
Math 393
10-11-2020

Review Problems for Test 3

These problems are provided to help you study. The presence of a problem on this handout does not
imply that there will be a similar problem on the test. And the absence of a topic does not imply that it
won’t appear on the test.

1. Find the decoding transformation for the affine transformation cipher

C = 15P + 7 (mod 26) .

2. Find the decoding transformation for the digraphic cipher

[

C1

C2

]

=

[

7 5
5 10

] [

P1

P2

]

(mod 26) .

3. Calvin Butterball constructs the following digraphic cipher:

[

C1

C2

]

=

[

7 4
2 3

] [

P1

P2

]

(mod 26) .

Show that this is a bad idea by finding two different plaintext blocks that give the same ciphertext
block.

4. Find the decoding transformation for the exponential cipher

C = P 23 (mod 5003) .

5. Suppose that n = 80609 is a product of two primes p and q, and that φ(n) = 79920. Without factoring n

directly, find p and q.

6. (a) Use an RSA cipher with n = 4141 = 41 · 101 and exponent 27 to encipher the word OMELET.

(b) Find the decoding transformation for the cipher in part (a).

7. Find a solution to the following quadratic congruence.

x2 = 280 (mod 529) .

(Note that 529 = 232.)

8. Solve x2 = 33 (mod 527). [Note: 527 = 17 · 31.]

9. Find the quadratic residues mod 17.

10. Find the quadratic residues mod 18.

11. Compute the following Legendre symbols:

(a)







71

79





.

(b)







72

79





.
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(c)







564

569





.

(d)







5

55k + 1





, if 55k + 1 is prime.

(e) Compute







8

31





.

12. Determine whether x2 = 1220 (mod 1301) has solutions. (Note: 1301 is prime.)

13. State the Law of Quadratic Reciprocity in terms of congruences, and in terms of Legendre symbols.

14. Show that if p is an odd prime and 2, 3, and 6 are distinct mod p, then at least one of 2, 3, or 6 is a
quadratic residue mod p.

15. Use Gauss’s lemma to determine whether x2 = 15 (mod 17) has any solutions.

16. Compute the following Jacobi symbols.

(a)







37

297





.

(b)







175

213





.

17. Let p be an odd prime. Prove that







−2

p





 =

{

1 if p = 8k + 1 or p = 8k + 3
−1 if p = 8k + 5 or p = 8k + 7

.

18. Convert (7213)8 to base 10.

19. Convert 1808 to base 7.

20. Express 0.3 in base-7.

21. Express (0.54242 . . .)6 = (0.542)6 as a decimal fraction in lowest terms.

22. Let b be a positive integer greater than 3. Express (0.3(b− 1)3(b− 1) . . .)b = (0.3(b− 1))b as a rational
function of b.

23. Let b be a positive integer greater than 3. Find the base b expansion of
2b2 + 1

b2 − 1
.

24. Find the finite continued fraction expansion for
983

237
.

25. Find the successive convergents and the exact value of the finite continued fraction [3, 1, 4, 1, 1, 6].

26. Suppose x is a positive integer. Find the exact value of

1 +
1

x+
1

x2 +
1

x3

.

27. Use continued fractions to find an integer linear combination of 501 and 113 which is equal to 1.
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Solutions to the Review Problems for Test 3

1. Find the decoding transformation for the affine transformation cipher

C = 15P + 7 (mod 26) .

26 - 7

15 1 4

11 1 3

4 2 1

3 1 1

1 3 0

1 = (−4)(26) + (7)(15), so 7 = 15−1 (mod 26) .

Therefore,
C = 15P + 7 (mod 26)

C − 7 = 15P (mod 26)

C + 19 = 15P (mod 26)

7(C + 19) = P (mod 26)

7C + 3 = P (mod 26)

2. Find the decoding transformation for the digraphic cipher

[

C1

C2

]

=

[

7 5
5 10

] [

P1

P2

]

(mod 26) .

Find the inverse of the matrix:

[

7 5
5 10

]

−1

= (7 · 10− 5 · 5)−1

[

10 −5
−5 7

]

= 45−1 ·

[

10 −5
−5 7

]

(mod 26) .

