
Math 393
10-11-2020

Review Problems for Test 1

These problems are provided to help you study. The presence of a problem on this handout does not
imply that there will be a similar problem on the test. And the absence of a topic does not imply that it
won’t appear on the test.

1. Consider the set of integers
S =

{

n | 10n ≥ n2 + 21
}

.

When the Well-Ordering Axiom is applied to S, it asserts the existence of a certain element of S. What
is the element?

2. (a) Let S be the set of real numbers x such that x > 3, with the usual ordering. Is S well-ordered?

(b) Let S be the set of integers x such that x > 3, with the usual ordering. Is S well-ordered?

3. Compute [3.2], [−5.53], and

[

100

7

]

.

4. Compute the exact value of

50
∑

n=1

ln
n+ 1

n
.

5. Compute the exact value of

50
∏

n=1

(

1 +
3

n
+

3

n2
+

1

n3

)

.

6. Simplify

(

31

17

)

+

(

31

18

)

to a single binomial coefficient.

7. The Gamma function is defined by

Γ(x) =

∫

∞

0

e−ttx−1 dt.

Prove that if x > 0, then
Γ(x+ 1) = xΓ(x).

Thus, the Gamma function satisfies the same kind of recursion relation as the factorial function.

8. Prove that if n ≥ 0 and 0 ≤ k ≤ n, then

n

(

n

k

)

= (k + 1)

(

n

k + 1

)

+ k

(

n

k

)

.

9. Find the coefficient of x11y15 in the expansion of (2x− y3)16.

10. Find (3914, 2442) and express it as a linear combination of 3914 and 2442.

11. Calvin Butterball has two egg timers that he bought after watching an ad on TV. One timer rings
exactly 8 minutes after it is started; the other rings exactly 15 minutes after it is started. While each timer
is running, no information about the time it is keeping is available. How can Calvin use the timers to time
a 4-minute egg?

12. Find the greatest common divisor and least common multiple of 23 ·310 ·56 ·134 and 2 ·38 ·53 ·73 ·11 ·132.

13. The sum of two numbers is 2736. Their least common multiple is 77592. Find the numbers.

Note: This is a difficult problem; try it last, and if you get stuck, at least try to follow the solution.
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14. (a) If x is an integer, can (x+ 5)(x+ 4) be prime?

(b) If x is a positive integer, can (x+ 5)(x+ 4) be prime?

(c) If x is an integer, can x2 + 2 be prime?

15. Prove that if n is an integer and n ≥ 1, then 15n + 5n + 3n + 1 is not prime.

16. Prove that if n ∈ Z leaves a remainder of 4 when it’s divided by 5, then n2 + n+ 3 leaves a remainder
of 3 when it’s divided by 5.

17. Prove that the square of an integer does not leave a remainder of 2 when it’s divided by 3.

18. Give three integers a, b, and c such that a does not divide either b or c, but a divides b+ c.

19. Let c, x, and y be integers, where c 6= 0. Prove that x | y if and only if cx | cy.

20. Calvin Butterball reasons that if a, b ∈ Z, then
a

(a, b)
and b must be relatively prime, because you’ve

divided out of a all the factors that a and b had in common.
If he’s right, prove it. If he’s wrong, give a specific counterexample.

21. Suppose n ∈ Z. What are the possible values of (n+ 4, (n+ 2)2)?

22. Let n be a positive integer, and let x be an integer. Suppose that n | 3x+ 1 and n | 6x2 + 2x+1. Prove
that n = 1.

23. Prove that if n ∈ Z
+ and n+ 1 | n2 + 1, then n = 1.

24. How many integers in the set {1, 2, 3, . . . , 5000} are by either 3 or 7, but not by both?

25. How many integers in the set {1, 2, 3, . . . , 5000} are divisible by 3 but not 7?

26. Prove that if a, b, n ∈ Z and n divides both 3a+ 2b and 4a+ 3b, then n | a.

27. Suppose that m and n are integers, and you know that

am+ bn = 35 for some a, b ∈ Z.

What are the possible values of (m,n)? Why?

28. Prove that if n is a positive integer of the form 4k + 3, then n must have a prime factor of that form.

29. Prove that if n ≥ 1, then

1 · 21 + 2 · 22 + 3 · 23 + · · ·+ n · 2n = 2 + (n− 1)2n+1.

30. Prove that if fn denotes the nth Fibonacci number (where f0 = 1 and f1 = 1), then

fn−1 + 2fn + fn+1 = fn+3 for n ≥ 1.

31. Let fn denote the nth Fibonacci number (where f0 = 1 and f1 = 1).
Prove that if n ≥ 1, then

[

1 1
1 0

]n+1

=

[

fn+1 fn
fn fn−1

]

.

32. A sequence of integers is defined by
x0 = 5, x1 = 7,

xn = xn−1 + 20xn−2 for n ≥ 2.
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Prove that
xn = 3 · 5n + 2 · (−4)n for n ≥ 0.

33. Use induction to prove that n! > 3n for n ≥ 7.

34. Let n ∈ Z
+. Prove that

9 | 10n + 3 · 4n+2 + 5.

35. Let f(x) be a polynomial with integer coefficients, and let f ′(x) be the derivative. Prove that

f(x+ 3) = f(x) + 3f ′(x) (mod 9) .

Hint: Use induction on the degree of f . For the induction step, write

f(x) = a0 + a1x+ · · ·+ anxn + an+1x
n+1 = a0 + x(a1 + · · ·+ anxn−1 + an+1x

n).

Let g(x) = a1 + · · ·+ anxn−1 + an+1x
n and apply the induction hypothesis to g(x).

36. Let x, y, and z be positive integers, and suppose the products xy, yz, and xz are all perfect cubes. Prove
that x, y, and z must be perfect cubes.

37. Suppose that p, q, and r are distinct prime numbers,

x = pq2r4, y = paqb, and y | x.

What are the possible values of y?

38. Suppose that the prime factorization of an integer n is

n = p31 · p62 · p53.

