Review Problems for Test 3

These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence of a topic does not imply that it won't appear on the test.

1. Find the decoding transformation for the affine transformation cipher

$$
C=15 P+7(\bmod 26)
$$

2. Find the decoding transformation for the digraphic cipher

$$
\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{cc}
7 & 5 \\
5 & 10
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right](\bmod 26)
$$

3. Calvin Butterball constructs the following digraphic cipher:

$$
\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{ll}
7 & 4 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right](\bmod 26)
$$

Show that this is a bad idea by finding two different plaintext blocks that give the same ciphertext block.
4. Find the decoding transformation for the exponential cipher

$$
C=P^{23}(\bmod 5003)
$$

5. Suppose that $n=80609$ is a product of two primes p and q, and that $\phi(n)=79920$. Without factoring n directly, find p and q.
6. (a) Use an RSA cipher with $n=4141=41 \cdot 101$ and exponent 27 to encipher the word OMELET.
(b) Find the decoding transformation for the cipher in part (a).
7. Find a solution to the following quadratic congruence.

$$
x^{2}=280(\bmod 529)
$$

(Note that $\left.529=23^{2}.\right)$
8. Solve $x^{2}=33(\bmod 527)$. [Note: $527=17 \cdot 31$.]
9. Find the quadratic residues mod 17.
10. Find the quadratic residues mod 18.
11. Compute the following Legendre symbols:
(a) $\left(\frac{71}{79}\right)$.
(b) $\left(\frac{72}{79}\right)$.
(c) $\left(\frac{564}{569}\right)$.
(d) $\left(\frac{5}{55 k+1}\right)$, if $55 k+1$ is prime.
(e) Compute $\left(\frac{8}{31}\right)$.
12. Determine whether $x^{2}=1220(\bmod 1301)$ has solutions. (Note: 1301 is prime.)
13. State the Law of Quadratic Reciprocity in terms of congruences, and in terms of Legendre symbols.
14. Show that if p is an odd prime and 2,3 , and 6 are distinct $\bmod p$, then at least one of 2,3 , or 6 is a quadratic residue $\bmod p$.
15. Use Gauss's lemma to determine whether $x^{2}=15(\bmod 17)$ has any solutions.
16. Compute the following Jacobi symbols.
(a) $\left(\frac{37}{297}\right)$.
(b) $\left(\frac{175}{213}\right)$.
17. Let p be an odd prime. Prove that

$$
\left(\frac{-2}{p}\right)= \begin{cases}1 & \text { if } p=8 k+1 \text { or } p=8 k+3 \\ -1 & \text { if } p=8 k+5 \text { or } p=8 k+7\end{cases}
$$

18. Convert $(7213)_{8}$ to base 10.
19. Convert 1808 to base 7.
20. Express 0.3 in base- 7 .
21. Express $(0.54242 \ldots)_{6}=(0.5 \overline{42})_{6}$ as a decimal fraction in lowest terms.
22. Let b be a positive integer greater than 3. Express $(0.3(b-1) 3(b-1) \ldots)_{b}=(0 . \overline{3(b-1)})_{b}$ as a rational function of b.
23. Let b be a positive integer greater than 3 . Find the base b expansion of $\frac{2 b^{2}+1}{b^{2}-1}$.
24. Find the finite continued fraction expansion for $\frac{983}{237}$.
25. Find the successive convergents and the exact value of the finite continued fraction $[3,1,4,1,1,6]$.
26. Suppose x is a positive integer. Find the exact value of

$$
1+\frac{1}{x+\frac{1}{x^{2}+\frac{1}{x^{3}}}}
$$

27. Use continued fractions to find an integer linear combination of 501 and 113 which is equal to 1 .

Solutions to the Review Problems for Test 3

1. Find the decoding transformation for the affine transformation cipher

$$
C=15 P+7(\bmod 26)
$$

26	-	7
15	1	4
11	1	3
4	2	1
3	1	1
1	3	0

$$
1=(-4)(26)+(7)(15), \quad \text { so } \quad 7=15^{-1}(\bmod 26)
$$

Therefore,

$$
\begin{aligned}
C & =15 P+7(\bmod 26) \\
C-7 & =15 P(\bmod 26) \\
C+19 & =15 P(\bmod 26) \\
7(C+19) & =P(\bmod 26) \\
7 C+3 & =P(\bmod 26)
\end{aligned}
$$

