45

17

1 82 31
82

31

1 127 48
127

48

4 590 223
590

223

Note that
√
7 ≈ 2.64575, while

590

223
≈ 2.64574.

(b) Since the period is 4, which is even, the numerator p3 and denominator q3 give a solution:

82 − 7 · 32 = 1.

47. Find the convergents of the finite continued fraction [1; 1, 4, 1, 4, 1, 4].

ak pk qk ck

1 1 1 1

1 2 1 2

4 9 5
9

5

1 11 6
11

6

4 53 29
53

29

1 64 35
64

35

4 309 169
309

169

48. Find the exact value of the periodic continued fraction [1; 2, 5].
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Write x = [1; 2, 5], so

x = 1 +
1

2 +
1

5 +
1

1 +
1

2 +
.. .

.

Let y = [2, 5], so x = 1 +
1

y
. Then

y = 2 +
1

5 +
1

2 +
1

5 +
.. .

= 2 +
1

5 +
1

y

= 2 +
1

5y + 1

y

= 2+
y

5y + 1
=

2(5y + 1) + y

5y + 1
=

11y + 2

5y + 1
.

Clear the fraction to obtain a quadratic:

5y2 + y = 11y + 2, 5y2 − 10y − 2 = 0.

The solutions are

y =
10±

√
140

10
.

y must be positive, so

y =
10 +

√
140

10
=

10 + 2
√
35

10
=

5 +
√
35

5
.

Hence,

x = 1 +
1

5 +
√
35

5

= 1 +
5

5 +
√
35

=
10 +

√
35

5 +
√
35

=
−3 +

√
35

2
.

49. Find the rational number
p

q
in lowest terms with q ≤ 50 which best approximates

π

e
.

x a p q c error

1.15573 1 1 1 1 0.015573

6.42148 6 7 6
7

6
0.01094

2.37259 2 15 13
15

13
0.00188

2.68389 2 37 32
37

32
0.00052

1.46223 1 52 45
52

45
0.00017

2.16342 2 141 122
141

122
0.00001

I computed the first six convergents for the continued fraction expansion for
π

e
. I conjecture that

52

45
is

the best rational approximation with denominator less than or equal to 50.

Suppose that
p

q
is a better approximation, and q ≤ 50. Then

∣

∣

∣

∣

π

e
− p

q

∣

∣

∣

∣

<

∣

∣

∣

∣

π

e
− 52

45

∣

∣

∣

∣

≈ 0.00017.
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Now q ≤ 50, so
1

2q2
≥ 1

5000
= 0.0002.

Hence,
1

2q2
>

∣

∣

∣

∣

π

e
− p

q

∣

∣

∣

∣

.

Therefore,
p

q
must be a convergent. However, the table shows that no convergent with denominator less

than or equal to 50 approximates
π

e
better than

52

45
. Hence, there is no such

p

q
, and

52

45
is the best rational

approximation with denominator less than or equal to 50.

The best thing for being sad is to learn something. - Merlyn, in T.H. White’s The Once and Future King
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