(p1, p2, and p3 are distinct primes.)
Write n as a product of integers n = ab, where a is a perfect square and b is square-free — that is, b

is not divisible by the square of any positive integer except 1.

39. Find the prime factorization of 15400 by trial division.

40. Use Fermat factorization to factor 25877 into primes. (You should use Fermat factorization rather than
some other method, and you should show the trial values.)

41. Find the general solution to the Diophantine equation

6x+ 4y = 10.

42. Find the general solution to the Diophantine equation

7x+ 23y = 18.

43. Find the general solution to the Diophantine equation

6x− 9y + 15z = 21.

44. Bonzo buys some books that cost $7 each and some books that cost $15 each. The books cost a total of
$349. What is the largest total number of books Bonzo could have bought?

45. I. M. Snarky buys 43 apples and oranges. The apples cost 10 cents more than the oranges, and he spends
a total of $30.68. Find the number of each fruit that he bought and their prices.
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46. Solve the following Diophantine equation by factoring:

x2 = 7 + 4y2.

47. Is 4 · 31000 + 71000 prime?

48. Find 52−1 (mod 77).

49. Suppose that (m,n) = 1. Prove that if a = b (mod m) and a = b (mod n), then a = b (mod mn).

50. Prove that if n ∈ Z, then n3 + 4n+ 2 is not divisible by 5.

51. (a) Construct a table for multiplication mod 8.

(b) What is the multiplicative inverse of 5 mod 8?

52. Prove by contradiction that 15 does not have a multiplicative inverse mod 42.

53. Prove that if n is a positive integer, then

7n = 6n+ 1 (mod 36) .

54. By constructing a table, show that x2+3x+2 = 0 (mod 6) has 4 solutions mod 6. (Note that quadratics
“usually” have at most two roots!)

55. (a) Prove that the sum of the cubes of two integers does not leave a remainder of 4 when the sum is
divided by 7.

(b) Prove that the Diophantine equation x3 + y3 = 4 has no solutions.

Solutions to the Review Problems for Test 1

1. Consider the set of integers
S =

{

n | 10n ≥ n2 + 21
}

.

When the Well-Ordering Axiom is applied to S, it asserts the existence of a certain element of S. What
is the element?

First
10n ≥ n2 + 21

0 ≥ n2 − 10n+ 21

0 ≥ (n− 3)(n− 7)

The integers which satisfy this inequality are 3, 4, 5, 6, and 7.
Well-Ordering says that a nonempty subset of the positive integers has a smallest element. The smallest

element of S is 3.

2. (a) Let S be the set of real numbers x such that x > 3, with the usual ordering. Is S well-ordered?

(b) Let S be the set of integers x such that x > 3, with the usual ordering. Is S well-ordered?

(a) S is not well-ordered, because S has subsets which do not have smallest elements. For example, S itself
does not have a smallest element (note that 3 /∈ S).
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(b) S is well-ordered. In fact, it is just {4, 5, 6, . . .}, which is the set of positive integers translated 3 units to
the right. Since the set of positive integers is well-ordered, S is as well.

3. Compute [3.2], [−5.53], and

[

100

7

]

.

[3.2] = 3, [−5.53] = −6,

[

100

7

]

= 14.

4. Compute the exact value of

50
∑

n=1

ln
n+ 1

n
.

Note that

ln
n+ 1

n
= ln(n+ 1)− lnn.

So
50
∑

n=1

ln
n+ 1

n
=

50
∑

n=1

(ln(n+ 1)− lnn) .

Write out some terms of the sum:
(ln 2− ln 1)+

(ln 3− ln 2)+

(ln 4− ln 3)+

...

(ln 50− ln 49)+

(ln 51− ln 50)

Almost all the terms cancel in pairs, with a negative term cancelling with the positive term in the
following expression. The remaining terms give the value of he sum:

50
∑

n=1

ln
n+ 1

n
= ln 51− ln 1 = ln 51.

5. Compute the exact value of

50
∏

n=1

(

1 +
3

n
+

3

n2
+

1

n3

)

.

Note that

1 +
3

n
+

3

n2
+

1

n3
=

n3 + 3n2 + 3n+ 1

n3
=

(n+ 1)3

n3
.

So
50
∏

n=1

(

1 +
3

n
+

3

n2
+

1

n3

)

=

50
∏

n=1

(n+ 1)3

n3
.

Write out some terms of the product:

23

13
· 3

3

23
· 4

3

33
· · · · · 50

3

493
· 51

3

503
.
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Most of the terms in the numerators cancel with terms in the denominators. The remaining terms give
the value of the product:

50
∏

n=1

(

1 +
3

n
+

3

n2
+

1

n3

)

=
513

13
= 132651.

6. Simplify

(

31

17

)

+

(

31

18

)

to a single binomial coefficient.

Use the formula
(

n

k

)

+

(

n

k + 1

)

=

(

n+ 1

k + 1

)

.

Put n = 31 and k = 17. Thus,
(

31

17

)

+

(

31

18

)

=

(

32

18

)

.

7. The Gamma function is defined by

Γ(x) =

∫

∞

0

e−ttx−1 dt.

Prove that if x > 0, then
Γ(x+ 1) = xΓ(x).

Thus, the Gamma function satisfies the same kind of recursion relation as the factorial function.

Γ(x+ 1) =

∫

∞

0

e−ttx dt.

Integrate Γ(x+ 1) by parts:
d

dt

∫

dt

+ tx e−t

− xtx−1 −e−t

Then

Γ(x+ 1) =

[

−txe−t +

∫

xe−ttx−1 dt

]

∞

0

.

The first term −txe−t is 0 when t = 0 and approaches 0 as t → ∞. Therefore, the last equation becomes

Γ(x+ 1) =

∫

∞

0

xe−ttx−1 dt = xΓ(x).

8. Prove that if n ≥ 0 and 0 ≤ k ≤ n, then

n

(

n

k

)

= (k + 1)

(

n

k + 1

)

+ k

(

n

k

)

.