2. Find the decoding transformation for the digraphic cipher

$$
\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{cc}
7 & 5 \\
5 & 10
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right](\bmod 26) .
$$

Find the inverse of the matrix:

$$
\left[\begin{array}{cc}
7 & 5 \\
5 & 10
\end{array}\right]^{-1}=(7 \cdot 10-5 \cdot 5)^{-1}\left[\begin{array}{cc}
10 & -5 \\
-5 & 7
\end{array}\right]=45^{-1} \cdot\left[\begin{array}{cc}
10 & -5 \\
-5 & 7
\end{array}\right](\bmod 26)
$$

Use the Euclidean algorithm to compute $45^{-1}(\bmod 26)$:

45	-	19
26	1	11
19	1	8
7	2	3
5	1	2
2	2	1
1	2	0

Thus,

$$
(11)(45)+(-19)(26)=1, \quad \text { so } \quad(11)(45)=1(\bmod 26)
$$

Therefore, $45^{-1}=11(\bmod 26)$, and the inverse matrix is

$$
11 \cdot\left[\begin{array}{cc}
10 & -5 \\
-5 & 7
\end{array}\right]=\left[\begin{array}{cc}
110 & -55 \\
-55 & 77
\end{array}\right]=\left[\begin{array}{cc}
6 & 23 \\
23 & 25
\end{array}\right](\bmod 26)
$$

The decoding transformation is

$$
\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]=\left[\begin{array}{cc}
6 & 23 \\
23 & 25
\end{array}\right]\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right](\bmod 26) . \quad \square
$$

3. Calvin Butterball constructs the following digraphic cipher:

$$
\left[\begin{array}{l}
C_{1} \\
C_{2}
\end{array}\right]=\left[\begin{array}{ll}
7 & 4 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right](\bmod 26)
$$

Show that this is a bad idea by finding two different plaintext blocks that give the same ciphertext block.

The problem, of course, is that

$$
\left|\begin{array}{ll}
7 & 4 \\
2 & 3
\end{array}\right|=13 \quad \text { and } \quad(13,26)=13 \neq 1
$$

I want $P_{1}, P_{2}, P_{1}^{\prime}, P_{2}^{\prime}$, such that $\left(P_{1}, P_{2}\right) \neq\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$, but

$$
\left[\begin{array}{ll}
7 & 4 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]=\left[\begin{array}{ll}
7 & 4 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
P_{1}^{\prime} \\
P_{2}^{\prime}
\end{array}\right](\bmod 26)
$$

Moving all the terms to the left side and factoring, I have

$$
\left[\begin{array}{ll}
7 & 4 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
P_{1}-P_{1}^{\prime} \\
P_{2}-P_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right](\bmod 26) .
$$

I see that what I need is a nontrivial (i.e. nonzero) solution to the homogeneous system

$$
\left[\begin{array}{ll}
7 & 4 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right](\bmod 26)
$$

To do this, row reduce. To find out how to "divide" the first row by 7, use the Extended Euclidean Algorithm:

26	-	11
7	3	3
5	1	2
2	2	1
1	2	0

$1=(26,7)=26 \cdot 3+7 \cdot(-11)$
$1=7 \cdot(-11)(\bmod 26)$
$1=7 \cdot 15(\bmod 25)$
Thus,

$$
\left[\begin{array}{ll}
7 & 4 \\
2 & 3
\end{array}\right] \xrightarrow[r_{1} \rightarrow 15 r_{1}]{\rightarrow}\left[\begin{array}{ll}
1 & 8 \\
2 & 3
\end{array}\right] \stackrel{\rightarrow}{r_{2} \rightarrow r_{2}+24 r_{1}}\left[\begin{array}{cc}
1 & 8 \\
0 & 13
\end{array}\right](\bmod 26)
$$

I can't go any further, because 13 isn't invertible mod 26 .
These equations say

$$
\begin{aligned}
x+8 y & =0(\bmod 26) \\
13 y & =0(\bmod 26)
\end{aligned}
$$

I want a nonzero solution. So take $y=2$ to satisfy the second equation. (Any even number will work for y.) Plugging this into the first equation, I get

$$
x+16=0, \quad \text { or } \quad x=10 .
$$

Finally, recall that (x, y) represents $\left(P_{1}-P_{1}^{\prime}, P_{2}-P_{2}^{\prime}\right)$. So to get two different plaintexts that give the same ciphertext, set $\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$ to anything - say $(0,0)$ - and add $(10,2)$ to get $\left(P_{1}, P_{2}\right)=(10,2)$.

