
Math 393
10-11-2020

Review Sheet for Test 2

These problems are provided to help you study. The presence of a problem on this handout does not
imply that there will be a similar problem on the test. And the absence of a topic does not imply that it
won’t appear on the test.

1. Solve the congruence
6x+ 7 = 4 (mod 13) .

2. Solve the congruence
6x+ 15y = 12 (mod 9) .

3. Find all solutions to the congruence

x120 + 31x = 3 (mod 61) .

4. Solve the system of congruences:
x = 3 (mod 8)

x = 4 (mod 5)

x = 6 (mod 7)

5. Find the smallest integer which leaves a remainder of 11 when divided by 13, leaves a remainder of 5
when divided by 8, and leaves a remainder of 7 when divided by 9.

6. Solve the system of congruences
x = 3 (mod 12)

x = 15 (mod 18)

(Note that the moduli aren’t relatively prime, so you can’t use the method of the Chinese Remainder
Theorem proof. Solve directly using algebra instead.)

7. (a) Solve the congruence
12x = 14 (mod 9) .

(b) Solve the congruence
12x = 28 (mod 10) .

(c) Solve the congruence
3x+ 7y = 9 (mod 11) .

8. Consider the system of congruences

4x + 2y = 3 (mod 7)
x + 3y = 1 (mod 7)

.

Solve the system by:

(a) Using ordinary algebra.

(b) Inverting the coefficient matrix.

(c) Using Cramer’s Rule.
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9. Find the least positive residue of 171219 mod 13.

10. How many zeros does the decimal expansion of 400! end in?

11. Reduce 1016425 (mod 47) to a number in the range {0, 1, . . . , 46}.

12. Reduce 68174 (mod 89) to a number in the range {0, 1, . . .88}.

13. What is the remainder when 104! is divided by 107?

14. Reduce 106! (mod 11663) to a number in the range {0, 1, . . . , 11662}. (Note: 11663 = 107 · 109, and 107
and 109 are prime.)

15. Simplify
96!

52
(mod 97) to a number in the range {0, 1, . . . , 96}.

16. For what prime numbers p does p divide 2p + 1?

17. Solve x38 − 3x19 + 2 = 0 (mod 19).

18. (a) By making a table, find all solutions to

x4 + 19x+ 12 = 0 (mod 11) .

(b) For each solution you found in (a), generate a solution to

x4 + 19x+ 12 = 0 (mod 121) .

(Alternatively, show that this is not possible.)

19. Compute φ(23 · 32 · 5).

20. Suppose φ(n) = n− 1. How many positive factors does n have?

21. Suppose that (n, 108) = 1. Prove that n36 = 1 (mod 108).

22. Reduce 1071002 (mod 100) to a number in the range {0, 1, . . . , 99}.

23. Prove that if (n, 72) = 1, then n12 = 1 (mod 72).

24. Find the last three digits (units, tens, and hundreds) of 1740003.

25. Compute φ(96), µ(105), σ(108), and τ(1000).

26. What positive integers have exactly three positive divisors?

27. Suppose that φ(m) = 32n, where n is an odd number. Prove that m has no more than 5 different odd
prime divisors.

28. Suppose that φ(n) = 28.

(a) Show that if p is a prime and p ≥ 31, then p 6 |n.

(b) Show that the largest power of 3 that can divide n is 31.

(c) Show that 7 6 |n.

29. Let n be the square of an odd integer. Prove that σ(n) is odd.

30. Find all positive integers n such that σ(n) = n+ 7.

31. For what integers n ≥ 1 is τ(n) an odd number?
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32. Let p be prime. Show that
φ(p) · σ(p) + 1

p
= p.

33. Give a set of infinitely many integers n such that 18 | φ(n).

34. Prove that if φ(n) | n− 1, then n is square-free — that is, there is no prime p such that p2 | n.

35. Find all positive integers n satisfying 7 | n and φ(n) = 18.

36. In each case, if the function is multiplicative, prove it; if it is not, give a specific counterexample.

(a) f : Z+ → R given by
f(x) = x+ 1.

(b) g : Z+ → R given by
g(x) =

√
x.