I’ll expand the right side as factorials and combine the fractions over a common denominator:

(k + 1)

(

n

k + 1

)

+ k

(

n

k

)

= (k + 1)
n!

(k + 1)! (n− k − 1)!
+ k

n!

k! (n− k)!
=

n!

k! (n− k − 1)!
+

k · n!
k! (n− k)!

=
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n!

k! (n− k − 1)!
· n− k

n− k
+

k · n!
k! (n− k)!

=
(n− k)n! + kn!

k! (n− k)!
=

(n− k + k)n!

k! (n− k)!
=

nn!

k! (n− k)!
= n

(

n

k

)

.

9. Find the coefficient of x11y15 in the expansion of (2x− y3)16.

x11y15 occurs in the term (2x)11(−y3)5. The full term is

(

16

11

)

(2x)11(−y3)5 = −
(

16

11

)

· 211x11y15.

The coefficient is −
(

16
11

)

· 211 = −8945664.

10. Find (3914, 2442) and express it as a linear combination of 3914 and 2442.

Use the Extended Euclidean Algorithm:

3914 - 460

2442 1 287

1472 1 173

970 1 114

502 1 59

468 1 55

34 13 4

26 1 3

8 3 1

2 4 0

Therefore,
(3914, 2442) = 2 = (−287)(3914) + (460)(2442).

11. Calvin Butterball has two egg timers that he bought after watching an ad on TV. One timer rings
exactly 8 minutes after it is started; the other rings exactly 15 minutes after it is started. While each timer
is running, no information about the time it is keeping is available. How can Calvin use the timers to time
a 4-minute egg?

(8, 15) = 1, and in fact,
1 = 2 · 8 + (−1) · 15.

Multiply by 4:
4 = 8 · 8 + (−4) · 15.

According to this equation, Calvin can do the following. Start both timers, restarting each timer when
it rings. After the 15-minute timer has cycled 4 times, start cooking the egg. Stop cooking the egg when the
8-minute timer has cycled 8 times.

In the same way, Calvin can use the two timers to time any integral number of minutes.
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12. Find the greatest common divisor and least common multiple of 23 ·310 ·56 ·134 and 2 ·38 ·53 ·73 ·11 ·132.

For the greatest common divisor, take the smallest power of each prime power the numbers have in
common:

(23 · 310 · 56 · 134, 2 · 38 · 53 · 73 · 11 · 132) = 2 · 38 · 53 · 132.

For the least common multiple, take the largest power of each prime power contained in either number:

[23 · 310 · 56 · 134, 2 · 38 · 53 · 73 · 11 · 132] = 23 · 310 · 56 · 73 · 11 · 134.

13. The sum of two numbers is 2736. Their least common multiple is 77592. Find the numbers.

Suppose m and n are the numbers, so

m+ n = 2736 and [m,n] = 77592.

Let p be a prime number that goes into both 2736 and 77592. Since 77592 is a multiple of m and of n,
p must divide at least one of m and n.

If p | m, then since p | m+ n = 2736, I have p | (m+ n)−m = n.
Similarly, if p | n, then since p | m+ n = 2736, I have p | (m+m)− n = m.
In other words, any prime factor of both 2736 and 77592 must be a prime factor of both m and n.
It also goes the other way: If a prime p divides both m and n, then p clearly divides their least common

multiple, as well as m+ n by a divisibility property.
Hence, the greatest common divisor of 2736 and 77592 is the same as the greatest common divisor of

m and n.
By the Euclidean algorithm, (2736, 77592) = 24. So I have

m+ n = 2736
m

24
+

n

24
= 114

Note that, since 24 divides both m and n, the two fractions in the last equation are actually integers.
If I divide 24 out of both m and n, then 24 is divided out of their least common multiple. So

[m

24
,
n

24

]

=
77592

24
= 3233.

Since 24 was the greatest common divisor of m and n, the numbers
m

24
and

n

24
are relatively prime.

Hence, their least common multiple is their product:

[m

24
,
n

24

]

= 3233

m

24
· n

24
= 3233

mn = 1862208

Then m =
1862208

n
, so

m+ n = 2736

1862208

n
+ n = 2736

1862208+ n2 = 2736n

n2 − 2736n+ 1862208 = 0
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You can solve this ugly quadratic using the Quadratic Formula; the roots are 1272 and 1464. Either
root gives the pair of numbers {1272, 1464}, and they are the solution to the problem.

14. (a) If x is an integer, can (x+ 5)(x+ 4) be prime?

(b) If x is a positive integer, can (x+ 5)(x+ 4) be prime?

(c) If x is an integer, can x2 + 2 be prime?

(a) Yes. If x = −3, then (x+ 5)(x+ 4) = 2 · 1 = 2, which is prime.

(b) No. If x > 0, then x+ 5 > 5 and x+ 4 > 4, so (x+ 5)(x+ 4) is a proper factorization (neither factor is
equal to 1). Therefore, (x+ 5)(x+ 4) cannot be prime.

(c) Yes. If x = 3, then x2 + 2 = 11, which is prime.
(Don’t make the mistake of thinking that since x2 + 2 “doesn’t factor” as a polynomial over R, that

its values must always be composite.

15. Prove that if n is an integer and n ≥ 1, then 15n + 5n + 3n + 1 is not prime.

Note that
15n + 5n + 3n + 1 = (5n + 1)(3n + 1).

Since n ≥ 1, both factors 5n + 1 and 3n + 1 are greater than 1. Hence, this is a proper factorization,
and 15n + 5n + 3n + 1 is not prime.

16. Prove that if n ∈ Z leaves a remainder of 4 when it’s divided by 5, then n2 + n+ 3 leaves a remainder
of 3 when it’s divided by 5.