You can check that

$$
\left[\begin{array}{ll}
7 & 4 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right](\bmod 26) \quad \text { and } \quad\left[\begin{array}{ll}
7 & 4 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
P_{1}^{\prime} \\
P_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right](\bmod 26)
$$

Try setting $\left(P_{1}^{\prime}, P_{2}^{\prime}\right)=(1,5)$ (say), so $\left(P_{1}, P_{2}\right)=(10+1,5+2)=(11,7)$. You can verify for yourself that this choice of $\left(P_{1}, P_{2}\right)$ and $\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$ will work as well.
4. Find the decoding transformation for the exponential cipher

$$
C=P^{23}(\bmod 5003)
$$

I need to find $23^{-1}(\bmod 5002)$.

5002	-	435
23	217	2
11	2	1
1	11	0

$$
\begin{aligned}
435 \cdot 23-2 \cdot 5002 & =1 \\
435 \cdot 23 & =1(\bmod 5002)
\end{aligned}
$$

$23^{-1}=435(\bmod 5002)$, so the decoding transformation is

$$
P=C^{435}(\bmod 5003) .
$$

Note: The inverse must be converted to a positive number before being used as the exponent in the decoding transformation. For example, if the original exponent had been 19, then

$$
19^{-1}=-1053=3949(\bmod 5002)
$$

The decoding transformation would then be $P=C^{3949}(\bmod 5003)$.
5. Suppose that $n=80609$ is a product of two primes p and q, and that $\phi(n)=79920$. Without factoring n directly, find p and q.

I have

$$
\phi(n)=\phi(p q)=(p-1)(q-1)=n-(p+q)+1, \quad \text { so } \quad p+q=n-\phi(n)+1 .
$$

Thus,

$$
p+q=80609-79920+1=690 .
$$

In addition,

$$
p-q=\sqrt{(p+q)^{2}-4 p q}=\sqrt{(p+q)^{2}-4 n}
$$

Therefore,

$$
p-q=\sqrt{690^{2}-4 \cdot 80609}=392
$$

So

$$
2 p=(p+q)+(p-q)=1082, \quad \text { and } \quad p=541
$$

Hence, $q=690-541=149$. The primes are 149 and $541 . \quad \square$
6. (a) Use an RSA cipher with $n=4141=41 \cdot 101$ and exponent 27 to encipher the word OMELET.
(b) Find the decoding transformation for the cipher in part (a).
(a) Note that $\phi(4141)=40 \cdot 100=4000$, and $(27,4000)=1$. since $2525<4141<252525$, I use blocks of 2 letters.
Translate OMELET to 14120411 0419. To encipher the first block, for example, I compute

$$
1412^{27}=1677(\bmod 4141)
$$

Proceeding in the same way, I obtain the ciphertext 16770288 1139.
(b) I need to find d such that $d \cdot 27=1(\bmod 4000)$. Use the Euclidean algorithm:

4000	-	1037
27	148	7
4	6	1
3	1	1
1	3	0

This means that

$$
(7)(4000)+(-1037)(27)=1, \quad \text { or } \quad(-1037)(27)=1(\bmod 4000) .
$$

Since $-1037=2963(\bmod 4000)$, I can take $d=2963$. The decoding transformation is

$$
P=C^{2963}(\bmod 4141)
$$

7. Find a solution to the following quadratic congruence.

$$
x^{2}=280(\bmod 529)
$$

(Note that $\left.529=23^{2}.\right)$
First, consider the congruence mod 23:

$$
x^{2}=280=4(\bmod 23)
$$

Clearly, $x=2$ is a solution.
I'll try to find a solution $y=2+23 z$ to the original congruence:

$$
\begin{aligned}
y^{2} & =280(\bmod 529) \\
(2+23 z)^{2} & =280(\bmod 529) \\
4+92 z+529 z^{2} & =280(\bmod 529) \\
92 z & =276(\bmod 529)
\end{aligned}
$$

