C++ Code Snippets

PART I: Inputs for Arduino IDE/Teensy 3.2

John R. Wright, Jr., PhD, CSTM, CLSSGB, F.ATMAE
ITEC 467, Mobile Robotics
Welcome to Teensy 3.2
32 Bit Arduino-Compatible Microcontroller
To begin using Teensy, please visit the website & click Getting Started.
www.pjrc.com/teensy

<table>
<thead>
<tr>
<th>Digital Pins</th>
<th>PWM Pins</th>
<th>Analog Pins</th>
<th>Touch Sense Pins</th>
<th>Serial Ports</th>
<th>I2C Port</th>
<th>SPI Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>digitalRead</td>
<td>PWM</td>
<td>analogRead</td>
<td>touchRead</td>
<td>Serial1</td>
<td>Wire Library</td>
<td>SPI Library</td>
</tr>
<tr>
<td>digitalWrite</td>
<td>PWM</td>
<td>analogReference</td>
<td></td>
<td>Serial2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinMode</td>
<td>PWM</td>
<td>analogReadRes</td>
<td></td>
<td>Serial3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pinout:
- Vin (3.6 to 6.0 volts)
- AGND
- 3.3V (250 mA max)
- A9, A8, A7, A6...
- RX1, TX1, RX2, TX2...
- A14/DAC
- Program
- GND
- 3.3V
- VBat
- Touch pins
- PWM pins
- CAN Bus
- SPI pins
- I2C pins
- RS-232 pins

All digital pins have interrupt capability.
Sharp IR

//John Wright 2017
//January 18, 2017

int SharpIR = A0; //Set variable as integer & tell where connected on board
int val = 0; // Set variable as integer and set to zero

void setup()
{
 pinMode(SharpIR, INPUT); //Set the pin direction to input
 Serial.begin(9600); //Establish serial buad rate
 while(!Serial); //Wait until good serial connection is established
}

void loop()
{
 val= analogRead(SharpIR); //Read value from sensor
 Serial.println(val); //Print to monitor
 delay(200); //Wait 200ms
Line Tracking Sensor

//John Wright 2017
//January 18, 2017
//Same code as used with SharpIR

int LineTrackS1 = A0; //where sensor is connected on board
int val = 0; //set val to zero

void setup()
{
 pinMode(LineTrackS1, INPUT); //Set the pin direction to input
 Serial.begin(9600); //Establish serial baud rate
 while(!Serial); //Wait until good serial connection is established
}

void loop()
{
 val= analogRead(LineTrackS1); //Read value from sensor
 Serial.println(val); //Print to monitor
 delay(200); //Wait 200ms
}
Line Tracking Sensor

Gravity Line Tracking Sensor for Arduino

Product Code: RB-Dfr-40 by DFRobot

- Line tracking sensor to guide robot by telling white and black via TTL signal
- Includes high quality Opto interrupter for improved sensitivity
- Supply voltage: 3.3V to 5V
- Interface: Digital

https://youtu.be/UiAZhpYzYKs
Flame Sensor w/LED
(input controlling an output)

//John Wright 2017
//January 18, 2017
//Same code as used with SharpIR

int FlameS1 = A0; //Where sensor is connected on board
int val = 1; //Set val to zero (initialized value)

void setup()
{
 pinMode(FlameS1, INPUT); //Set the pin direction to input
 pinMode(13, OUTPUT); //Set the direction of pin 13 to output
 Serial.begin(9600); //Establish serial baud rate
 while(!Serial); //Wait until good serial connection is established
}
void loop()
{
 val = digitalRead(FlameS1); //Read value from sensor
 Serial.println(val); //Print to monitor
 delay(200); //Wait 200ms
 if (val < 1)
 {
 digitalWrite(13, HIGH); //Turns on onboard LED if flame detected
 delay(5000); //Wait 5 sec so we can see the detection
 }
 else
 {
 digitalWrite(13, LOW); //Turns off on-board LED if flame not detected
 }
}
Flame Sensor

https://youtu.be/P8fgrlDGHE8
What is a Library?

“In the C++ programming language, the C++ Standard Library is a collection of classes and functions, which are written in the core language and part of the C++ ISO Standard itself.

The C++ Standard Library provides several generic containers, functions to utilize and manipulate these containers, function objects, generic strings and streams (including interactive and file I/O), support for some language features, and functions for everyday tasks such as finding the square root of a number.

What is a Library?

The C++ Standard Library also incorporates 18 headers of the ISO C90 C standard library ending with ".h", but their use is deprecated.

No other headers in the C++ Standard Library end in ".h".

Features of the C++ Standard Library are declared within the std namespace.”

What is a Header File?

Think of both like this (Disclaimer: this is a really high-level analogy ;)..

- The **header** is a phone number you can call, while...
- ...the **library** is the actual person you can reach there!

It's the fundamental difference between "interface" and "implementation"; the **interface** (header) tells you **how** to call some functionality (without knowing how it works), while the **implementation** (library) is the actual functionality.

Note: The concept is so fundamental, because it allows you flexibility: you can have the same header for different libraries (i.e. the functionality is exactly called in the same way), and each library may **implement** the functionality in a different way. By keeping the same interface, you can replace the libraries without changing **your** code.

And: you can change the implementation of the library without breaking the calling code!

4 Pin Sonar

4 Pin Sonar

1) Download and install library onto computer
2) Link Library in Arduino
 SKETCH, IMPORT LIBRARY
#include <HCSR04.h>
//Code & Library from Patton Robotics
//must get library file from Patton Robotics and install - point to folder on your computer
//Sketch, Import Library

HCSR04 Echo1(7,8); // new instance of the class
//HCSR04(int EchoPin,int TrigPin)

void setup()
{
 Serial.begin(9600); //Launch Serial
}
void loop()
{
 Echo1.ReadEchoCM(); // Get Data in Centimeters
 delay(10); // Give a chance to establish a new low on the trigger
 delay likely not needed, I just play it safe
 Echo1.ReadEchoInches(); // Get Data in Inches
 Serial.print("CM = ");
 Serial.println(Echo1.CMs);
 Serial.print("Inches = ");
 Serial.println(Echo1.Inches);
 Serial.println(" ");
 delay(500);
}
CAUTION!!!!

- Pin colors do not reflect + & -
 - Red and Black may mean different pins
 - Be very careful with the wiring!
 - Two pins will be signals (Trig & Echo)
//John Wright 2017
//Adapted Code From Example
//January 18, 2017

#include <Ping.h> //Library function for Ping Sonar
Ping ping = Ping(0); //Tells us what input the Ping Sonar is wired to

void setup()
{
 pinMode(13, OUTPUT); //Sets pin 13 to use as an output for on board LED
 Serial.begin(115200); //Sets baud rate for the serial connection
}
void loop()
{
 ping.fire(); //Pulses Ping Sonar
 Serial.print(ping.inches()); //Prints output/result of Ping Sonar to Screen
 Serial.println(); //Sets a return so data scrolls downward instead of across the screen
 delay(100); //delays 100ms

 if (ping.inches() < 10)
 {
 digitalWrite(13, HIGH); //Turns on on-board LED if object less than 10 inches away
 }
 else
 {
 digitalWrite(13, LOW); //Turns off the on-board LED if object >= 10 inches away
 }
}
Good Luck! Time to “Code Hard!”

https://www.youtube.com/watch?v=b-CroEWwaTk