Suppose that n ∈ Z leaves a remainder of 4 when it’s divided by 5. Then n = 5k + 4 for k ∈ Z. So

n2 + n+ 3 = (5k + 4)2 + (5k + 4) + 3

= (25k2 + 40k + 16) + (5k + 4) + 3

= 25k2 + 45k + 23

= 5(5k2 + 9k + 4) + 3

This shows that n2 + n+ 3 leaves a remainder of 3 when it’s divided by 5.

Note: You can do this with less effort using modular arithmetic.

17. Prove that the square of an integer does not leave a remainder of 2 when it’s divided by 3.

Let n ∈ Z. By the Division Algorithm, if n is divided by 3, there are 3 possibilities:

n = 3q + 0, n = 3q + 1, and n = 3q + 2.

I’ll consider the cases.

(a) n = 3q.
n2 = (3q)2

= 9q2

= 3(3q2)
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In this case, n2 leaves a remainder of 0 when it’s divided by 3.

(b) n = 3q + 1.

n2 = (3q + 1)2

= 9q2 + 6q + 1

= 3(3q2 + 2q) + 1

In this case, n2 leaves a remainder of 1 when it’s divided by 3.

(b) n = 3q + 2.

n2 = (3q + 2)2

= 9q2 + 12q + 4

= 3(3q2 + 4q + 1) + 1

In this case, n2 leaves a remainder of 1 when it’s divided by 3.

Therefore, the square of an integer never leaves a remainder of 2 when it’s divided by 3.

Note: You can do this with less effort using modular arithmetic. Just construct a tables of squares
mod 3:

n 0 1 2

n2 (mod 3) 0 1 1

18. Give three integers a, b, and c such that a does not divide either b or c, but a divides b+ c.

For instance, 3 6 | 5 and 3 6 | 7, but 3 | 5 + 7 = 12.
It is true that if a divides b and a divides c, then a divides b+ c.

19. Let c, x, and y be integers, where c 6= 0. Prove that x | y if and only if cx | cy.

Suppose x | y. Then kx = y for some k. Hence, kcx = cy. Therefore, cx | cy.
Conversely, suppose cx | cy. Then kcx = cy for some k. Since c 6= 0, the Zero Divisor Axiom for the

integers allows me to cancel c from both sides: kx = y. This implies that x | y, which completes the proof.

20. Calvin Butterball reasons that if a, b ∈ Z, then
a

(a, b)
and b must be relatively prime, because you’ve

divided out of a all the factors that a and b had in common.
If he’s right, prove it. If he’s wrong, give a specific counterexample.

Take a = 8 and b = 12. Then (a, b) = 4, so

a

(a, b)
=

8

4
= 2.

But
a

(a, b)
= 2 and b = 12 aren’t relatively prime. Hence, Calvin is mistaken.

21. Suppose n ∈ Z. What are the possible values of (n+ 4, (n+ 2)2)?
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I have

(n+ 4, (n+ 2)2) = (n+ 4, n2 + 4n+ 4) = (n+ 4, (n2 + 4n+ 4)− n(n+ 4)) = (n+ 4, 4) | 4.

The positive divisors of 4 are 1, 2, and 4, so the only possibilities are 1, 2, and 4.
If n = 1, then (n+ 4, (n+ 2)2) = (5, 9) = 1.
If n = 2, then (n+ 4, (n+ 2)2) = (6, 16) = 2.
If n = 4, then (n+ 4, (n+ 2)2) = (8, 36) = 4.
Thus, all three possibilities do occur.

22. Let n be a positive integer, and let x be an integer. Suppose that n | 3x+ 1 and n | 6x2 + 2x+1. Prove
that n = 1.

I have

n | (6x2 + 2x+ 1)− (2x)(3x+ 1) = (6x2 + 2x+ 1)− (6x2 + 2x) = 1.

Since n is a positive integer, I must have n = 1.

23. Prove that if n ∈ Z
+ and n+ 1 | n2 + 1, then n = 1.

I have

n+ 1 | n2 + 1 = n2 + 2n+ 1− 2n = (n+ 1)2 − 2n = (n+ 1)2 − 2(n+ 1) + 2.

Since n+ 1 | (n+ 1)2 − 2(n+ 1), I must have n+ 1 | 2. Thus, n+ 1 = 1 (and n = 0) or n+ 1 = 2 (and
n = 1). Since n > 0, the first case is ruled out, so n = 1.

24. How many integers in the set {1, 2, 3, . . . , 5000} are divisible by either 3 or 7, but not by both?

{1, 2, 3, ..., 5000}

divisible by 7

divisible by
3 and 7

divisible by 3

There are

[

5000

3

]

= 1666 integers in {1, 2, 3, . . . , 5000} which are divisible by 3.

There are

[

5000

7

]

= 714 integers in {1, 2, 3, . . . , 5000} which are divisible by 7.

The integers divisible by both 3 and 7 are the integers divisible by 3 · 7 = 21. There are

[

5000

21

]

= 238

of those. These are counted twice: Among the integers divisible by 3, and among the integers divisible by 7.
Therefore, the number of integers in {1, 2, 3, . . . , 5000} which are divisible by either 3 or 7, but not by

both is

1666 + 714− 2 · 238 = 1904.
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25. How many integers in the set {1, 2, 3, . . . , 5000} are divisible by 3 but not 7?

{1, 2, 3, ..., 5000}

divisible by 7

divisible by 3

divisible by
3 and 7

There are

[

5000

3

]

= 1666 integers in {1, 2, 3, . . . , 5000} which are divisible by 3.

The integers divisible by both 3 and 7 are the integers divisible by 3 · 7 = 21. There are

[

5000

21

]

= 238

of those.
Therefore, the number of integers in {1, 2, 3, . . . , 5000} which are divisible by 3 but not by 7 is

1666− 238 = 1428.

26. Prove that if a, b, n ∈ Z and n divides both 3a+ 2b and 4a+ 3b, then n | a.

Since n | 3a+ 2b and n | 4a+ 3b, I have

n | 3(3a+ 2b)− 2(4a+ 3b) = a.

27. Suppose that m and n are integers, and you know that

am+ bn = 35 for some a, b ∈ Z.