37. Let Df denote the divisor sum of the arithmetic function f . Suppose f(x) = x2. Compute (Df)(10).

38. Find (236 − 1, 242 − 1).

39. Find a proper factor of 229 − 1.

Solutions to the Review Sheet for Test 2

1. Solve the congruence
6x+ 7 = 4 (mod 13) .

Add 6 to both sides (using the fact that 7 + 6 = 0 (mod 13):

6x = 10 (mod 13) .

I want a reciprocal of 6 mod 13. Note that (6, 13) = 1. Express (6, 13) as a linear combination of 6 and
13:

13 - 2

6 2 1

1 6 0

Thus,
1 · 13 + (−2) · 6 = 1, so (−2) · 6 = 1 (mod 13) .

Now −2 = 11 (mod 13), so 11 is the reciprocal of 6 mod 13. Multiply both sides of the equation by 11,
and reduce the right side:

x = 110 = 6 (mod 13) .

2. Solve the congruence
6x+ 15y = 12 (mod 9) .

Determine the parameter ranges which give the correct number of solutions mod 9.

Since (6, 15, 9) = 3 | 12, there are 3 · 9 = 27 solutions mod 9.

3



Rewrite the equation as a Diophantine equation:

6x+ 15y + 9z = 12, 2x+ 5y + 3z = 4.

Set w = 2x+ 5y, so
w + 3z = 4.

w0 = 1, z0 = 1 is a particular solution. The general solution is

w = 3s+ 1, z = −s+ 1.

Now
3s+ 1 = w = 2x+ 5y.

x0 = −s − 2, y0 = s + 1 is a particular solution. (I juggled the numbers: 2 · (−s) + 5 · s = 3s and
2 · (−2)+5 ·1 = 1. The point is that you can do the s-part and the number part independently.) The general
solution is

x = 5t− s− 2, y = −2t+ s+ 1.

Taking everything mod 9,

x = 5t+ 8s+ 7 (mod 9) , y = 7t+ s+ 1 (mod 9) .

Note: It turns out that s = 0, 1, 2 and t = 0, 1, . . . , 8 will give 27 independent solutions.

s t x y

0 0 7 1

0 1 3 8

0 2 8 6

0 3 4 4

0 4 0 2

0 5 5 0

0 6 1 7

0 7 6 5

0 8 2 3

s t x y

1 0 6 2

1 1 2 0

1 2 7 7

1 3 3 5

1 4 8 3

1 5 4 1

1 6 0 8

1 7 5 6

1 8 1 4

s t x y

2 0 5 3

2 1 1 1

2 2 6 8

2 3 2 6

2 4 7 4

2 5 3 2

2 6 8 0

2 7 4 7

2 8 0 5

There are indeed 27 distinct solutions mod 9, so those are all the solutions.

3. Find all solutions to the congruence

x120 + 31x = 3 (mod 61) .

If 61 | x, then x = 0 (mod 61), so x120 + 31x = 0 6= 3 (mod 61). This does not give a solution.
Suppose that 61 6 |x. By Fermat’s Theorem, x60 = 1 (mod 61), so x120 = (x60)2 = 1 (mod 61). The

equation becomes
1 + 31x = 3 (mod 61)

31x = 2 (mod 61)

2 · 31x = 2 · 2 (mod 61)

x = 4 (mod 61)
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The solution is x = 4 (mod 61).

4. Solve the system of congruences:
x = 3 (mod 8)

x = 4 (mod 5)

x = 6 (mod 7)

The moduli 8, 5, and 7 are pairwise relatively prime, so there is a unique solution mod 8 · 5 · 7 = 280,
by the Chinese Remainder Theorem.

You can solve the system using the formulas given in the proof of the Chinese Remainder Theorem, or
you can solve the congruences iteratively, using basic algebra and modular arithmetic. I’ll take the second
approach, but the first approach is fine (provided that you can recall the formulas exactly).

First, x = 3 (mod 8) means that
x = 3 + 8s.

Substitute this in the second equation:

3 + 8s = 4 (mod 5)

3s = 1 (mod 5)

2 · 3s = 2 · 1 (mod 5)

s = 2 (mod 5)

s = 2 (mod 5) means that s = 2 + 5t, so

x = 3 + 8(2 + 5t) = 19 + 40t.