Note that $276=3 \cdot 92$. Dividing the congruence by 92 , I must divide the modulus by $(529,92)=23$:

$$
z=3(\bmod 23) .
$$

Then a solution is given by

$$
y=2+23 \cdot 3=71(\bmod 529)
$$

Note that $y=-71=458(\bmod 529)$ also works. $\quad \square$
8. Solve $x^{2}=33(\bmod 527)$.
$527=17 \cdot 31$, so this is equivalent to solving

$$
x^{2}=33(\bmod 17) \quad \text { and } \quad x^{2}=33(\bmod 31) .
$$

$x^{2}=33(\bmod 17)$ becomes $x^{2}=16(\bmod 17)$, which has solutions $x= \pm 4(\bmod 17)$.
$x^{2}=33(\bmod 31)$ becomes $x^{2}=2(\bmod 31)$.

x	1	2	3	4	5	6	7	8
$x^{2}(\bmod 31)$	1	4	9	16	25	5	18	2
x	9	10	11	12	13	14	15	
$x^{2}(\bmod 31)$	19	7	28	20	14	10	8	

(I obviously don't need to check $x=0$, and the squares from 16 to 30 repeat those from 1 to 15 , backwards.)

The solutions are $x= \pm 8(\bmod 31)$.
Now take cases. If $x=4(\bmod 17)$ and $x=8(\bmod 31)$, then

$$
\begin{aligned}
x & =4+17 a \\
4+17 a & =8(\bmod 31) \\
17 a & =4(\bmod 31)
\end{aligned}
$$

I need to find $17^{-1}(\bmod 31)$. Use the Extended Euclidean Algorithm:

31	-	11
17	1	6
14	1	5
3	4	1
2	1	1
1	2	0

$$
1=11 \cdot 17-6 \cdot 31, \quad 1=11 \cdot 17(\bmod 31) .
$$

Thus, $17^{-1}=11(\bmod 31)$. So

$$
\begin{aligned}
11 \cdot 17 a & =11 \cdot 4(\bmod 31) \\
a & =44=13(\bmod 31) \\
a & =13+31 b \\
x & =4+17(13+31 b) \\
x & =225(\bmod 527)
\end{aligned}
$$

If $x=4(\bmod 17)$ and $x=-8=23(\bmod 31)$, then

$$
\begin{aligned}
x & =4+17 a \\
4+17 a & =23(\bmod 31) \\
17 a & =19(\bmod 31) \\
11 \cdot 17 a & =11 \cdot 19(\bmod 31) \\
a & =209=23(\bmod 31) \\
a & =23+31 b \\
x & =4+17(23+31 b) \\
x & =395(\bmod 527)
\end{aligned}
$$

The other solutions are $x=-225=302(\bmod 527)$ and $x=-395=132(\bmod 527)$. All together, the solutions are $x=132,225,302,395(\bmod 527) . \quad \square$
9. Find the quadratic residues mod 17 .

x	1	2	3	4	5	6	7	8
$x^{2}(\bmod 17)$	1	4	9	16	8	2	15	13
x	9	10	11	12	13	14	15	16
$x^{2}(\bmod 17)$	13	15	2	8	16	9	4	1

The quadratic residues $\bmod 17$ are $1,2,4,8,9,13,15$, and $16 . \quad \square$
10. Find the quadratic residues mod 18.

x	0	1	2	3	4	5	6	7	8
$x^{2}(\bmod 18)$	0	1	4	9	16	7	0	13	10

x	9	10	11	12	13	14	15	16	17
$x^{2}(\bmod 18)$	9	10	13	0	7	16	9	4	1

Of the squares mod 18 , only 1,7 , and 13 are relatively prime to 18 . So the quadratic residues mod 18 are 1,7 , and 13 . \square
11. Compute the following Legendre symbols:
(a) $\left(\frac{71}{79}\right)$.
(b) $\left(\frac{72}{79}\right)$.
(c) $\left(\frac{564}{569}\right)$.
(d) $\left(\frac{5}{55 k+1}\right)$, if $55 k+1$ is prime.
(e) $\left(\frac{8}{31}\right)$.
(a) Since $71=4 \cdot 17+3$ and $79=4 \cdot 19+3$, reciprocity gives

$$
\left(\frac{71}{79}\right)=-\left(\frac{79}{71}\right)=-\left(\frac{8}{71}\right)=-\left(\frac{2}{71}\right) \cdot\left(\frac{4}{71}\right)=-\left(\frac{2}{71}\right) \cdot 1=-\left(\frac{2}{71}\right) .
$$