What are the possible values of (m,n)? Why?

The greatest common divisor of two numbers divides each of the numbers. Therefore, (m,n) | m and
(m,n) | n. By divisibility properties, (m,n) divides any linear combination of m and n. Hence,

(m,n) | am+ bn = 35.

Thus, (m,n) is a positive integer that divides 35. The only positive integers that divide 35 are 1, 5, 7,
and 35. Thus, (m,n) must be one of these — but are all of these possible?

I can show that all of these values are possible by finding, for each case, specific values of a, b, m, and
n for which am+ bn = 35, and for which (m,n) is the desired number. I’ll do this by choosing m and n to
give the desired number first, then choosing a and b to get the linear combination to equal 35.

Take m = 1 and n = 1, so (m,n) = 1. Then taking a = 35 and b = 0, I also have am+ bn = 34+1 = 35.
Take m = 5 and n = 5, so (m,n) = 5. Then taking a = 7 and b = 0, I also have am+ bn = 35+0 = 35.
Take m = 7 and n = 7, so (m,n) = 7. Then taking a = 5 and b = 0, I also have am+ bn = 35+0 = 35.
Takem = 35 and n = 35, so (m,n) = 35. Then taking a = 1 and b = 0, I also have am+bn = 35+0 = 35.
Thus, if am+ bn = 35, then (m,n) is 1, 5, 7, or 35, and all four of these values are possible.
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28. Prove that if n is a positive integer of the form 4k + 3, then n must have a prime factor of that form.

By the Division Algorithm, every integer may be divided by 4 leaving a remainder of 0, 1, 2, or 3.
Therefore, every integer is equal to 4k, 4k + 1, 4k + 2, or 4k + 3 for some k.

Note also that an odd prime number can’t have the form 4k or 4k + 2: Numbers of these forms are
divisible by 2.

Consider n = 4k + 3. Factor n into a product of primes. 4k + 3 is odd, since it’s an even number (4k)
plus an odd number (3). So n must be a product of odd primes.

These odd primes are either of the form 4k + 1 or the form 4k + 3. Could all of them have the form
4k + 1?

Notice that the product of two numbers of the form 4k + 1 is a number of the form 4k + 1:

(4a+ 1)(4b+ 1) = 16ab+ 4a+ 4b+ 1 = 4(4ab+ a+ b) + 1.

If all the prime factors of n have the form 4k+1, then by induction n has the form 4k+1 as well. This
contradicts the fact that n = 4k + 3.

Therefore, at least one prime factor of n has the form 4k + 3, which is what I wanted to prove.

29. Prove that if n ≥ 1, then

1 · 21 + 2 · 22 + 3 · 23 + · · ·+ n · 2n = 2 + (n− 1)2n+1.

For n = 1, I have
1 · 21 = 1 and 2 + (1− 1)21+1 = 2.

The result holds for n = 1.
Suppose that the result is true for n:

1 · 21 + 2 · 22 + 3 · 23 + · · ·+ n · 2n = 2 + (n− 1)2n+1.

I must prove the result for n+ 1:

1 · 21 + 2 · 22 + 3 · 23 + · · ·+ n · 2n + (n+ 1) · 2n+1 = 2 + [(n+ 1)− 1]2(n+1)+1 = 2 + n · 2n+2.

I have

1 ·21+2 ·22+3 ·23+ · · ·+n ·2n+(n+1) ·2n+1 = 2+(n−1)2n+1+(n+1) ·2n+1 = 2+[(n−1)+(n+1)]2n+1 =

2 + 2n · 2n+1 = 2 + n · 2n+2.

Therefore, the result is true for all n ≥ 1 by induction.

30. Prove that if fn denotes the nth Fibonacci number (where f0 = 1 and f1 = 1), then

fn−1 + 2fn + fn+1 = fn+3 for n ≥ 1.

fn−1 + 2fn + fn+1 = fn−1 + fn + fn + fn+1

= fn+1 + fn+2

= fn+3

31. Let fn denote the nth Fibonacci number (where f0 = 1 and f1 = 1).

13



Prove that if n ≥ 1, then
[

1 1
1 0

]n+1

=

[

fn+1 fn
fn fn−1

]

.

For n = 1, I have
[

1 1
1 0

]2

=

[

2 1
1 1

]

and

[

f1+1 f1
f1 f1−1

]

=

[

2 1
1 1

]

.

Thus, the result is true for n = 1.
Assume that the result is true for n:

[

1 1
1 0

]n+1

=

[

fn+1 fn
fn fn−1

]

.

I must prove the result for n+ 1:
[

1 1
1 0

]n+2

=

[

fn+2 fn+1

fn+1 fn

]

.

I have
[

1 1
1 0

]n+2

=

[

1 1
1 0

] [

1 1
1 0

]n+1

=

[

1 1
1 0

] [

fn+1 fn
fn fn−1

]

=

[

fn+1 + fn fn + fn−1

fn+1 fn

]

=

[

fn+2 fn+1

fn+1 fn

]

.

To get the last equality, I used the Fibonacci formulas

fn + fn+1 = fn+2 and fn−1 + fn = fn+1.

Hence, the result is true for all n ≥ 1 by induction.

32. A sequence of integers is defined by
x0 = 5, x1 = 7,

xn = xn−1 + 20xn−2 for n ≥ 2.

Prove that
xn = 3 · 5n + 2 · (−4)n for n ≥ 0.

First,
3 · 50 + 2 · (−4)0 = 3 + 2 = 5 = x0.

3 · 51 + 2 · (−4)1 = 3 · 5 + 2 · (−4) = 7 = x1.

This establishes the result for n = 0 and n = 1.
Assume the result is true for all k < n:

xk = 3 · 5k + 2 · (−4)k for k < n.

