Computational Application of a Transfer Algorithm to the Borromean Rings

Merv Fansler
Millersville University of Pennsylvania

29 June 2016

Advised by Ron Umble

Background

- started as summer (2015) project proposed by Ron Umble

Background

- started as summer (2015) project proposed by Ron Umble
- algorithm to possibly detect linkage in Brunnian links

Background

- started as summer (2015) project proposed by Ron Umble
- algorithm to possibly detect linkage in Brunnian links
- requires some algebraic topology and probably a lot of computation
(1) Introduction
(2) Transfer Algorithm
(3) Implementation
(4) Examples
(5) Conclusions

Table of Contents

(1) Introduction
(2) Transfer Algorithm
(3) Implementation

4 Examples
(5) Conclusions

Cellular Decomposition

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^{3} or S^{3}

Cellular Decomposition

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^{3} or S^{3}
- A cellular decomposition of X is a finite collection of

Cellular Decomposition

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^{3} or S^{3}
- A cellular decomposition of X is a finite collection of - discrete points (vertices or 0-cells)

Cellular Decomposition

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^{3} or S^{3}
- A cellular decomposition of X is a finite collection of
- discrete points (vertices or 0-cells)
- closed intervals (edges or 1-cells)

Cellular Decomposition

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^{3} or S^{3}
- A cellular decomposition of X is a finite collection of
- discrete points (vertices or 0-cells)
- closed intervals (edges or 1-cells)
- closed disks (faces or 2-cells)

Cellular Decomposition

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^{3} or S^{3}
- A cellular decomposition of X is a finite collection of
- discrete points (vertices or 0-cells)
- closed intervals (edges or 1-cells)
- closed disks (faces or 2-cells)
- closed balls (solids or 3-cells)

Cellular Decomposition

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^{3} or S^{3}
- A cellular decomposition of X is a finite collection of
- discrete points (vertices or 0-cells)
- closed intervals (edges or 1-cells)
- closed disks (faces or 2-cells)
- closed balls (solids or 3-cells)
- glued together so that the

Cellular Decomposition

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^{3} or S^{3}
- A cellular decomposition of X is a finite collection of
- discrete points (vertices or 0-cells)
- closed intervals (edges or 1 -cells)
- closed disks (faces or 2-cells)
- closed balls (solids or 3-cells)
- glued together so that the
- non-empty boundary of a k-cell is a union of $(k-1)$-cells

Cellular Decomposition

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^{3} or S^{3}
- A cellular decomposition of X is a finite collection of
- discrete points (vertices or 0-cells)
- closed intervals (edges or 1-cells)
- closed disks (faces or 2-cells)
- closed balls (solids or 3-cells)
- glued together so that the
- non-empty boundary of a k-cell is a union of $(k-1)$-cells
- non-empty intersection of cells is a cell

Cellular Decomposition

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^{3} or S^{3}
- A cellular decomposition of X is a finite collection of
- discrete points (vertices or 0-cells)
- closed intervals (edges or 1 -cells)
- closed disks (faces or 2-cells)
- closed balls (solids or 3-cells)
- glued together so that the
- non-empty boundary of a k-cell is a union of $(k-1)$-cells
- non-empty intersection of cells is a cell
- union of all cells is X

Chain Complex

A chain complex is

- a vector space $C(X)$ with basis $\{$ cells of X, and

Chain Complex

A chain complex is

- a vector space $C(X)$ with basis $\{$ cells of X, and
- a boundary operator $\partial: C(X) \rightarrow C(X)$ that is

Chain Complex

A chain complex is

- a vector space $C(X)$ with basis $\{$ cells of X, and
- a boundary operator $\partial: C(X) \rightarrow C(X)$ that is
- zero on vertices

Chain Complex

A chain complex is

- a vector space $C(X)$ with basis $\{$ cells of X, and
- a boundary operator $\partial: C(X) \rightarrow C(X)$ that is
- zero on vertices
- linear on chains