Now if p is an odd prime,

$$
\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}
$$

So

$$
\left(\frac{2}{71}\right)=(-1)^{\left(71^{2}-1\right) / 8}=(-1)^{630}=1 .
$$

Hence, $\left(\frac{71}{79}\right)=-1$.
(b)

$$
\left(\frac{72}{79}\right)=\left(\frac{36}{79}\right) \cdot\left(\frac{2}{79}\right)=1 \cdot\left(\frac{2}{79}\right)=\left(\frac{2}{79}\right) .
$$

As in (a),

$$
\left(\frac{2}{79}\right)=(-1)^{\left(79^{2}-1\right) / 8}=(-1)^{780}=1 .
$$

Thus, $\left(\frac{72}{79}\right)=1$.
(c) 569 is prime.
$564=3 \cdot 4 \cdot 47$, so

$$
\left(\frac{564}{569}\right)=\left(\frac{3}{569}\right)\left(\frac{4}{569}\right)\left(\frac{47}{569}\right) .
$$

$\left(\frac{4}{569}\right)=1$, because 4 is a perfect square.
$569=4 \cdot 142+1$, so

$$
\begin{aligned}
& \left(\frac{3}{569}\right)=\left(\frac{569}{3}\right)=\left(\frac{2}{3}\right)=-1, \\
& \left(\frac{47}{569}\right)=\left(\frac{569}{47}\right)=\left(\frac{5}{47}\right)=\left(\frac{47}{5}\right)=\left(\frac{2}{5}\right)=-1 .
\end{aligned}
$$

Therefore,

$$
\left(\frac{564}{569}\right)=(-1)(1)(-1)=1 .
$$

(d) Since $5=4 \cdot 1+1$, Quadratic Reciprocity gives

$$
\left(\frac{5}{55 k+1}\right)=\left(\frac{55 k+1}{5}\right)=\left(\frac{1}{5}\right)=1 .
$$

(e)

$$
\left(\frac{8}{31}\right)=\left(\frac{4}{31}\right)\left(\frac{2}{31}\right)=1 \cdot\left(\frac{2}{31}\right)=(-1)^{\left(31^{2}-1\right) / 8}=(-1)^{120}=1
$$

To compute $\left(\frac{2}{31}\right)$, I used the formula $\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}$. You could also compute the last symbol using Euler's Theorem. \quad I
12. Determine whether $x^{2}=1220(\bmod 1301)$ has solutions. (Note: 1301 is prime.)

$$
\begin{aligned}
\left(\frac{1220}{1301}\right)=\left(\frac{4}{1301}\right)\left(\frac{5}{1301}\right)\left(\frac{61}{1301}\right) & =\left(\frac{5}{1301}\right)\left(\frac{61}{1301}\right)=\left(\frac{1301}{5}\right)\left(\frac{1301}{61}\right)=\left(\frac{1}{5}\right)\left(\frac{20}{61}\right)= \\
\left(\frac{4}{61}\right)\left(\frac{5}{61}\right) & =\left(\frac{5}{61}\right)=\left(\frac{61}{5}\right)=\left(\frac{1}{5}\right)=1
\end{aligned}
$$

Hence, $x^{2}=1220(\bmod 1301)$ has solutions.
13. State the Law of Quadratic Reciprocity in terms of congruences, and in terms of Legendre symbols.

Let p and q be distinct odd primes.
In terms of congruences, reciprocity says: Consider the congruences

$$
x^{2}=p(\bmod q) \quad \text { and } \quad x^{2}=q(\bmod p) .
$$

If either p or q has the form $4 k+1$ for $k \in \mathbb{N}$, then both congruences have solutions or both do not have solutions.

If both $p=4 j+3$ and $q=4 k+3$ for $j, k \in \mathbb{N}$, then one congruence is solvable and the other is not.
In terms of Legendre symbols, reciprocity says:

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\left[\left(p^{2}-1\right) / 2\right]\left[\left(q^{2}-1\right) / 2\right]}
$$

An equivalent statement in terms of symbols is this: If either p or q has the form $4 k+1$ for $k \in \mathbb{N}$, then $\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)$.

If both $p=4 j+3$ and $q=4 k+3$ for $j, k \in \mathbb{N}$, then $\left(\frac{p}{q}\right)=-\left(\frac{q}{p}\right)$.
14. Show that if p is an odd prime and 2,3 , and 6 are distinct $\bmod p$, then at least one of 2,3 , or 6 is a quadratic residue $\bmod p$.

