Quadratic Forms
Math 422

Definition 1 A **quadratic form** is a function $f : \mathbb{R}^n \to \mathbb{R}$ of form

$$f(x) = x^T Ax,$$

where A is an $n \times n$ symmetric matrix.

Example 2 $f(x, y) = 2x^2 + 3xy - 4y^2 = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & \frac{3}{2} \\ \frac{3}{2} & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$

Note that the Euclidean inner product (dot product) of two (column) vectors a and b can be expressed in terms of matrix multiplication as $\langle a, b \rangle = b^T a$.

Thus, a quadratic form can be expressed in terms of the Euclidean inner product as

$$x^T Ax = \langle Ax, x \rangle = \langle x, Ax \rangle.$$

Let S^{n-1} denote the unit $(n-1)$-dimensional sphere in \mathbb{R}^n, i.e., relative to the Euclidean inner product

$$S^{n-1} = \{ x \in \mathbb{R}^n : \langle x, x \rangle = 1 \}.$$

Since S^{n-1} is a closed and bounded subset of \mathbb{R}^n, continuous functions on S^{n-1} attain their maximum and minimum values.

Question #1: For $x \in S^{n-1}$, what are the maximum and minimum values of a quadratic form $x^T Ax$?

Theorem 3 Let A be a symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then

1. $\lambda_1 \geq x^T Ax \geq \lambda_n$ for all $x \in S^{n-1}$.
2. If $x_1 \in S^{n-1}$ is an eigenvalue associated with λ_1, then $\lambda_1 = x_1^T Ax_1$.
3. If $x_n \in S^{n-1}$ is an eigenvalue associated with λ_n, then $\lambda_n = x_n^T Ax_n$.

The maximum and minimum of a quadratic form $x^T Ax$ can be found by computing the largest and smallest eigenvalue of A. The maximum (respectively, minimum) will always be attained at diametrically opposite points on the unit sphere $\pm \frac{x}{\|x\|}$, where x is any eigenvector associated with λ_1 (respectively, λ_n).

Example 4 Consider $f(x_1, x_2) = 2x_1x_2 = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Since the eigenvalues of $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ are $\lambda_1 = 1$ and $\lambda_2 = -1$, the maximum and minimum values of f on the unit circle S^1 are 1 and -1, respectively. Furthermore, the maximum value is attained at the eigenvectors on S^1 associated with $\lambda_1 = 1$, namely $\pm \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$; the minimum value is attained at the eigenvectors on S^1 associated with $\lambda_2 = -1$, namely $\pm \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$.

Question #2: Under what conditions is the quadratic form $x^T Ax > 0$ for all $x \neq 0$?
Definition 5 \(x^T A x \) is positive definite iff \(x^T A x > 0 \) for all \(x \neq 0 \) and \(x^T A x = 0 \) iff \(x = 0 \). A symmetric matrix is positive definite iff \(x^T A x \) is positive definite.

Example 6 The Euclidean inner product is a positive definite quadratic form since
\[
x_1^2 + \cdots + x_n^2 = (x, x) = x^T x = x^T I x.
\]

Theorem 7 A symmetric matrix \(A \) is positive definite iff all eigenvalues of \(A \) are positive.

Example 8 The matrix \(A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix} \) is positive definite since the eigenvalues of \(A \) are \(\lambda_1 = 8 \), \(\lambda_2 = 2 \) and \(\lambda_3 = 2 \). Note that if \(x \neq 0 \), then \(x^T A x = 2x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3 > 0 \).

Definition 9 For \(1 \leq k \leq n \), the \(k \)th principal submatrix of an \(n \times n \) matrix \(A = [a_{ij}] \) is
\[
\begin{bmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{bmatrix}.
\]

Theorem 10 A symmetric matrix \(A \) is positive definite iff every principal subdeterminant of \(A \) is positive.

Example 11 The principal subdeterminants of the matrix \(A = \begin{bmatrix} 2 & -1 & -3 \\ -1 & 2 & 4 \\ -3 & 4 & 9 \end{bmatrix} \) are \(\det [2] = 2 \), \(\det \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = 3 \) and \(\det A = 1 \). Since all are positive, the quadratic form \(x^T A x \) is positive definite.

Question #3: If \(x^T A x \) is a quadratic form with non-diagonal \(A \), under what conditions does there exist an orthogonal change variables \(x = Py \) so that \((Py)^T A (Py) = y^T (P^T A P) y \) has no cross-terms?

Definition 12 An \(n \times n \) matrix \(A \) is orthogonally diagonalizable iff there exists an orthogonal matrix \(P \) such that \(P^T A P \) is a diagonal matrix.

Theorem 13 If \(A \) is an \(n \times n \) matrix, then the following are equivalent:

1. \(A \) is orthogonally diagonalizable.
2. \(A \) has an orthonormal set of \(n \) eigenvectors.
3. \(A \) is symmetric.