Substitute this in the third equation:

19 + 40t = 6 (mod 7)

5t = −13 = 1 (mod 7)

3 · 5t = 3 · 1 (mod 7)

t = 3 (mod 7)

t = 3 (mod 7) means that t = 3 + 7u, so

x = 19 + 40(3 + 7u) = 139 + 280u, or x = 139 (mod 280) .

5. Find the smallest integer which leaves a remainder of 11 when divided by 13, leaves a remainder of 5
when divided by 8, and leaves a remainder of 7 when divided by 9.

The conditions in the problem are equivalent to the system of congruences

x = 11 (mod 13)

x = 5 (mod 8)

x = 7 (mod 9)

x = 11 (mod 13) gives x = 11 + 13a. Plugging this into the second congruence gives

11 + 13a = 5 (mod 8)

13a = −6 = 2 (mod 8)

5a = 2 (mod 8)

5 · 5a = 5 · 2 (mod 8)

a = 10 = 2 (mod 8)
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The last congruence gives a = 2 + 8b. Plugging this into x = 11 + 13a, I get

x = 11 + 13(2 + 8b) = 37 + 104b.

Substituting this into the third congruence yields

37 + 104b = 7 (mod 9)

104b = −30 = 6 (mod 9)

5b = 6 (mod 9)

2 · 5b = 2 · 6 (mod 9)

b = 12 = 3 (mod 9)

The last congruence gives b = 3 + 9c. Plugging this into x = 37 + 104b, I get

x = 37 + 104(3 + 9c) = 349 + 936c, or x = 349 (mod 936) .

6. Solve the system of congruences
x = 3 (mod 12)

x = 15 (mod 18)

Since (12, 18) = 6 | 15− 3, the system has solutions. Since the moduli are not relatively prime, I can’t
use the formulas in the Chinese Remainder Theorem. Instead, I’ll use the algebraic approach.

x = 3 (mod 12) gives x = 3 + 12a. Plugging this into the second congruence, I get

3 + 12a = 15 (mod 18)

12a = 12 (mod 18)

I want to divide the 12’s by 12. To do this, I must divide the modulus 18 by (12, 18) = 6. I get

a = 1 (mod 3) , so a = 1 + 3b.

Plugging this into x = 3+ 12a, I get

x = 3 + 12(1 + 3b) = 15 + 36b, or x = 15 (mod 36) .

7. (a) Solve the congruence
12x = 14 (mod 9) .

(b) Solve the congruence
12x = 28 (mod 10) .

(c) Solve the congruence
3x+ 7y = 9 (mod 11) .

(a) Since (12, 9) = 3 6 | 14, the congruence has no solutions.

(b) Since (12, 10) = 2 | 28, there are solutions. The congruence can be written as

4(3x) = 4(7) (mod 10) .
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If I cancel the common factor of 4, I must divide the modulus by (4, 10) = 2. This gives

3x = 7 (mod 5) , or 3x = 2 (mod 5) .

Since 3−1 = 2 (mod 5), multiplying by 2 yields

x = 4 (mod 5) .

The original congruence was mod 10. The numbers in the set 0, 1, . . . 9 which satisfy x = 4 (mod 5)
are 4 and 9. Therefore, the solution is x = 4 (mod 10) or x = 9 (mod 10).

(c) One approach is to convert the congruence to a Diophantine equation. But since the modulus is prime,
it’s easier to regard the congruence as a system of congruences mod 11 which happens to have only one
equation! I’ll row reduce the augmented matrix to row-reduced echelon form:

[ 3 7 9 ]
→

r1 → 4r1
[ 1 6 3 ]

(I multiplied by 4 because 4 = 3−1 (mod 11).) The last matrix says

x+ 6y = 3 (mod 11) , or x = 5y + 3 (mod 11) .

Set y = s (mod 11). Then x = 5s+ 3 (mod 11). The solution is

x = 5s+ 3 (mod 11) , y = s (mod 11) .

8. Consider the system of congruences

4x + 2y = 3 (mod 7)
x + 3y = 1 (mod 7)

.

Solve the system by:

(a) Using ordinary algebra.

(b) Inverting the coefficient matrix.

(c) Using Cramer’s Rule.