Use the Euclidean algorithm to compute 45−1 (mod 26):

45 - 19

26 1 11

19 1 8

7 2 3

5 1 2

2 2 1

1 2 0

Thus,
(11)(45) + (−19)(26) = 1, so (11)(45) = 1 (mod 26) .
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Therefore, 45−1 = 11 (mod 26), and the inverse matrix is

11 ·

[

10 −5
−5 7

]

=

[

110 −55
−55 77

]

=

[

6 23
23 25

]

(mod 26) .

The decoding transformation is

[

P1

P2

]

=

[

6 23
23 25

] [

C1

C2

]

(mod 26) .

3. Calvin Butterball constructs the following digraphic cipher:

[

C1

C2

]

=

[

7 4
2 3

] [

P1

P2

]

(mod 26) .

Show that this is a bad idea by finding two different plaintext blocks that give the same ciphertext
block.

The problem, of course, is that

∣

∣

∣

∣

7 4
2 3

∣

∣

∣

∣

= 13 and (13, 26) = 13 6= 1.

I want P1, P2, P
′

1, P
′

2, such that (P1, P2) 6= (P ′

1, P
′

2), but

[

7 4
2 3

] [

P1

P2

]

=

[

7 4
2 3

] [

P ′

1

P ′

2

]

(mod 26) .

Moving all the terms to the left side and factoring, I have

[

7 4
2 3

] [

P1 − P ′

1

P2 − P ′

2

]

=

[

0
0

]

(mod 26) .

I see that what I need is a nontrivial (i.e. nonzero) solution to the homogeneous system

[

7 4
2 3

] [

x

y

]

=

[

0
0

]

(mod 26) .

To do this, row reduce. To find out how to “divide” the first row by 7, use the Extended Euclidean
Algorithm:

26 - 11

7 3 3

5 1 2

2 2 1

1 2 0

1 = (26, 7) = 26 · 3 + 7 · (−11)

1 = 7 · (−11) (mod 26)

1 = 7 · 15 (mod 25)

Thus,
[

7 4
2 3

]

→

r1 → 15r1

[

1 8
2 3

]

→

r2 → r2 + 24r1

[

1 8
0 13

]

(mod 26) .
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I can’t go any further, because 13 isn’t invertible mod 26.
These equations say

x+ 8y = 0 (mod 26)

13y = 0 (mod 26)

I want a nonzero solution. So take y = 2 to satisfy the second equation. (Any even number will work
for y.) Plugging this into the first equation, I get

x+ 16 = 0, or x = 10.

Finally, recall that (x, y) represents (P1 − P ′

1, P2 − P ′

2). So to get two different plaintexts that give the
same ciphertext, set (P ′

1, P
′

2) to anything — say (0, 0) — and add (10, 2) to get (P1, P2) = (10, 2).
You can check that

[

7 4
2 3

] [

P1

P2

]

=

[

0
0

]

(mod 26) and

[

7 4
2 3

] [

P ′

1

P ′

2

]

=

[

0
0

]

(mod 26) .

Try setting (P ′

1, P
′

2) = (1, 5) (say), so (P1, P2) = (10 + 1, 5 + 2) = (11, 7). You can verify for yourself
that this choice of (P1, P2) and (P ′

1, P
′

2) will work as well.

4. Find the decoding transformation for the exponential cipher

C = P 23 (mod 5003) .

I need to find 23−1 (mod 5002).

5002 - 435

23 217 2

11 2 1

1 11 0

435 · 23− 2 · 5002 = 1

435 · 23 = 1 (mod 5002)

23−1 = 435 (mod 5002), so the decoding transformation is

P = C435 (mod 5003) .

Note: The inverse must be converted to a positive number before being used as the exponent in the
decoding transformation. For example, if the original exponent had been 19, then

19−1 = −1053 = 3949 (mod 5002) .

The decoding transformation would then be P = C3949 (mod 5003).

5. Suppose that n = 80609 is a product of two primes p and q, and that φ(n) = 79920. Without factoring n

directly, find p and q.

I have
φ(n) = φ(pq) = (p− 1)(q − 1) = n− (p+ q) + 1, so p+ q = n− φ(n) + 1.
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Thus,
p+ q = 80609− 79920 + 1 = 690.

In addition,
p− q =

√

(p+ q)2 − 4pq =
√

(p+ q)2 − 4n.

Therefore,

p− q =
√

6902 − 4 · 80609 = 392.