I have

$$
\left(\frac{6}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{3}{p}\right)
$$

Suppose 2,3 , and 6 are quadratic nonresidues $\bmod p$. Then all three of the symbols $\left(\frac{6}{p}\right),\left(\frac{2}{p}\right)$, and $\left(\frac{3}{p}\right)$ are -1 , and the equation above says " $-1=(-1)(-1)$ ", a contradiction. Hence, at least one of the three is a quadratic residue $\bmod p$.
15. Use Gauss's lemma to determine whether $x^{2}=15(\bmod 17)$ has any solutions.

Gauss's lemma applies, since $(15,17)=1 \cdot \frac{17-1}{2}=8$, so I compute the first 8 multiples of $15 \bmod 17$:

k	1	2	3	4	5	6	7	8
$15 k(\bmod 17)$	15	13	11	9	7	5	3	1

Now $\frac{17}{2}=8.5$, and 4 of these residues are greater than 8.5. By Gauss's lemma,

$$
\left(\frac{15}{17}\right)=(-1)^{4}=1
$$

Therefore, $x^{2}=15(\bmod 17)$ has solutions. \quad ■
16. Compute the following Jacobi symbols.
(a) $\left(\frac{37}{297}\right)$.
(b) $\left(\frac{175}{213}\right)$.
(a)

$$
\left(\frac{37}{297}\right)=\left(\frac{37}{9 \cdot 33}\right)=\left(\frac{37}{33}\right)=\left(\frac{4}{37}\right)=1 . \quad \square
$$

(b) By direct computation 3 isn't a square $\bmod 7$, so

$$
\left(\frac{175}{213}\right)=\left(\frac{7 \cdot 25}{213}\right)=\left(\frac{7}{213}\right)=\left(\frac{213}{7}\right)=\left(\frac{3}{7}\right)=-1
$$

17. Let p be an odd prime. Prove that

$$
\left(\frac{-2}{p}\right)=\left\{\begin{array}{ll}
1 & \text { if } p=8 k+1 \text { or } p=8 k+3 \\
-1 & \text { if } p=8 k+5 \text { or } p=8 k+7
\end{array} .\right.
$$

Note for all four cases that

$$
\left(\frac{-2}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)=(-1)^{(p-1) / 2} \cdot(-1)^{\left(p^{2}-1\right) / 8}
$$

If $p=8 k+1$, then

$$
\begin{gathered}
\frac{p-1}{2}=\frac{8 k}{2}=4 k \\
\left.(-1)^{(}-1\right)^{(p-1) / 2}=(-1)^{4 k}=1 \\
\frac{p^{2}-1}{8}=\frac{64 k^{2}+16 k}{8}=8 k^{2}+2 k \\
(-1)^{\left(p^{2}-1\right) / 8}=1
\end{gathered}
$$

Hence, $\left(\frac{-2}{p}\right)=1 \cdot 1=1$.

If $p=8 k+3$, then

$$
\begin{gathered}
\frac{p-1}{2}=\frac{8 k+2}{2}=4 k+1 \\
(-1)^{(-1)^{(p-1) / 2}=-1} \\
\frac{p^{2}-1}{8}=\frac{64 k^{2}+48 k+8}{8}=8 k^{2}+6 k+1 \\
(-1)^{\left(p^{2}-1\right) / 8}=-1
\end{gathered}
$$

Hence, $\left(\frac{-2}{p}\right)=(-1) \cdot(-1)=1$.
If $p=8 k+5$, then

$$
\begin{gathered}
\frac{p-1}{2}=\frac{8 k+4}{2}=4 k+2 \\
(-1)^{(-1)^{(p-1) / 2}}=1 \\
\frac{p^{2}-1}{8}=\frac{64 k^{2}+80 k+24}{8}=8 k^{2}+10 k+3 \\
(-1)^{\left(p^{2}-1\right) / 8}=-1
\end{gathered}
$$

Hence, $\left(\frac{-2}{p}\right)=1 \cdot(-1)=-1$.
If $p=8 k+7$, then

$$
\begin{gathered}
\frac{p-1}{2}=\frac{8 k+6}{2}=4 k+3 \\
(-1)^{(-1)^{(p-1) / 2}}=-1 \\
\frac{p^{2}-1}{8}=\frac{64 k^{2}+112 k+48}{8}=8 k^{2}+14 k+6 \\
(-1)^{\left(p^{2}-1\right) / 8}=1
\end{gathered}
$$

Hence, $\left(\frac{-2}{p}\right)=(-1) \cdot 1=-1$.
18. Convert $(7213)_{8}$ to base 10.