I will prove the result for n. I have

xn = xn−1 + 20xn−2

= (3 · 5n−1 + 2 · (−4)n−1) + 20(3 · 5n−2 + 2 · (−4)n−2)

= (3 · 5n−1 + 60 · 5n−2) + (2 · (−4)n−1 + 40 · (−4)n−2)

= 3 · 5n−2(5 + 20) + 2 · (−4)n−2((−4) + 20)

= 3 · 5n−2 · 52 + 2 · (−4)n−2 · (−4)2

= 3 · 5n + 2 · (−4)n

14



This proves the result for n, so the result is true for all n ≥ 0 by induction.

33. Use induction to prove that n! > 3n for n ≥ 7.

For n = 7, n! = 7! = 5040, while 37 = 2187. The result is true for n = 7.
Let n > 7, and suppose the result is true for n:

n! > 3n.

Multiply both sides by n+ 1:
(n+ 1)! = (n+ 1) · n!

> (n+ 1) · 3n

> 3 · 3n

= 3n+1

For the second inequality, I used the fact that n > 7 implies n+ 1 > 8 > 3.
This proves the result for n+ 1, so by induction the result is true for all n ≥ 7.

34. Let n ∈ Z
+. Prove that

9 | 10n + 3 · 4n+2 + 5.

For n = 1,
10n + 3 · 4n+2 + 5 = 10 + 192 + 5 = 207.

Since 9 | 207, the result holds for n = 1.
Assume that the result holds for n:

9 | 10n + 3 · 4n+2 + 5.

Write this divisibility statement as an equation:

10n + 3 · 4n+2 + 5 = 9k, for k ∈ Z.

Then
10n = 9k − 3 · 4n+2 − 5.

The idea will be to substitute this into the (n+ 1)-expression, and simplify to get stuff divisible by 9.
I have

10n+1 + 3 · 4n+3 + 5 = 10 · 10n + 3 · 4n+3 + 5 = 10(9k − 3 · 4n+2 − 5) + 3 · 4n+3 + 5 =

90k − 30 · 4n+2 − 50 + 3 · 4n+3 + 5 = (90k − 45) + 3 · 4n+3 − 30 · 4n+2 = (90k − 45) + 3 · 4n+2(4 − 10) =

(90k − 45) + 3 · 4n+2(−6) = (90k − 45)− 18 · 4n+2 = 9(10k − 5− 2 · 4n+2).

The last expression is divisible by 9. Hence, the result is true for n+ 1, and therefore true for all n ≥ 1
by induction.

35. Let f(x) be a polynomial with integer coefficients, and let f ′(x) be the derivative. Prove that

f(x+ 3) = f(x) + 3f ′(x) (mod 9) .
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I’ll use induction on the degree of f .
Suppose f(x) = k, where k is constant. Then

f(x+ 3) = k, and f(x) + 3f ′(x) = k + 3 · 0 = k.

Therefore, the result is true for constant polynomials.
Let n > 0. Assume the result is true for polynomials of degree n, and let f(x) be a polynomial of degree

n+ 1:
f(x) = a0 + a1x+ · · ·+ anx

n + an+1x
n+1.

Then
f(x) = a0 + x(a1 + · · ·+ anx

n−1 + an+1x
n).

If I let g(x) = a1 + · · · + anx
n−1 + an+1x

n, then g(x) is a polynomial of degree n. By the induction
hypothesis,

g(x+ 3) = g(x) + 3g′(x) (mod 9) .

Now by the Product Rule,

f(x) = a0 + xg(x), so f ′(x) = xg′(x) + g(x).

Putting all this together,

f(x+ 3) = a0 + (x+ 3)g(x+ 3) = a0 + (x+ 3)(g(x) + 3g′(x)) = (a0 + xg(x)) + 3(g(x) + xg′(x)) + 9g′(x) =

f(x) + 3f ′(x) (mod 9) .

This completes the induction step, so the result is true for all polynomials, by induction.

36. Let x, y, and z be positive integers, and suppose the products xy, yz, and xz are all perfect cubes. Prove
that x, y, and z must be perfect cubes.

An integer is a perfect cube if and only if each prime in its prime factorization occurs to a power divisible
by 3. (Can you prove this?)

Let p be a prime factor of x, and suppose pa is the biggest power of p which divides x. I want to show
that a is divisible by 3.

Let pb be the biggest power of p which divides y, and let pc be the biggest power of p which divides z.
Then pa+b is the biggest power of p dividing xy, pb+cis the biggest power of p dividing yz, and pa+cis the
biggest power of p dividing xz. Since xy, yz, and xz are all perfect cubes,

3 | a+ b, 3 | b+ c, and 3 | a+ c.

Hence,
3 | (a+ c)− (b+ c) = a− b.

So
3 | (a+ b) + (a− b) = 2a.

But (3, 2) = 1, so 3 | a.
Since p was an arbitrary prime dividing x, every prime dividing x occurs to a power which is a multiple

of 3. Therefore, x is a perfect cube. By symmetry, the same is true of y and z.

37. Suppose that p, q, and r are distinct prime numbers,

x = pq2r4, y = paqb, and y | x.
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What are the possible values of y?

y | x means paqb | pq2r4, so a ≤ 1 and b ≤ 2. Thus, a = 0 or 1 and b = 0, 1, or 2. The possible values
of y are

1, p, q, pq, q2, pq2.

38. Suppose that the prime factorization of an integer n is

n = p31 · p62 · p53.

(p1, p2, and p3 are distinct primes.)

Write n as a product of integers n = ab, where a is a perfect square and b is square-free — that is, b
is not divisible by the square of any positive integer except 1.

n = p31 · p62 · p53 = (p1 · p32 · p23)2(p1p3).

(p1 · p32 · p23)2 is clearly a perfect square.

p1p3 can’t be divisible by a perfect square other than 12. To prove this, suppose that d2 | p1p3, where d
is a positive integer such that d2 6= 1. Then d 6= 1, so d > 1, and d must be divisible by some prime number
p by the Fundamental Theorem of Arithmetic. So p | d, and hence

p2 | d2 | p1p3.