(a) Multiply the second equation by 4 and subtract it from the first equation to eliminate x:

4x+ 2y = 3 (mod 7)

4x+ 5y = 4 (mod 7)

−3y = −1 (mod 7)

(−5)(−3y) = (−5)(−1) (mod 7)

y = 5 (mod 7)

Substitute this into x+ 3y = 1 (mod 7) and solve for x:

x+ 15 = 1 (mod 7)

x+ 1 = 1 (mod 7)

x = 0 (mod 7)
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(b) The matrix form is
[

4 2
1 3

] [

x

y

]

=

[

3
1

]

.

To solve the system by inverting the coeffient matrix, multiply both sides by the inverse of the coefficient
matrix:

[

4 2
1 3

]−1 [
4 2
1 3

] [

x

y

]

=

[

4 2
1 3

]−1 [
3
1

]

= 3−1 ·
[

3 5
6 4

] [

3
1

]

=

5 ·
[

3 5
6 4

] [

3
1

]

=

[

0
5

]

.

The solution is x = 0 (mod 7) and y = 5 (mod 7).

(c) The matrix form is
[

4 2
1 3

] [

x

y

]

=

[

3
1

]

.

I have

det

[

4 2
1 3

]

= (4)(3)− (1)(2) = 10 = 3 (mod 7) ,

det

[

3 2
1 3

]

= (3)(3)− (1)(2) = 7 = 0 (mod 7) ,

det

[

4 3
1 1

]

= (4)(1)− (3)(1) = 1 (mod 7) .

Notice that in the second and third determinants, I replaced the first and second columns, respectively,

of the coefficient matrix by the constant matrix

[

3
1

]

.

Note that 3−1 = 5 (mod 7). So by Cramer’s Rule,

x = 5 · 0 = 0 (mod 7) and y = 5 · 1 = 5 (mod 7) .

9. Find the least positive residue of 171219 mod 13.

First, 171 = 2 (mod 13), so 171219 = 2219 (mod 13).
Since 13 6 | 2, Fermat’s Theorem gives 212 = 1 (mod 13). Since 219 = 12 · 18 + 3, I have

2219 = (212)18 · 23 = 1 · 8 = 8 (mod 13) .

That is, 171219 = 8 (mod 13).

10. How many zeros does the decimal expansion of 400! end in?

The number of zeros that the decimal expansion of 400! ends in is equal to the number of factors of 10
which divide 400!.

Since 10 = 2 · 5 and since 5 is greater than 2, the number of factors of 10 which divide 400! is equal to
the number of factors of 5 which divide 400!. Now 400! is the product of the numbers in {1, 2, 3, . . . , 400}.
Factors of 5 come from three kinds of numbers in this set:

(a) Numbers divisible by 5 but not 25 contribute 1 factor of 5.

(b) Numbers divisible by 25 by not 125 contribute 2 factors of 5.
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(c) Numbers divisible by 125 contribute 3 factors of 5.

(There are no numbers in the set divisible by the next power of 5, which is 625.)

The number of numbers in the set divisible by 5 is

[

400

5

]

= 80.

The numbers divisible by 25 contribute 2 factors of 5, but one of the contributions was counted when I

counted the numbers divisible by 5. So I just count them once: There are

[

400

25

]

= 16.

Likewise, the numbers divisible by 125 contribute 3 factors of 5, but one of the contributions was counted
when I counted the numbers divisible by 5, and another when I counted the numbers divisible by 25. So I

just count them once: There are

[

400

125

]

= 3.

Hence, the total number of factors of 5, and the number of zeros in the decimal expansion, is 80+16+3 =
99.

11. Reduce 1016425 (mod 47) to a number in the range {0, 1, . . . , 46}.

Since 47 is prime and 47 6 | 10, 1046 = 1 (mod 47) by Fermat’s theorem. Now

16425 = 46 · 357 + 3.

Hence,
1016425 = (1046)357 · 103 = 1000 = 13 (mod 47) .

12. Reduce 68174 (mod 89) to a number in the range {0, 1, . . .88}.

89 is prime, and 89 6 | 68. By Fermat’s theorem,

6888 = 1 (mod 89) .