Chain Complex

A chain complex is

- a vector space $C(X)$ with basis $\{$ cells of X, and
- a boundary operator $\partial: C(X) \rightarrow C(X)$ that is
- zero on vertices
- linear on chains
- a derivation of Cartesian product

Homology

- $H_{*}(C)=\operatorname{ker} \partial / \operatorname{Im} \partial$

Homology

- $H_{*}(C)=\operatorname{ker} \partial / \operatorname{Im} \partial$
- Elements of $H_{*}(C)$ are cosets $[c]=c+\operatorname{Im} \partial$

Homology

- $H_{*}(C)=\operatorname{ker} \partial / \operatorname{Im} \partial$
- Elements of $H_{*}(C)$ are cosets $[c]=c+\operatorname{Im} \partial$
- equivalence classes of nonbounding cycles that differ only by a boundary

Homology

- $H_{*}(C)=\operatorname{ker} \partial / \operatorname{Im} \partial$
- Elements of $H_{*}(C)$ are cosets $[c]=c+\operatorname{Im} \partial$
- equivalence classes of nonbounding cycles that differ only by a boundary
- Note: Homology alone does not detect linkage!

Diagonal Approximation

A map $\Delta: X \rightarrow X \times X$ is a diagonal approximation if
(1) Δ is homotopic to Δ^{G}

Diagonal Approximation

A map $\Delta: X \rightarrow X \times X$ is a diagonal approximation if
(1) Δ is homotopic to Δ^{G}
(2) $\Delta(c)$ is a subcomplex of $c \times c$

Diagonal Approximation

A map $\Delta: X \rightarrow X \times X$ is a diagonal approximation if
(1) Δ is homotopic to Δ^{G}
(2) $\Delta(c)$ is a subcomplex of $c \times c$
(3) ∂ is a coderivation of Δ, i.e., $\Delta \partial=(\partial \times \operatorname{Id}+\operatorname{Id} \times \partial) \Delta$

Coproduct Notation

Some notation:

- We will denote the diagonal approximation on chains by Δ_{2}

Coproduct Notation

Some notation:

- We will denote the diagonal approximation on chains by Δ_{2}
- Higher coproducts on chains will be denoted by subscripts, e.g., $\Delta_{3}, \Delta_{4}, \ldots$

Coproduct Notation

Some notation:

- We will denote the diagonal approximation on chains by Δ_{2}
- Higher coproducts on chains will be denoted by subscripts, e.g., $\Delta_{3}, \Delta_{4}, \ldots$
- Coproducts transferred to homology will be denoted by superscripts, e.g., $\Delta^{2}, \Delta^{3}, \ldots$

Brunnian Links

- A Brunnian link is a nontrivial link such that the removal of any component results in an unlink.

Brunnian Links

- A Brunnian link is a nontrivial link such that the removal of any component results in an unlink.
- Example: Borromean rings (3-component Brunnian link)

Brunnian Links

- A Brunnian link is a nontrivial link such that the removal of any component results in an unlink.
- Example: Borromean rings (3-component Brunnian link)

- We will denote the link complement in S^{3} of an n-component Brunnian link by $B R_{n}, n \geq 3$.

Conjecture

Conjecture

A diagonal approximation Δ_{2} on $C\left(B R_{n}\right)$ induces

- a primitive diagonal $\Delta^{2}: H\left(B R_{n}\right) \otimes H\left(B R_{n}\right)$,
- trivial k-ary operations $\Delta^{k}: H\left(B R_{n}\right)^{\otimes k}$ for $3 \leq k<n$, and
- a non-trivial n-ary operation $\Delta^{n}: H(B R) \rightarrow H(B R)^{\otimes n}$.

Predictions

Hence, for the Borromean rings we are expected to find:

- a primitive Δ^{2}
- a non-trivial Δ^{3}

These coproducts will be induced through the Transfer Algorithm.