Thus, p must be a prime factor of the number p1p3, and the power of p must be at least 2. But the
prime factorization of p1p3 is p1p3, and the distinct primes p1 and p3 both have power 1. This contradiction
shows that p1p3 is square-free.

39. Find the prime factorization of 15400 by trial division.

Divide 15400 by 2 as many times as possible:

15400

2
= 7700,

7700

2
= 3850,

3850

2
= 1925.

Divide 1925 by 5 as many times as possible:

1925

5
= 385,

385

5
= 77.

Finally, it’s clear that 77 = 7 · 11. So

15400 = 23 · 52 · 7 · 11.

40. Use Fermat factorization to factor 25877 into primes. (You should use Fermat factorization rather than
some other method, and you should show the trial values.)
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First,
√
25877 ≈ 160.863. So I will start my trials at 161.

k k2 − 25877

161 44

162 367

163 692

164 1019

165 1348

166 1679

167 2012

168 2347

169 2684

170 3023

171 3364 = 582

Therefore,
1712 − 25877 = 582

1712 − 582 = 25877

(171 + 58)(171− 58) = 25877

229 · 113 = 25877

You can check directly that 229 and 113 are prime, so this is the prime factorization.

41. Find the general solution to the Diophantine equation

6x+ 4y = 10.

Since (6, 4) = 2 | 10, there are solutions. By inspection, x0 = 1, y0 = 1 is a particular solution. The
general solution is

x = 1 + 2t, y = 1− 3t.

42. Find the general solution to the Diophantine equation

7x+ 23y = 18.

7 - 3

23 0 10

7 3 3

2 3 1

1 2 0

7 · 10 + 23 · (−3) = 1

7 · 180 + 23 · (−54) = 18

18



A particular solution is x = 180 and y = −54. The general solution is

x = 180 + 23t, y = −54− 7t.

43. Find the general solution to the Diophantine equation

6x− 9y + 15z = 21.

Since (6, 9, 15) = 3 | 21, there are solutions.
Note that (6, 9) = 3. So write the equation in the form

3

(

6

3
x− 9

3
y

)

+ 15z = 21.

Let

w =
6

3
x− 9

3
y = 2x− 3y.

Then
3w + 15z = 21.

(3, 15) = 3 | 21, so there are solutions. By inspection, w0 = 2, z0 = 1 is a particular solution. The
general solution is

w = 2 + 5s, z = 1− s.

Hence,
2x− 3y = w = 2 + 5s.

(2,−3) = 1 | 2 + 5s, so there are solutions. To find a particular solution, write (2,−3) as a linear
combination of 2 and −3:

2 · 2 + 1 · (−3) = 1.

Multiply by 2 + 5s:
2(2 + 5s) · 2 + (2 + 5s) · (−3) = 2 + 5s.

Hence, x0 = 2(2 + 5s), y0 = 2 + 5s is a particular solution. The general solution is

x = 2(2 + 5s)− 3t = 4 + 10s− 3t, y = 2 + 5s− 2t.

(Note: You might have expected the “−3t” and “−2t” terms to have opposite signs. The reason they
don’t is that the coefficients of the x and y terms in the original equation are “+” and “−”, instead of both
“+” as is often the case.)

All together, the solution to the original equation is

x = 4 + 10s− 3t, y = 2 + 5s− 2t, z = 1− s.

44. Bonzo buys some books that cost $7 each and some books that cost $15 each. The books cost a total of
$349. What is the largest total number of books Bonzo could have bought?

Let x be the number of $7 books and y be the number of $15 books. Then

7x+ 15y = 349.
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7 · (−2) + 15 · 1 = 1

7 · (−698) + 15 · 349 = 349

x = −698 and y = 349 is a particular solution. The general solution is

x = −698 + 15t, y = 349− 7t.

Since the numbers of books can’t be negative, I have x ≥ 0 and y ≥ 0.

x ≥ 0 gives − 698 + 15t ≥ 0, so t ≥ 698

15
≈ 46.53333 . . . .

y ≥ 0 gives 349− 7t ≥ 0, so t ≤ 349

7
≈ 49.85714 . . . .

The integer values of t satisfying both inequalities are t = 47, 48, 49.
The total number of books is

x+ y = (−698 + 15t) + (349− 7t) = −349 + 8t.

t x y x+ y

47 7 20 27

48 22 13 35

49 37 6 43

The largest total number of books is 43, consisting of 37 7-dollar books 6 15-dollar books.

45. I. M. Snarky buys 43 apples and oranges. The apples cost 10 cents more than the oranges, and he spends
a total of $30.68. Find the number of each fruit that he bought and their prices.

I will do everything in cents.
Let x be the number of apples, and let y be the number of oranges. Then

x+ y = 43, so y = 43− x.

Suppose the oranges cost c cents each. Then the apples cost c + 10 cents each. The total cost of the
fruit is

3068 = x(c+ 10) + (43− x)c = 10x+ 43c.

By trial and error or the Extended Euclidean Algorithm, I have

1 = 10 · 13 + 43 · (−3)

3068 = 10 · 39884 + 43 · (−9204)

Thus, a particular solution is x = 39884 and c = −9204, and the general solution is

x = 39884− 43t

c = −9204 + 10t

Now x > 0, so
39884− 43t > 0

39884 > 43t

39884

43
> t
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Since
39884

43
≈ 927.53488, I have t ≤ 927.

Also, c > 0, so
−9204 + 10t > 0

10t > 9204

t >
9204

10

Thus, t > 920.4, so t ≥ 921.
All together, I find that t is an integer and 921 ≤ t ≤ 927. I check the values:

t x = 39884− 43t y = 43− s c = −9204 + 10t

921 281 −238 6

922 238 −195 16

923 195 −152 26

924 152 −109 36

925 109 −66 46

926 66 −23 56

927 23 20 66

He bought 23 apples and 20 oranges. The apples cost 76 cents each, and the oranges cost 66 cents each.

46. Solve the following Diophantine equation by factoring:

x2 = 7 + 4y2.