Hence,
x = 68174 (mod 89)

x = 6888 · 6886 (mod 89)

x = 6886 (mod 89)

682 · x = 6888 (mod 89)

4624x = 1 (mod 89)

85x = 1 (mod 89)

By the Extended Euclidean algorithm, 85−1 = 22 (mod 89). So

22 · 85x = 22 · 1 (mod 89)

x = 22 (mod 89)

13. What is the remainder when 104! is divided by 107?

Note that 107 is prime. By Wilson’s theorem,

−1 = 106! = 106 · 105 · 104! = (−1) · (−2) · 104! = 2 · 104! (mod 107) .

Since 54 · 2 = 108 = 1 (mod 107),

54 · (−1) = (54 · 2) · 104! = 104! (mod 107) .
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Therefore,
104! = −54 = 53 (mod 107) .

104! leaves a remainder of 53 when it’s divided by 107.

14. Reduce 106! (mod 11663) to a number in the range {0, 1, . . . , 11662}.

Let x = 106!. Then
x = 106! = −1 (mod 107) .

Next,
x = 106! (mod 109)

107 · 108 · x = 107 · 108 · 106! (mod 109)

(−2)(−1)x = 108! (mod 109)

2x = −1 (mod 109)

55 · 2x = 55 · (−1) (mod 109)

x = −55 = 54 (mod 109)

Now x = −1 (mod 107) gives x = −1 + 107a. So

−1 + 107a = 54 (mod 109)

107a = 55 (mod 109)

−2a = 55 (mod 109)

(−55) · (−2a) = (−55) · 55 (mod 109)

a = −3025 = 27 (mod 109)

a = 27 + 109b

So
x = −1 + 107(27 + 109b) = 2888 + 11663b

x = 2888 (mod 11663)

15. Simplify
96!

52
(mod 97) to a number in the range {0, 1, . . . , 96}.

By Wilson’s theorem, 96! = −1 (mod 97). So

x =
96!

52
(mod 97)

52x = 96! = −1 (mod 97)

97 - 28

52 1 15

45 1 13

7 6 2

3 2 1

1 3 0

1 = (52, 97) = 28 · 52 + (−15) · 97.
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It follows that 52−1 = 28 (mod 97), so

28 · 52x = 28 · (−1) (mod 97)

x = −28 = 69 (mod 97)

16. For what prime numbers p does p divide 2p + 1?

Suppose p | 2p + 1, i.e. 2p + 1 = 0 (mod p).
2 6 | 22 + 1, so p = 2 doesn’t work.
Assume then that p is an odd prime. By Fermat’s theorem, 2p = 2 (mod p), so

2p + 1 = 2 + 1 = 0 (mod p) , or 3 = 0 (mod p) .

This means that p | 3. The only odd prime which divides 3 is p = 3. Since 3 | 23 + 1, 3 works, and it’s
the only prime that works.

17. Solve x38 − 3x19 + 2 = 0 (mod 19).

Note that 19 is prime. By Fermat’s theorem, x19 = x (mod 19) for any x. Therefore, x38 = (x19)2 =
x2 (mod 19), and the equation becomes

x2 − 3x+ 2 = 0 (mod 19) .

This gives (x − 1)(x− 2) = 0 (mod 19). Since 19 is prime, the only solutions are x = 1 (mod 19) and
x = 2 (mod 19).

18. (a) By making a table, find all solutions to

x4 + 19x+ 12 = 0 (mod 11) .

(b) For each solution you found in (a), generate a solution to

x4 + 19x+ 12 = 0 (mod 121) .

(Alternatively, show that this is not possible.)

(a)

x (mod 11) 0 1 2 3 4 5

x4 + 19x+ 12 (mod 11) 1 10 0 7 3 6

x (mod 11) 6 7 8 9 10

x4 + 19x+ 12 (mod 11) 3 5 3 1 5

The solution is x = 2.

(b) Let f(x) = x4 + 19x+ 12, so f ′(x) = 4x3 + 19. Then

f(2) = 66 and f ′(2) = 51.

Note that 11 6 | 51. I have
51−1 = 7−1 = 8 (mod 11) .
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Let

t = −f ′(2)−1 · f(2)
11

= −8 · 66
11

= −48 = 7 (mod 11) .

Then
2 + 11 · t = 79.