Theorem 14 If \(A \) is symmetric, then

1. The eigenvalues of \(A \) are real numbers.
2. Eigenvectors from different eigenspaces are orthogonal with respect to the Euclidean inner product.

Use the following procedure to orthogonally diagonalize \(A \):

Example 15 1. Find a basis for each eigenspace of \(A \).
2. Apply Gram-Schmidt and obtain an orthonormal basis for each eigenspace.
3. Form the matrix \(P \) whose columns are the basis vectors constructed in step 2.
Example 16 Consider the matrix \(A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix} \) whose eigenvalues are \(\lambda_1 = 8 \), \(\lambda_2 = 2 \) and \(\lambda_3 = 2 \).

Canonical bases for the eigenspaces are \(\{ x_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \} \)

\(\leftrightarrow 8 \) and \(\{ x_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, x_3 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \} \leftrightarrow 2. \) Note that \(\langle x_1, x_2 \rangle = \langle x_1, x_3 \rangle = 0. \) Applying Gram-Schmidt gives

\[\{ v_1 = \frac{x_1}{\|x_1\|} = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix} \} \] and

\[\{ v_2 = \frac{x_2}{\|x_2\|} = \begin{bmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}, v_3 = \frac{x_3 - \langle x_3, v_2 \rangle v_2}{\|x_3 - \langle x_3, v_2 \rangle v_2\|} = \begin{bmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ -1/\sqrt{6} \end{bmatrix} \}. \] The matrix \(P = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \end{bmatrix} \)

and \(P^T A P = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \) is a diagonal matrix.

Theorem 17 Let \(x^T A x \) be a quadratic form in variables \(x_1, \ldots, x_n \). Let \(P \) be an orthogonal matrix that orthogonally diagonalizes \(A \). If \(\lambda_1, \ldots, \lambda_n \) are the eigenvalues of \(A \) and \(y_1, \ldots, y_n \) are new variables such that \(x = Py \), then

\[x^T A x = y^T (P^T A P) y = \lambda_1 y_1^2 + \cdots + \lambda_n y_n^2 \]

and

\[P^T A P = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix} \]

Example 18 Let \(A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix} \). By the calculations in Example 16, \(2x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3 = x^T A x = y^T (P^T A P) y = 8y_1^2 + 2y_2^2 + 2y_3^2 \).

Question #4: If \(x^T A x \) is a quadratic form in two or three variables and \(c \) is a constant, what does the graph of the level set \(x^T A x = c \) look like?

Theorem 19 If \(x^T A x \) is a quadratic form in two variables and \(c \) is a constant, the level curve given by \(x^T A x = c \) is a conic. If \(x^T A x \) is a quadratic form in three variables and \(c \) is a constant, the level surface given by \(x^T A x = c \) is a quadric.

Example 20 In Example 4, let \(P = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \); then

\[P^T A P = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \]. The level curve given by \(2x_1x_2 = 1 \) is the hyperbola \(y_1^2 - y_2^2 = 1 \) since

\[2x_1x_2 = x^T A x = y^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} y = y_1^2 - y_2^2. \]

From Example 18 we observe that the level surface \(2x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3 = 1 \) is the ellipsoid \(8y_1^2 + 2y_2^2 + 2y_3^2 = 1 \).
Exercise 21 Since the quadratic form in Example 11 is positive definite, the quadric given by \(x^T A x = 1 \) is an ellipsoid. Eliminate the cross-terms by performing an orthogonal change of variables. Express this ellipsoid in the standard form \(\frac{y_1^2}{a^2} + \frac{y_2^2}{b^2} + \frac{y_3^2}{c^2} = 1 \).

Definition 22 A quadratic form \(x^T A x \) is non-degenerate if all eigenvalues of \(A \) are non-zero.

Definition 23 The signature of a non-degenerate quadratic form \(x^T A x \), denoted by \(\text{sig}(A) \), is the number of negative eigenvalues of \(A \).

Theorem 24 Let \(x^T A x \) be a non-degenerate quadratic form in two variables.

1. If \(\text{sig}(A) = 0 \), then \(x^T A x = 1 \) is an ellipse.
2. If \(\text{sig}(A) = 1 \), then \(x^T A x = 1 \) is a hyperbola.

Theorem 25 Let \(x^T A x \) be a non-degenerate quadratic form in three variables.

1. If \(\text{sig}(A) = 0 \), then \(x^T A x = 1 \) is an ellipsoid.
2. If \(\text{sig}(A) = 1 \), then \(x^T A x = 1 \) is a hyperboloid of one sheet.
3. If \(\text{sig}(A) = 2 \), then \(x^T A x = 1 \) is a hyperboloid of two sheets.