Rewrite the equation:
x2 = 7 + 4y2

x2 − 4y2 = 7

(x+ 2y)(x− 2y) = 7

7 may be factored into the product of two integers in 4 ways. I’ll take cases.

Case 1: x+ 2y = 1 and x− 2y = 7.

Subtracting the equations gives 4y = −6, which has no integer solutions.

Case 2: x+ 2y = 7 and x− 2y = 1.

Subtracting the equations gives 4y = 6, which has no integer solutions.

Case 3: x+ 2y = −1 and x− 2y = −7.

Subtracting the equations gives 4y = 6, which has no integer solutions.

Case 4: x+ 2y = −7 and x− 2y = −1.

Subtracting the equations gives 4y = −6, which has no integer solutions.

Therefore, the original Diophantine equation has no solutions.
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47. Is 4 · 31000 + 71000 prime?

Note that
34 = 81 = 1 (mod 10) and 74 = 2401 = 1 (mod 10) .

So
4 · 31000 + 71000 = 4 · (34)2500 + (74)2500 = 4 · 12500 + 12500 = 4 + 1 = 5 (mod 10) .

This means that the units digit of 4 · 31000 + 71000 is 5. Since 4 · 31000 + 71000 is obivously greater than
5, it’s not prime because it’s divisible by 5.

48. Find 52−1 (mod 77).

Use the Extended Euclidean algorithm:

77 - 37

52 1 25

25 2 12

2 12 1

1 2 0

25 · 77 + (−37) · 52 = 1

(−37) · 52 = 1 (mod 77)

40 · 52 = 1 (mod 77)

Hence, 52−1 = 40 (mod 77).

49. Suppose that (m,n) = 1. Prove that if a = b (mod m) and a = b (mod n), then a = b (mod mn).

Since (m,n) = 1, I have
cm+ dn = 1 for c, d ∈ Z.

Likewise, since a = b (mod m) and a = b (mod n), I have

a− b = jm and a− b = kn for j, k ∈ Z.

Then
cm+ dn = 1

cm(a− b) + dn(a− b) = a− b

cmkn+ dnjm = a− b

mn(ck + dj) = a− b

Thus, mn | a− b, so a = b (mod mn).

50. Prove that if n ∈ Z, then n3 + 4n+ 2 is not divisible by 5.

If n ∈ Z, then n = 0, 1, 2, 3, 4 (mod 5). Contruct a table:

n (mod 5) 0 1 2 3 4

n3 + 4n+ 2 (mod 5) 2 2 3 1 2
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In every case, n3 + 4n+ 2 6= 0 (mod 5). Hence, if n ∈ Z, then n3 + 4n+ 2 is not divisible by 5.

51. (a) Construct a table for multiplication mod 8.

(b) What is the multiplicative inverse of 5 mod 8?

(b)

· 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

(b) Since 5 · 5 = 1 (mod 8), the multiplicative inverse of 5 mod 8 is 5.

52. Prove by contradiction that 15 does not have a multiplicative inverse mod 42.

Suppose 15x = 1 (mod 42). I notice that (15, 42) = 3, and 3 · 14 = 42. Multiply the equation by 14 and
simplify:

14 · 15x = 14 · 1 (mod 42)

210x = 14 (mod 42)

0 = 14 (mod 42)

This contradiction proves that 15 does not have a multiplicative inverse mod 42.

53. Prove that if n is a positive integer, then

7n = 6n+ 1 (mod 36) .

Method 1. Write 7n = (6 + 1)n and expand the right side using the Binomial Formula:

7n = 6n +

(

n

1

)

6n−1 + · · ·+
(

n

n− 2

)

62 +

(

n

n− 1

)

6 + 1.

All of the terms except the last two are divisible by 62 = 36. Therefore,

7n =

(

n

n− 1

)

6 + 1 = 6n+ 1 (mod 36) .

Method 2. I’ll use induction. For n = 1,

71 = 7 and 6 · 1 + 1 = 7.

So the two sides are equal (so they’re equal mod 36).
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Assume the result is true for n:
7n = 6n+ 1 (mod 36) .

I’ll prove it for n+ 1:
7n+1 = 7 · 7n (mod 36)

= 7(6n+ 1) (mod 36)

= 42n+ 7 (mod 36)

= 6n+ 7 (mod 36)

= 6(n+ 1) + 1 (mod 36)

This proves the result for n+ 1, so it’s true for all n ≥ 1, by induction.

54. By constructing a table, show that x2+3x+2 = 0 (mod 6) has 4 solutions mod 6. (Note that quadratics
“usually” have at most two roots!)

x 0 1 2 3 4 5

x2 + 3x+ 2 (mod 6) 2 0 0 2 0 0

The solutions mod 6 are x = 1, x = 2, x = 4, and x = 5.

55. (a) Prove that the sum of the cubes of two integers does not leave a remainder of 4 when the sum is
divided by 7.

(b) Prove that the Diophantine equation x3 + y3 = 4 has no solutions.

(a) Make a table of cubes mod 7:

n (mod 7) 0 1 2 3 4 5 6

n3 (mod 7) 0 1 1 6 1 6 6

The possible values of n3 (mod 7) are 0, 1, and 6. There is no way to make 4 as the sum of two of
these numbers. Hence, if m,n ∈ Z, then m3 + n3 6= 4 (mod 7). This means that the sum of the cubes of
two integers does not leave a remainder of 4 when the sum is divided by 7.

(b) If x3 + y3 = 4 for x, y ∈ Z, then x3 + y3 = 4 (mod 7). But part (a) shows that x3 + y3 = 4 (mod 7) has
no solutions. Hence, the Diophantine equation x3 + y3 = 4 has no solutions.

Note: This method can sometimes be used to show that a Diophantine equation has no solutions. One
problem here is to choose a good modulus. For instance, it would not help to reduce x3 + y3 = 4 mod 2,
since x3 + y3 = 4 = 0 (mod 2) does have solutions.

When a dog runs at you, whistle for him. - Henry David Thoreau
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