This is a solution to x4 + 19x+ 12 = 0 (mod 121).

19. Compute φ(23 · 32 · 5).

φ(23 · 32 · 5) = (23 · 32 · 5)
(

1− 1

2

)(

1− 1

3

)(

1− 1

5

)

= 96.

20. Suppose φ(n) = n− 1. How many positive factors does n have?

Since φ(n) = n− 1, it follows that n is prime. Hence, it has 2 positive factors, namely 1 and n.

21. Suppose that (n, 108) = 1. Prove that n36 = 1 (mod 108).

Note that

φ(108) = 108

(

1− 1

2

)(

1− 1

3

)

= 36.

By Euler’s Theorem, n36 = 1 (mod 108).

22. Reduce 1071002 (mod 100) to a number in the range {0, 1, . . . , 99}.

φ(100) = 100

(

1− 1

2

)(

1− 1

5

)

= 40.

Since (100, 107) = 1, Euler’s theorem implies that 10740 = 1 (mod 100). Now

1002 = 40 · 25 + 2.

Hence,
1071002 = (10740)25 · 1072 = 11449 = 49 (mod 100) .

23. Prove that if (n, 72) = 1, then n12 = 1 (mod 72).

Note that

φ(72) = 72

(

1− 1

2

)(

1− 1

3

)

= 24.

So applying Euler’s theorem directly gives n24 = 1 (mod 72), which is not what I want.
Instead, I’ll use the fact that if a = b (mod m) and a = b (mod n) and (m,n) = 1, then a = b (mod mn).

Write 72 = 8 · 9. Since (n, 72) = 1, I also have (n, 8) = 1 and (n, 9) = 1.
I have

φ(8) = 8− 4 = 4.
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By Euler’s theorem,
n4 = 1 (mod 8)

(n4)3 = 13 (mod 8)

n12 = 1 (mod 8)

I have
φ(9) = 9− 3 = 6.

By Euler’s theorem,
n6 = 1 (mod 9)

(n6)2 = 12 (mod 9)

n12 = 1 (mod 9)

Since n12 = 1 (mod 8) and n12 = 1 (mod 9), the result I cited above shows that n12 = 1 (mod 72).

24. Find the last three digits (units, tens, and hundreds) of 1740003.

I need to find 1740003 (mod 1000). Note that

φ(1000) = 1000

(

1− 1

2

)(

1− 1

5

)

= 400.

Since (17, 1000) = 1, by Euler’s Theorem,

17400 = 1 (mod 1000) .

Hence,
1740003 = (17400)100 · 173 = 4913 = 913 (mod 1000) .

The last three digits are 913.

25. Compute φ(96), µ(105), σ(108), and τ(1000).

Since 96 = 25 · 3,
φ(96) = 96

(

1− 1

2

)(

1− 1

3

)

= 32.

Since 105 = 3 · 5 · 7, mu(105) = (−1)3 = −1.
Since 108 = 22 · 33,

σ(108) =

(

23 − 1

2− 1

)(

34 − 1

3− 1

)

= 280.

Since 1000 = 23 · 53,
τ(1000) = (3 + 1)(3 + 1) = 16.

26. What positive integers have exactly three positive divisors?

Suppose τ(n) = 3. Suppose the prime factorization of n is

n = pr11 pr22 · · · prkk .

Then
3 = τ(n) = (r1 + 1)(r2 + 1) · · · (rk + 1).
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This is only possible if k = 1 and r1 + 1 = 3. This gives r1 = 2. Therefore, n = p21.
Therefore, the positive integers which have exactly three positive divisors are squares of primes.

27. Suppose that φ(m) = 32n, where n is an odd number. Prove that m has no more than 5 different odd
prime divisors.

Suppose m = 2rpr11 pr22 · · · prkk , where the p’s are distinct odd primes and the r’s are greater than 0. Then

φ(m) = (2r − 2r−1)(pr11 − pr1−1
1 )(pr22 − pr2−1

2 ) · · · (prkk − prk−2
k ).

Now
prii − pri−1

i = pri−1
i (pi − 1).

Since pi is odd, pi− 1 is even. Thus, each odd prime divisor of m contributes a factor of 2 to φ(m). But
32 = 25 is the largest power of 2 which divides φ(m). Therefore, m can’t have more than 5 different odd
prime divisors.