Table of Contents

(1) Introduction
(2) Transfer Algorithm
(3) Implementation

4 Examples
(5) Conclusions

Transferring Coproducts

Goal:

A_{∞}-coalgebra on chains
$\left(C, \partial, \Delta_{2}, \Delta_{3}, \ldots\right)$
\downarrow
$\left(H, 0, \Delta^{2}, \Delta^{3}, \ldots\right)$
A_{∞}-coalgebra in homology

Transferring Coproducts

Required input:

- Coalgebra on chains ($C, \partial, \Delta_{2}, \Delta_{3}, \ldots$) and
- a cycle-selecting map $g: H \rightarrow Z(C)$, where $Z(C)$ denotes the subspace of cycles in C.
Note: In practice we only required Δ_{2} at the outset and computed the rest as needed.

How Does It Work?

Strategy: Construct a chain map from the top dimension and codim-1 cells of the ($n-1$)-dimensional multiplihedron, denoted J_{n}, to maps between H and $C^{\otimes n}$.

Beginning Steps

- J_{n} is a polytope that captures the combinatiorial structure of mapping between two A_{∞}-coalgebras.

Beginning Steps

- J_{n} is a polytope that captures the combinatiorial structure of mapping between two A_{∞}-coalgebras.
- Consider J_{1} and J_{2}.

Extending to J_{3}

Table of Contents

(1) Introduction
(2) Transfer Algorithm
(3) Implementation

4 Examples
(5) Conclusions

Linear Algebraic Methods

Good News

Linear algebra provides robust and theoretically correct methods for solving the various induction steps of the transfer algorithm.

Linear Algebraic Methods

Good News

Linear algebra provides robust and theoretically correct methods for solving the various induction steps of the transfer algorithm.

Bad News

The matrices are too large to be solved within a reasonable amount of storage space and time.

Two Problems

Problem (Preboundary)

Given a cycle $x \in C^{\otimes n}$ of degree k, find a chain $y \in C^{\otimes n}$ of degree $k+1$, such that $\partial(y)=x$.

Problem (Factorization)

Given a cycle $c \in Z\left(C^{\otimes n}\right)$, find all subcycles of c of the form $Z(C)^{\otimes n}$.

Preboundary Problem: Δ_{3}

- First problem arose in computing Δ_{3}

Preboundary Problem: Δ_{3}

- First problem arose in computing Δ_{3}
- It is the preboundary of $\left(\Delta_{2} \otimes 1+1 \otimes \Delta_{2}\right) \Delta_{2}$

Preboundary Problem: Δ_{3}

- First problem arose in computing Δ_{3}
- It is the preboundary of $\left(\Delta_{2} \otimes 1+1 \otimes \Delta_{2}\right) \Delta_{2}$
- Brute force linear algebra approach entails 1.8 mil row $\times 4$ mil column matrix

Preboundary Problem: Δ_{3}

- First problem arose in computing Δ_{3}
- It is the preboundary of $\left(\Delta_{2} \otimes 1+1 \otimes \Delta_{2}\right) \Delta_{2}$
- Brute force linear algebra approach entails 1.8 mil row $\times 4$ mil column matrix
- Instead, solved with a best-first search algorithm

Factorization Problem

- Second problem comes from deriving Δ^{n}

Factorization Problem

- Second problem comes from deriving Δ^{n}
- Transfer Algorithm specifies computing [ϕ_{n}], i.e., $H_{*}\left(\operatorname{Hom}\left(H, Z\left(C^{\otimes(n+2)}\right)\right)\right)$

Factorization Problem

- Second problem comes from deriving Δ^{n}
- Transfer Algorithm specifies computing [ϕ_{n}], i.e., $H_{*}\left(\operatorname{Hom}\left(H, Z\left(C^{\otimes(n+2)}\right)\right)\right)$
- However, Künneth Theorem tells us that $H_{*}\left(C^{\otimes n}\right) \cong H_{*}(C)^{\otimes n}$