So
2p = (p+ q) + (p− q) = 1082, and p = 541.

Hence, q = 690− 541 = 149. The primes are 149 and 541.

6. (a) Use an RSA cipher with n = 4141 = 41 · 101 and exponent 27 to encipher the word OMELET.

(b) Find the decoding transformation for the cipher in part (a).

(a) Note that φ(4141) = 40 · 100 = 4000, and (27, 4000) = 1.
since 2525 < 4141 < 252525, I use blocks of 2 letters.
Translate OMELET to 1412 0411 0419. To encipher the first block, for example, I compute

141227 = 1677 (mod 4141) .

Proceeding in the same way, I obtain the ciphertext 1677 0288 1139.

(b) I need to find d such that d · 27 = 1 (mod 4000). Use the Euclidean algorithm:

4000 - 1037

27 148 7

4 6 1

3 1 1

1 3 0

This means that

(7)(4000) + (−1037)(27) = 1, or (−1037)(27) = 1 (mod 4000) .

Since −1037 = 2963 (mod 4000), I can take d = 2963. The decoding transformation is

P = C2963 (mod 4141) .

7. Find a solution to the following quadratic congruence.

x2 = 280 (mod 529) .

(Note that 529 = 232.)

First, consider the congruence mod 23:

x2 = 280 = 4 (mod 23) .
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Clearly, x = 2 is a solution.
I’ll try to find a solution y = 2 + 23z to the original congruence:

y2 = 280 (mod 529)

(2 + 23z)2 = 280 (mod 529)

4 + 92z + 529z2 = 280 (mod 529)

92z = 276 (mod 529)

Note that 276 = 3 · 92. Dividing the congruence by 92, I must divide the modulus by (529, 92) = 23:

z = 3 (mod 23) .

Then a solution is given by
y = 2 + 23 · 3 = 71 (mod 529) .

Note that y = −71 = 458 (mod 529) also works.

8. Solve x2 = 33 (mod 527).

527 = 17 · 31, so this is equivalent to solving

x2 = 33 (mod 17) and x2 = 33 (mod 31) .

x2 = 33 (mod 17) becomes x2 = 16 (mod 17), which has solutions x = ±4 (mod 17).
x2 = 33 (mod 31) becomes x2 = 2 (mod 31).

x 1 2 3 4 5 6 7 8

x2 (mod 31) 1 4 9 16 25 5 18 2

x 9 10 11 12 13 14 15

x2 (mod 31) 19 7 28 20 14 10 8

(I obviously don’t need to check x = 0, and the squares from 16 to 30 repeat those from 1 to 15,
backwards.)

The solutions are x = ±8 (mod 31).
Now take cases. If x = 4 (mod 17) and x = 8 (mod 31), then

x = 4 + 17a

4 + 17a = 8 (mod 31)

17a = 4 (mod 31)

I need to find 17−1 (mod 31). Use the Extended Euclidean Algorithm:

31 - 11

17 1 6

14 1 5

3 4 1

2 1 1

1 2 0
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1 = 11 · 17− 6 · 31, 1 = 11 · 17 (mod 31) .

Thus, 17−1 = 11 (mod 31). So

11 · 17a = 11 · 4 (mod 31)

a = 44 = 13 (mod 31)

a = 13 + 31b

x = 4 + 17(13 + 31b)

x = 225 (mod 527)

If x = 4 (mod 17) and x = −8 = 23 (mod 31), then

x = 4 + 17a

4 + 17a = 23 (mod 31)

17a = 19 (mod 31)

11 · 17a = 11 · 19 (mod 31)

a = 209 = 23 (mod 31)

a = 23 + 31b

x = 4 + 17(23 + 31b)

x = 395 (mod 527)

The other solutions are x = −225 = 302 (mod 527) and x = −395 = 132 (mod 527).
All together, the solutions are x = 132, 225, 302, 395 (mod 527).

9. Find the quadratic residues mod 17.

x 1 2 3 4 5 6 7 8

x2 (mod 17) 1 4 9 16 8 2 15 13

x 9 10 11 12 13 14 15 16

x2 (mod 17) 13 15 2 8 16 9 4 1

The quadratic residues mod 17 are 1, 2, 4, 8, 9, 13, 15, and 16.