28. Suppose that φ(n) = 28.

(a) Show that if p is a prime and p ≥ 31, then p 6 |n.

(b) Show that the largest power of 3 that can divide n is 31.

(c) Show that 7 6 |n.

(a) Suppose pr is the largest power of p which divides n, where r ≥ 1. Suppose also that p ≥ 31. Then

pr − pr−1 = pr−1(p− 1) | φ(n) = 28.

But p − 1 ≥ 30, so pr−1(p − 1) ≥ 30, and this is impossible. Hence, if p is a prime and p ≥ 31, then
p 6 |n.

(b) Suppose 3r is the largest power of 3 that divides n. Then

3r − 3r−1 = 3r−1(3 − 1) = 2 · 3r−1 | φ(n) = 28.

If r > 1, then 3 | 3r−1 | 28, which is a contradiction. Hence, r ≤ 1, and the largest power of 3 that can
divide n is 31.

(c) Suppose that 7r is the largest power of 7 that divides n. Then

7r − 7r−1 = 7r−1(7 − 1) = 6 · 7r−1 | φ(n) = 28.

This is a contradiction, since 6 6 | 28. Therefore, 7 6 |n.

29. Let n be the square of an odd integer. Prove that σ(n) is odd.

Let n = m2, where m is odd. Then n is odd, so the factors of n other than m occur in pairs a, b, where
ab = n, a 6= b, and a and b are odd. Hence, a+ b is even, and the sum of the factors of n other than m is a
sum of even numbers. Therefore,

σ(n) = (sum of evens) +m = (even) + (odd) = (odd).
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30. Find all positive integers n such that σ(n) = n+ 7.

Suppose σ(n) = n+ 7. I may assume n > 1, since σ(1) = 1 6= 1+ 7. Thus, 1 and n are distinct divisors
of n. Let d be the sum of the divisors of n other than 1 or n. Then

n+ 7 = σ(n) = 1 + n+ d, so d = 6.

If the largest divisor in d is 6, then n is divisible by 2 and 3 as well. This gives 6 = d ≥ 6+ 3+2, which
is a contradiction.

If the largest divisor in d is 5, then 6 = d = 5+ s, where s is the sum of the other terms in d. But then
s = 1, and 1 can’t be one of the divisors in d. This is a contradiction.

If the largest divisor in d is 4, then 2 is also a divisor of n. This is possible, since 6 = d = 2+ 4. In this
case, the divisors of n are 1, 2, 4, and n, so n = 8. This works, since σ(8) = 15 = 8 + 7.

If the largest divisor in d is 3, then 6 = d = 3 + s, where s is the sum of the other terms in d. But
then s = 3, for which the only possibilities are 3 and 1 + 2. The first is ruled out, because 3 was already
accounted for; the second is ruled out, because d does not include 1. Hence, this is a contradiction.

The largest divisor in d can’t be 2, because there is no way to write 6 as a sum of 2 and integers less
than 2 and bigger than 1.

Therefore, the only positive integer n such that σ(n) = n+ 7 is n = 8.

31. For what integers n ≥ 1 is τ(n) an odd number?

First, τ(1) = 1 is odd.
Factors of n come in pairs: n = a · b. Each such pair contributes two factors, provided that a 6= b. Hence,

then number of factors must be even, unless n = a2 for some a.
Thus, τ(n) is odd exactly when n is a perfect square.

32. Let p be prime. Show that
φ(p) · σ(p) + 1

p
= p.

φ(p) · σ(p) + 1 = (p− 1)(p+ 1) + 1

= p2 − 1 + 1

= p2

Hence,
φ(p) · σ(p) + 1

p
= p.

33. Give a set of infinitely many integers n such that 18 | φ(n).

If 19 | n, then 18 = 19− 1 | φ(n). Thus, all of the integers in the following set satisfy 18 | φ(n):

19, 38, 57, . . . , 19n, . . . .

34. Prove that if φ(n) | n− 1, then n is square-free — that is, there is no prime p such that p2 | n.

Suppose that φ(n) | n− 1, but p2 | n, where p is prime. Then

p | p2 − p | φ(n) | n− 1.