Note that

$$
(7123)_{8}=7 \cdot 8^{3}+1 \cdot 8^{2}+2 \cdot 8+3
$$

Thus, I need to plug $x=8$ into the polynomial $7 x^{3}+x^{2}+2 x+3$. I can do this, for instance, using synthetic division (Horner's method):

8 \begin{tabular}{r}
7

2 \& 1 \& 3

56 \& 464 \& 3720

\hline 7 \& 58 \& 465 \& 3723
\end{tabular}

Hence, $(7213)_{8}=3723 . \quad \square$
19. Convert 1808 to base 7 .

I can do this by successive division by 7 :

0	5	36	258	1808	
	5	1	6	2	7

To see why this works, suppose that

$$
1808=a_{3} \cdot 7^{3}+a_{2} \cdot 7^{2}+a_{1} \cdot 7+a_{0}
$$

Rewrite the right side using Horner's method:

$$
1808=\left(\left(a_{3} \cdot 7+a_{2}\right) \cdot 7+a_{1}\right) \cdot 7+a_{0}
$$

a_{0} is the remainder when 1808 is divided by 7 . The quotient is $\left(a_{3} \cdot 7+a_{2}\right) \cdot 7+a_{1}$; if I divide this quotient by 7 , the remainder is a_{1}. And so on.

Thus, $1808=(5162)_{7}$.
20. Express 0.3 in base- 7 .

a	x	$7 x$
-	0.3	2.1
2	0.1	0.7
0	0.7	4.9
4	0.9	6.3
6	0.3	2.1

For example, in the first row I multiplied 0.3 by the base 7 to get 2.1. I took the integer part of 2.1, which is 2 , and put it in the first spot in the second row. Then $2.1-2=0.1$, and that goes into the second spot in the second row. Then I just repeat the process: $7 \cdot 0.1=0.7$, the integer part of 0.7 is 0 , subtracting gives $0.7-0=0.7$, and so on. I keep going until the numbers repeat, at which point I have the expansion.

You can see why this gives the base b expansion of a number x by writing

$$
x=\frac{a_{0}}{b}+\frac{a_{1}}{b^{2}}+\frac{a_{2}}{b^{3}}+\cdots
$$

The digits I want are a_{0}, a_{1}, and so on. Multiplying x by b gives

$$
b x=a_{0}+\frac{a_{1}}{b}+\frac{a_{2}}{b^{2}}+\cdots .
$$

The integer part is a_{0}, and the fractional part is

$$
b x-a_{0}=\frac{a_{1}}{b}+\frac{a_{2}}{b^{2}}+\cdots .
$$

Then I get a_{1} by multiplying this by b, and so on.
Thus, $0.3=(0 . \overline{2046})_{7}$.
21. Express $(0.54242 \ldots)_{6}=(0.5 \overline{42})_{6}$ as a decimal fraction in lowest terms.

Let $x=(0.54242 \ldots)_{6}$. Since the repeating part has two digits, I multiply by 6^{2} to get

$$
\begin{aligned}
36 x & =(54.24242 \ldots)_{6} \\
x & =(0.54242 \ldots)_{6} \\
\hline 35 x & =(53.3)_{6}
\end{aligned}
$$

Here's an explanation for the subtraction. The repeating 42's on the far right cancel. In the place to the right of the point, I'm doing 2 minus 5 . As usual, I have to borrow 1 from the 4 to the left, which is where the " 53 " comes from. After borrowing, in the place to the right of the point, I'm doing $(12)_{6}-5_{6}$. This is $8-5=3$ in decimal, so the digit to the right of the point is 3 .

I still have to convert $(53.3)_{6}$ to decimal before I solve for x :

$$
(53.3)_{6}=5 \cdot 6+3+3 \cdot \frac{1}{6}=\frac{67}{2}
$$

So

$$
\begin{aligned}
35 x & =\frac{67}{2} \\
x & =\frac{67}{70}
\end{aligned}
$$

22. Let b be a positive integer greater than 3. Express $(0.3(b-1) 3(b-1) \ldots)_{b}=(0 . \overline{3(b-1)})_{b}$ as a rational function of b.