10. Find the quadratic residues mod 18.

x 0 1 2 3 4 5 6 7 8

x2 (mod 18) 0 1 4 9 16 7 0 13 10

x 9 10 11 12 13 14 15 16 17

x2 (mod 18) 9 10 13 0 7 16 9 4 1

Of the squares mod 18, only 1, 7, and 13 are relatively prime to 18. So the quadratic residues mod 18
are 1, 7, and 13.

11. Compute the following Legendre symbols:
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(a)







71

79





.

(b)







72

79





.

(c)







564

569





.

(d)







5

55k + 1





, if 55k + 1 is prime.

(e)







8

31





.

(a) Since 71 = 4 · 17 + 3 and 79 = 4 · 19 + 3, reciprocity gives







71

79





 = −







79

71





 = −







8

71





 = −







2

71





 ·







4

71





 = −







2

71





 · 1 = −







2

71





 .

Now if p is an odd prime,






2

p





 = (−1)(p
2
−1)/8.

So






2

71





 = (−1)(71
2
−1)/8 = (−1)630 = 1.

Hence,







71

79





 = −1.

(b)






72

79





 =







36

79





 ·







2

79





 = 1 ·







2

79





 =







2

79





 .

As in (a),






2

79





 = (−1)(79
2
−1)/8 = (−1)780 = 1.

Thus,







72

79





 = 1.

(c) 569 is prime.
564 = 3 · 4 · 47, so







564

569





 =







3

569













4

569













47

569





 .







4

569





 = 1, because 4 is a perfect square.

569 = 4 · 142 + 1, so






3

569





 =







569

3





 =







2

3





 = −1,







47

569





 =







569

47





 =







5

47





 =







47

5





 =







2

5





 = −1.

Therefore,






564

569





 = (−1)(1)(−1) = 1.

(d) Since 5 = 4 · 1 + 1, Quadratic Reciprocity gives







5

55k + 1





 =







55k + 1

5





 =







1

5





 = 1.
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(e)






8

31





 =







4

31













2

31





 = 1 ·







2

31





 = (−1)(31
2
−1)/8 = (−1)120 = 1.

To compute







2

31





, I used the formula







2

p





 = (−1)(p
2
−1)/8. You could also compute the last symbol

using Euler’s Theorem.

12. Determine whether x2 = 1220 (mod 1301) has solutions. (Note: 1301 is prime.)







1220

1301





 =







4

1301













5

1301













61

1301





 =







5

1301













61

1301





 =







1301

5













1301

61





 =







1

5













20

61





 =







4

61













5

61





 =







5

61





 =







61

5





 =







1

5





 = 1.

Hence, x2 = 1220 (mod 1301) has solutions.

13. State the Law of Quadratic Reciprocity in terms of congruences, and in terms of Legendre symbols.

Let p and q be distinct odd primes.
In terms of congruences, reciprocity says: Consider the congruences

x2 = p (mod q) and x2 = q (mod p) .

If either p or q has the form 4k+1 for k ∈ N, then both congruences have solutions or both do not have
solutions.

If both p = 4j + 3 and q = 4k + 3 for j, k ∈ N, then one congruence is solvable and the other is not.
In terms of Legendre symbols, reciprocity says:







p

q













q

p





 = (−1)[(p
2
−1)/2][(q2−1)/2].

An equivalent statement in terms of symbols is this: If either p or q has the form 4k+1 for k ∈ N, then






p

q





 =







q

p





.

If both p = 4j + 3 and q = 4k + 3 for j, k ∈ N, then







p

q





 = −







q

p





.

14. Show that if p is an odd prime and 2, 3, and 6 are distinct mod p, then at least one of 2, 3, or 6 is a
quadratic residue mod p.

I have






6

p





 =







2

p













3

p





 .

Suppose 2, 3, and 6 are quadratic nonresidues mod p. Then all three of the symbols







6

p





,







2

p





, and






3

p





 are −1, and the equation above says “−1 = (−1)(−1)”, a contradiction. Hence, at least one of the

three is a quadratic residue mod p.
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15. Use Gauss’s lemma to determine whether x2 = 15 (mod 17) has any solutions.

Gauss’s lemma applies, since (15, 17) = 1.
17− 1

2
= 8, so I compute the first 8 multiples of 15 mod 17:

k 1 2 3 4 5 6 7 8

15k (mod 17) 15 13 11 9 7 5 3 1

Now
17

2
= 8.5, and 4 of these residues are greater than 8.5. By Gauss’s lemma,







15

17





 = (−1)4 = 1.

