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Cellular Decomposition

Let X denote a connected network, surface, solid or union
thereof embedded in R3 or S3

A cellular decomposition of X is a finite collection of

discrete points (vertices or 0-cells)
closed intervals (edges or 1-cells)
closed disks (faces or 2-cells)
closed balls (solids or 3-cells)

glued together so that the

non-empty boundary of a k-cell is a union of (k − 1)-cells
non-empty intersection of cells is a cell
union of all cells is X
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Chain Complex

A chain complex is

a vector space C (X ) with basis {cells of X}, and

a boundary operator ∂ : C (X )→ C (X ) that is

zero on vertices
linear on chains
a derivation of Cartesian product
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Homology

H∗(C ) = ker∂/Im∂

Elements of H∗(C ) are cosets [c] = c + Im∂

equivalence classes of nonbounding cycles that differ only by a
boundary

Note: Homology alone does not detect linkage!
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Diagonal Approximation

A map ∆ : X → X × X is a diagonal approximation if

1 ∆ is homotopic to ∆G

2 ∆(c) is a subcomplex of c × c

3 ∂ is a coderivation of ∆, i.e., ∆∂ = (∂ × Id + Id× ∂)∆
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Coproduct Notation

Some notation:

We will denote the diagonal approximation on chains by ∆2

Higher coproducts on chains will be denoted by subscripts,
e.g., ∆3,∆4, . . .

Coproducts transferred to homology will be denoted by
superscripts, e.g., ∆2,∆3, . . .
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Brunnian Links

A Brunnian link is a nontrivial link such that the removal of
any component results in an unlink.

Example: Borromean rings (3-component Brunnian link)

We will denote the link complement in S3 of an n-component
Brunnian link by BRn, n ≥ 3.
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Conjecture

Conjecture

A diagonal approximation ∆2 on C (BRn) induces

a primitive diagonal ∆2 : H(BRn)⊗ H(BRn),

trivial k-ary operations ∆k : H(BRn)⊗k for 3 ≤ k < n, and

a non-trivial n-ary operation ∆n : H(BR)→ H(BR)⊗n.
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Predictions

Hence, for the Borromean rings we are expected to find:

a primitive ∆2

a non-trivial ∆3

These coproducts will be induced through the Transfer Algorithm.
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Transferring Coproducts

Goal:

A∞-coalgebra on chains
(C , ∂,∆2,∆3, ...)

↓
(H, 0,∆2,∆3, ...)

A∞-coalgebra in homology
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Transferring Coproducts

Required input:

Coalgebra on chains (C , ∂,∆2,∆3, ...) and

a cycle-selecting map g : H → Z (C ), where Z (C ) denotes the
subspace of cycles in C .

Note: In practice we only required ∆2 at the outset and computed
the rest as needed.
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How Does It Work?

Strategy: Construct a chain map from the top dimension and
codim-1 cells of the (n − 1)-dimensional multiplihedron, denoted
Jn, to maps between H and C⊗n.
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Beginning Steps

Jn is a polytope that captures the combinatiorial structure of
mapping between two A∞-coalgebras.

Consider J1 and J2.
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Extending to J3

7→

g⊗3
(
∆2 ⊗ 1

)
∆2 g⊗3

(
1⊗∆2

)
∆2

(
g2 ⊗ g

)
∆2

(
g ⊗ g2

)
∆2

(∆2g ⊗ g) ∆2 (g ⊗∆2g) ∆2

(∆2 ⊗ 1) g2 (1⊗∆2) g2

(∆2 ⊗ 1) ∆2g ∆3g (1⊗∆2) ∆2g
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Linear Algebraic Methods

Good News

Linear algebra provides robust
and theoretically correct methods
for solving the various induction
steps of the transfer algorithm.
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Linear Algebraic Methods

Good News

Linear algebra provides robust
and theoretically correct methods
for solving the various induction
steps of the transfer algorithm.

Bad News

The matrices are too large to be
solved within a reasonable
amount of storage space and
time.
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Two Problems

Problem (Preboundary)

Given a cycle x ∈ C⊗n of degree k , find a chain y ∈ C⊗n of degree
k + 1, such that ∂(y) = x .

Problem (Factorization)

Given a cycle c ∈ Z (C⊗n), find all subcycles of c of the form
Z (C )⊗n.
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Preboundary Problem: ∆3

First problem arose in computing ∆3

It is the preboundary of (∆2 ⊗ 1 + 1⊗∆2)∆2

Brute force linear algebra approach entails 1.8 mil row × 4 mil
column matrix

Instead, solved with a best-first search algorithm
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Factorization Problem

Second problem comes from deriving ∆n

Transfer Algorithm specifies computing [φn], i.e.,
H∗(Hom(H,Z (C⊗(n+2))))

However, Künneth Theorem tells us that H∗(C
⊗n) ∼= H∗(C )⊗n

Hence, non-boundary cycles in φn in should be of the form
Z (C )⊗(n+2)

Again, an algorithmic approach appears to be a feasible
alternative
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Unlink vs. Hopf Link
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Results

Transfer algorithm yields

a primitive ∆2 for unlink

a non-primitive ∆2 for the Hopf

for the Borromean rings

a primitive ∆2

a non-trivial ∆3

all of which are consistent with the conjecture!
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Future Work

φ2 was non-trivial in BR3, so either ∆4 or g4 is non-trivial (or
both)

the 4-component Brunnian link is a natural next step, BUT...

∆3 appears significantly harder to compute
the last steps of BR3 were actually done by hand, and BR4 will
only be worse

both the preboundary and factorization algorithms need
improvement
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Thank You

Thank You!
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