Write the expression as an infinite series and use the formula for the sum of a geometric series:

$$
\begin{gathered}
(0.3(b-1) 3(b-1) \ldots)_{b}=\frac{3}{b}+\frac{b-1}{b^{2}}+\frac{3}{b^{3}}+\frac{b-1}{b^{4}}+\cdots=\frac{3 b+(b-1)}{b^{2}}+\frac{3 b+(b-1)}{b^{4}}+\cdots= \\
\frac{4 b-1}{b^{2}}+\frac{4 b-1}{b^{4}}+\cdots=\frac{\frac{4 b-1}{b^{2}}}{1-\frac{1}{b^{2}}}=\frac{4 b-1}{b^{2}-1} . \quad
\end{gathered}
$$

23. Let b be a positive integer greater than 3 . Find the base b expansion of $\frac{2 b^{2}+1}{b^{2}-1}$.

The idea in this problem is to try to expand the expression in a power series in $\frac{1}{b}$. One way to do this is to make use of the geometric series

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots
$$

If $x=\frac{1}{b^{k}}$ for some k, I'll get a power series in $\frac{1}{b}$. So I do some algebra to get expressions of the right form.

$$
\begin{gathered}
\frac{2 b^{2}+1}{b^{2}-1}=\frac{2+\frac{1}{b^{2}}}{1-\frac{1}{b^{2}}}=2 \cdot \frac{1}{1-\frac{1}{b^{2}}}+\frac{1}{b^{2}} \cdot \frac{1}{1-\frac{1}{b^{2}}}=2 \cdot\left(1+\frac{1}{b^{2}}+\frac{1}{b^{4}}+\cdots\right)+\frac{1}{b^{2}} \cdot\left(1+\frac{1}{b^{2}}+\frac{1}{b^{4}}+\cdots\right)= \\
\left(2+\frac{2}{b^{2}}+\frac{2}{b^{4}}+\cdots\right)+\left(\frac{1}{b^{2}}+\frac{1}{b^{4}}+\frac{1}{b^{6}}+\cdots\right)=2+\frac{3}{b^{2}}+\frac{3}{b^{4}}+\frac{3}{b^{6}}+\cdots=(2 . \overline{03})_{b} .
\end{gathered}
$$

24. Find the finite continued fraction expansion for $\frac{983}{237}$.

Do the Euclidean algorithm:

983	-
237	4
35	6
27	1
8	3
3	2
2	1
1	2

$$
\frac{983}{237}=[4,6,1,3,2,1,2] . \quad \square
$$

25. Find the successive convergents and the exact value of the finite continued fraction $[3,1,4,1,1,6]$.

a	p	q	c
3	3	1	1
1	4	1	4
4	19	5	$\frac{19}{5}$
1	23	6	$\frac{23}{6}$
1	42	11	$\frac{42}{11}$
6	275	72	$\frac{275}{72}$

$[3,1,4,1,1,6]=\frac{275}{72} . \quad \square$
26. Suppose x is a positive integer. Find the exact value of

$$
1+\frac{1}{x+\frac{1}{x^{2}+\frac{1}{x^{3}}}}
$$

The expression is the finite continued fraction $\left[1, x, x^{2}, x^{3}\right]$.

a	p	q
1	1	1
x	$x+1$	x
x^{2}	$x^{3}+x^{2}+1$	$x^{3}+1$
x^{3}	$x^{6}+x^{5}+x^{3}+x+1$	$x^{6}+x^{3}+x$

$$
1+\frac{1}{x+\frac{1}{x^{2}+\frac{1}{x^{3}}}}=\frac{x^{6}+x^{5}+x^{3}+x+1}{x^{6}+x^{3}+x}
$$

27. Use continued fractions to find an integer linear combination of 501 and 113 which is equal to 1 . First, find the continued fraction expansion of $\frac{501}{113}$:

501	-
113	4
49	2
15	3
4	3
3	1
1	3

$$
\frac{501}{113}=[4,2,3,3,1,3] .
$$

Next, find the convergents:

a	p	q
4	4	1
2	9	2
3	31	7
3	102	23
1	133	30
3	501	113

Finally, take the "cross product" of the p 's and q 's in the last two rows:

$$
30 \cdot 501+(-133) \cdot 113=1
$$

To be honest, one must be inconsistent. - H. G. Wells