Since p | p2 | n as well, I have p | (n, n− 1).
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However,
(n, n− 1) = (n− (n− 1), n− 1) = (1, n− 1) = 1.

This is a contradiction. Hence, there is no prime p such that p2 | n.

35. Find all positive integers n satisfying 7 | n and φ(n) = 18.

Suppose that φ(n) = 18.
The formula for φ(n) in terms of the prime factorization of n implies that if p is prime and p | n, then

p− 1 | φ(n).
First, if p is prime and p > 19, then p − 1 > 18, so p − 1 6 |φ(n). Hence, p 6 |n. Thus, n can only be

divisible by primes from 2 through 19.
If 5 | n, then 4 = 5− 1 | φ(n), which is impossible for φ(n) = 18. Hence, 5 6 |n.
If 11 | n, then 10 = 11− 1 | φ(n), which is impossible for φ(n) = 18. Hence, 11 6 |n.
If 13 | n, then 12 = 13− 1 | φ(n), which is impossible for φ(n) = 18. Hence, 13 6 |n.
If 17 | n, then 16 = 17− 1 | φ(n), which is impossible for φ(n) = 18. Hence, 17 6 |n.
At this point, I may suppose that the prime factorization of n is

n = 2a · 3b · 7c · 19d.

In this expression, a, b, and d may be zero, but I know that c ≥ 1. So I have

18 = φ(n) = (2a − 2a−1)(3b − 3b−1)(7c − 7c−1)(19d − 19d−1) =

(2a − 2a−1)(3b − 3b−1)7c−1(7 − 1)(19d − 19d−1) = 6 · 7c−1(2a − 2a−1)(3b − 3b−1)(19d − 19d−1).

Hence,
3 = 7c−1(2a − 2a−1)(3b − 3b−1)(19d − 19d−1).

If c ≥ 2, then c− 1 ≥ 1, and 7 | 7c−1. This is impossible, since the left side is equal to 3. Hence, c = 1.
If d ≥ 1, then

19d − 19d−1 = 19d−1(19− 1) = 19d−1 · 18.
This is impossible, since the left side is equal to 3. Hence, d = 0.
Now I have

n = 2a · 3b · 7.
Consequently,

18 = φ(n) = (2a − 2a−1)(3b − 3b−1)(6), so 3 = (2a − 2a−1)(3b − 3b−1).

If b ≥ 1, then
3b − 3b−1 = 3b−1(3 − 1) = 3b−1 · 2.

This is impossible, since the left side of the previous equation is 3. Therefore, b = 0.
But now I have 3 = 2a − 2a−1, and no a ≥ 0 will make this true.
Having ruled out all possibilities, I conclude that there are no positive integers n satisfying 7 | n and

φ(n) = 18.

36. In each case, if the function is multiplicative, prove it; if it is not, give a specific counterexample.

(a) f : Z+ → R given by
f(x) = x+ 1.

(b) g : Z+ → R given by
g(x) =

√
x.
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(a) (4, 7) = 1, but

f(4 · 7) = f(28) = 28 + 1 = 29 while f(4) · f(7) = (4 + 1)(7 + 1) = 40.

Hence, f is not multiplicative.

(b)
g(xy) =

√
xy =

√
x · √y = g(x) · g(y).

Hence, g is multiplicative — in fact, completely multiplicative.

37. Let Df denote the divisor sum of the arithmetic function f . Suppose f(x) = x2. Compute (Df)(10).

(Df)(10) =
∑

d|10

f(d) = f(1) + f(2) + f(5) + f(10) = 12 + 22 + 52 + 102 = 130.

38. Find (236 − 1, 242 − 1).

If a and b are positive integers, then

(2a − 1, 2b − 1) = 2(a,b) − 1.

Thus,
(236 − 1, 242 − 1) = 2(36,42) − 1 = 26 − 1 = 63.

39. Find a proper factor of 229 − 1.

A prime factor of 229 − 1 = 536870911 must have the form 58k + 1.

k 58k + 1 Result

1 59 59 6 | 536870911
2 117 117 isn’t prime

3 175 175 isn’t prime

4 233 233 | 536870911

233 is a proper factor of 229 − 1.

Change is not made without inconvenience, even from worse to better. - Richard Hooker
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