Therefore, x2 = 15 (mod 17) has solutions.

16. Compute the following Jacobi symbols.

(a)







37

297





.

(b)







175

213





.

(a)






37

297





 =







37

9 · 33





 =







37

33





 =







4

37





 = 1.

(b) By direct computation 3 isn’t a square mod 7, so







175

213





 =







7 · 25

213





 =







7

213





 =







213

7





 =







3

7





 = −1.

17. Let p be an odd prime. Prove that







−2

p





 =

{

1 if p = 8k + 1 or p = 8k + 3
−1 if p = 8k + 5 or p = 8k + 7

.

Note for all four cases that






−2

p





 =







−1

p













2

p





 = (−1)(p−1)/2 · (−1)(p
2
−1)/8.

If p = 8k + 1, then
p− 1

2
=

8k

2
= 4k

(−1)( − 1)(p−1)/2 = (−1)4k = 1

p2 − 1

8
=

64k2 + 16k

8
= 8k2 + 2k

(−1)(p
2
−1)/8 = 1

Hence,







−2

p





 = 1 · 1 = 1.
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If p = 8k + 3, then
p− 1

2
=

8k + 2

2
= 4k + 1

(−1)( − 1)(p−1)/2 = −1

p2 − 1

8
=

64k2 + 48k + 8

8
= 8k2 + 6k + 1

(−1)(p
2
−1)/8 = −1

Hence,







−2

p





 = (−1) · (−1) = 1.

If p = 8k + 5, then
p− 1

2
=

8k + 4

2
= 4k + 2

(−1)( − 1)(p−1)/2 = 1

p2 − 1

8
=

64k2 + 80k + 24

8
= 8k2 + 10k + 3

(−1)(p
2
−1)/8 = −1

Hence,







−2

p





 = 1 · (−1) = −1.

If p = 8k + 7, then
p− 1

2
=

8k + 6

2
= 4k + 3

(−1)( − 1)(p−1)/2 = −1

p2 − 1

8
=

64k2 + 112k + 48

8
= 8k2 + 14k + 6

(−1)(p
2
−1)/8 = 1

Hence,







−2

p





 = (−1) · 1 = −1.

18. Convert (7213)8 to base 10.

Note that
(7123)8 = 7 · 83 + 1 · 82 + 2 · 8 + 3.

Thus, I need to plug x = 8 into the polynomial 7x3 + x2 + 2x + 3. I can do this, for instance, using
synthetic division (Horner’s method):

8 7 2 1 3

56 464 3720

7 58 465 3723

Hence, (7213)8 = 3723.

19. Convert 1808 to base 7.

12



I can do this by successive division by 7:

0     5    36    258    1808      7

       5      1        6          2

To see why this works, suppose that

1808 = a3 · 7
3 + a2 · 7

2 + a1 · 7 + a0.

Rewrite the right side using Horner’s method:

1808 = ((a3 · 7 + a2) · 7 + a1) · 7 + a0.

a0 is the remainder when 1808 is divided by 7. The quotient is (a3 · 7 + a2) · 7 + a1; if I divide this
quotient by 7, the remainder is a1. And so on.

Thus, 1808 = (5162)7.

20. Express 0.3 in base-7.

a x 7x

- 0.3 2.1

2 0.1 0.7

0 0.7 4.9

4 0.9 6.3

6 0.3 2.1

For example, in the first row I multiplied 0.3 by the base 7 to get 2.1. I took the integer part of 2.1,
which is 2, and put it in the first spot in the second row. Then 2.1− 2 = 0.1, and that goes into the second
spot in the second row. Then I just repeat the process: 7 · 0.1 = 0.7, the integer part of 0.7 is 0, subtracting
gives 0.7− 0 = 0.7, and so on. I keep going until the numbers repeat, at which point I have the expansion.

You can see why this gives the base b expansion of a number x by writing

x =
a0

b
+

a1

b2
+

a2

b3
+ · · · .

The digits I want are a0, a1, and so on. Multiplying x by b gives

bx = a0 +
a1

b
+

a2

b2
+ · · · .

The integer part is a0, and the fractional part is

bx− a0 =
a1

b
+

a2

b2
+ · · · .