Factorization Problem

- Second problem comes from deriving Δ^{n}
- Transfer Algorithm specifies computing [ϕ_{n}], i.e., $H_{*}\left(\operatorname{Hom}\left(H, Z\left(C^{\otimes(n+2)}\right)\right)\right)$
- However, Künneth Theorem tells us that $H_{*}\left(C^{\otimes n}\right) \cong H_{*}(C)^{\otimes n}$
- Hence, non-boundary cycles in ϕ_{n} in should be of the form $Z(C)^{\otimes(n+2)}$

Factorization Problem

- Second problem comes from deriving Δ^{n}
- Transfer Algorithm specifies computing [ϕ_{n}], i.e., $H_{*}\left(\operatorname{Hom}\left(H, Z\left(C^{\otimes(n+2)}\right)\right)\right)$
- However, Künneth Theorem tells us that $H_{*}\left(C^{\otimes n}\right) \cong H_{*}(C)^{\otimes n}$
- Hence, non-boundary cycles in ϕ_{n} in should be of the form $Z(C)^{\otimes(n+2)}$
- Again, an algorithmic approach appears to be a feasible alternative

Table of Contents

(1) Introduction
(2) Transfer Algorithm
(3) Implementation
(4) Examples
(5) Conclusions

Unlink vs. Hopf Link

2-Component Unlink

Hopf Link

2-Component Unlink

Hopf Link

Table of Contents

(1) Introduction
(2) Transfer Algorithm
(3) Implementation

4 Examples
(5) Conclusions

Results

Transfer algorithm yields

- a primitive Δ^{2} for unlink

Results

Transfer algorithm yields

- a primitive Δ^{2} for unlink
- a non-primitive Δ^{2} for the Hopf

Results

Transfer algorithm yields

- a primitive Δ^{2} for unlink
- a non-primitive Δ^{2} for the Hopf
- for the Borromean rings

Results

Transfer algorithm yields

- a primitive Δ^{2} for unlink
- a non-primitive Δ^{2} for the Hopf
- for the Borromean rings
- a primitive Δ^{2}

Results

Transfer algorithm yields

- a primitive Δ^{2} for unlink
- a non-primitive Δ^{2} for the Hopf
- for the Borromean rings
- a primitive Δ^{2}
- a non-trivial Δ^{3}

Results

Transfer algorithm yields

- a primitive Δ^{2} for unlink
- a non-primitive Δ^{2} for the Hopf
- for the Borromean rings
- a primitive Δ^{2}
- a non-trivial Δ^{3}
- all of which are consistent with the conjecture!

Future Work

- ϕ_{2} was non-trivial in $B R_{3}$, so either Δ^{4} or g^{4} is non-trivial (or both)

Future Work

- ϕ_{2} was non-trivial in $B R_{3}$, so either Δ^{4} or g^{4} is non-trivial (or both)
- the 4-component Brunnian link is a natural next step, BUT...

Future Work

- ϕ_{2} was non-trivial in $B R_{3}$, so either Δ^{4} or g^{4} is non-trivial (or both)
- the 4-component Brunnian link is a natural next step, BUT...
- Δ_{3} appears significantly harder to compute

Future Work

- ϕ_{2} was non-trivial in $B R_{3}$, so either Δ^{4} or g^{4} is non-trivial (or both)
- the 4-component Brunnian link is a natural next step, BUT...
- Δ_{3} appears significantly harder to compute
- the last steps of $B R_{3}$ were actually done by hand, and $B R_{4}$ will only be worse

Future Work

- ϕ_{2} was non-trivial in $B R_{3}$, so either Δ^{4} or g^{4} is non-trivial (or both)
- the 4-component Brunnian link is a natural next step, BUT...
- Δ_{3} appears significantly harder to compute
- the last steps of $B R_{3}$ were actually done by hand, and $B R_{4}$ will only be worse
- both the preboundary and factorization algorithms need improvement

Thank You

Thank You!