Then I get a1 by multiplying this by b, and so on.
Thus, 0.3 = (0.2046)7.

21. Express (0.54242 . . .)6 = (0.542)6 as a decimal fraction in lowest terms.
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Let x = (0.54242 . . .)6. Since the repeating part has two digits, I multiply by 62 to get

36x = (54.2 4242 . . .)6

x = ( 0.5 4242 . . .)6

35x = (53. 3)6

Here’s an explanation for the subtraction. The repeating 42’s on the far right cancel. In the place to
the right of the point, I’m doing 2 minus 5. As usual, I have to borrow 1 from the 4 to the left, which is
where the “53” comes from. After borrowing, in the place to the right of the point, I’m doing (12)6 − 56.
This is 8− 5 = 3 in decimal, so the digit to the right of the point is 3.

I still have to convert (53.3)6 to decimal before I solve for x:

(53.3)6 = 5 · 6 + 3 + 3 ·
1

6
=

67

2
.

So

35x =
67

2

x =
67

70

22. Let b be a positive integer greater than 3. Express (0.3(b− 1)3(b− 1) . . .)b = (0.3(b− 1))b as a rational
function of b.

Write the expression as an infinite series and use the formula for the sum of a geometric series:

(0.3(b− 1)3(b− 1) . . .)b =
3

b
+

b− 1

b2
+

3

b3
+

b− 1

b4
+ · · · =

3b+ (b − 1)

b2
+

3b+ (b − 1)

b4
+ · · · =

4b− 1

b2
+

4b− 1

b4
+ · · · =

4b− 1

b2

1−
1

b2

=
4b− 1

b2 − 1
.

23. Let b be a positive integer greater than 3. Find the base b expansion of
2b2 + 1

b2 − 1
.

The idea in this problem is to try to expand the expression in a power series in
1

b
. One way to do this

is to make use of the geometric series

1

1− x
= 1+ x+ x2 + x3 + · · · .

If x =
1

bk
for some k, I’ll get a power series in

1

b
. So I do some algebra to get expressions of the right

form.

2b2 + 1

b2 − 1
=

2 +
1

b2

1−
1

b2

= 2 ·
1

1−
1

b2

+
1

b2
·

1

1−
1

b2

= 2 ·

(

1 +
1

b2
+

1

b4
+ · · ·

)

+
1

b2
·

(

1 +
1

b2
+

1

b4
+ · · ·

)

=

(

2 +
2

b2
+

2

b4
+ · · ·

)

+

(

1

b2
+

1

b4
+

1

b6
+ · · ·

)

= 2 +
3

b2
+

3

b4
+

3

b6
+ · · · = (2.03)b.
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24. Find the finite continued fraction expansion for
983

237
.

Do the Euclidean algorithm:

983 -

237 4

35 6

27 1

8 3

3 2

2 1

1 2

983

237
= [4, 6, 1, 3, 2, 1, 2].

25. Find the successive convergents and the exact value of the finite continued fraction [3, 1, 4, 1, 1, 6].

a p q c

3 3 1 1

1 4 1 4

4 19 5
19

5

1 23 6
23

6

1 42 11
42

11

6 275 72
275

72

[3, 1, 4, 1, 1, 6] =
275

72
.

26. Suppose x is a positive integer. Find the exact value of

1 +
1

x+
1

x2 +
1

x3

.

The expression is the finite continued fraction [1, x, x2, x3].

a p q

1 1 1

x x+ 1 x

x2 x3 + x2 + 1 x3 + 1

x3 x6 + x5 + x3 + x+ 1 x6 + x3 + x

15



1 +
1

x+
1

x2 +
1

x3

=
x6 + x5 + x3 + x+ 1

x6 + x3 + x
.

27. Use continued fractions to find an integer linear combination of 501 and 113 which is equal to 1.

First, find the continued fraction expansion of
501

113
:

501 -

113 4

49 2

15 3

4 3

3 1

1 3

501

113
= [4, 2, 3, 3, 1, 3].

Next, find the convergents:

a p q

4 4 1

2 9 2

3 31 7

3 102 23

1 133 30

3 501 113

Finally, take the “cross product” of the p’s and q’s in the last two rows:

30 · 501 + (−133) · 113 = 1.

To be honest, one must be inconsistent. - H. G. Wells
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