Computational Application of a Transfer Algorithm to the Borromean Rings

Merv Fansler

Millersville University of Pennsylvania

29 June 2016

Advised by Ron Umble

< 1 →

• started as summer (2015) project proposed by Ron Umble

< □ > < 同 > < 回 >

- started as summer (2015) project proposed by Ron Umble
- algorithm to possibly detect linkage in Brunnian links

< 17 ▶

- ∢ ≣ ▶

- started as summer (2015) project proposed by Ron Umble
- algorithm to possibly detect linkage in Brunnian links
- requires some algebraic topology and probably a lot of computation

< A >

- A 3 N

- 2 Transfer Algorithm
- Implementation

э

Table of Contents

- 2 Transfer Algorithm
- Implementation
- 4 Examples
- **5** Conclusions

< ∃ →

э

Cellular Decomposition

• Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^3 or S^3

(日)

Cellular Decomposition

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^3 or S^3
- A cellular decomposition of X is a finite collection of

< □ > < 同 >

- ∢ ≣ ▶

Cellular Decomposition

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^3 or S^3
- A cellular decomposition of X is a finite collection of
 - discrete points (vertices or 0-cells)

- ∢ f型 ▶

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^3 or S^3
- A cellular decomposition of X is a finite collection of
 - discrete points (vertices or 0-cells)
 - closed intervals (edges or 1-cells)

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^3 or S^3
- A cellular decomposition of X is a finite collection of
 - discrete points (vertices or 0-cells)
 - closed intervals (edges or 1-cells)
 - closed disks (faces or 2-cells)

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^3 or S^3
- A cellular decomposition of X is a finite collection of
 - discrete points (vertices or 0-cells)
 - closed intervals (edges or 1-cells)
 - closed disks (faces or 2-cells)
 - closed balls (solids or 3-cells)

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^3 or S^3
- A cellular decomposition of X is a finite collection of
 - discrete points (vertices or 0-cells)
 - closed intervals (edges or 1-cells)
 - closed disks (faces or 2-cells)
 - closed balls (solids or 3-cells)
- glued together so that the

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^3 or S^3
- A cellular decomposition of X is a finite collection of
 - discrete points (vertices or 0-cells)
 - closed intervals (edges or 1-cells)
 - closed disks (faces or 2-cells)
 - closed balls (solids or 3-cells)
- glued together so that the
 - non-empty boundary of a k-cell is a union of (k-1)-cells

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^3 or S^3
- A cellular decomposition of X is a finite collection of
 - discrete points (vertices or 0-cells)
 - closed intervals (edges or 1-cells)
 - closed disks (faces or 2-cells)
 - closed balls (solids or 3-cells)
- glued together so that the
 - non-empty boundary of a k-cell is a union of (k-1)-cells
 - non-empty intersection of cells is a cell

- Let X denote a connected network, surface, solid or union thereof embedded in \mathbb{R}^3 or S^3
- A cellular decomposition of X is a finite collection of
 - discrete points (vertices or 0-cells)
 - closed intervals (edges or 1-cells)
 - closed disks (faces or 2-cells)
 - closed balls (solids or 3-cells)
- glued together so that the
 - non-empty boundary of a k-cell is a union of (k-1)-cells
 - non-empty intersection of cells is a cell
 - union of all cells is X

A chain complex is

• a vector space C(X) with basis {cells of X}, and

Merv Fansler Transfer Algorithm on BR3

(日)

э

A chain complex is

- a vector space C(X) with basis {cells of X}, and
- a boundary operator $\partial : C(X) \to C(X)$ that is

- ∢ ≣ ▶

- ∢ 🗇 ▶

A chain complex is

- a vector space C(X) with basis {cells of X}, and
- a boundary operator $\partial : C(X) \to C(X)$ that is
 - zero on vertices

< □ > < 同 > < 回 >

A chain complex is

- a vector space C(X) with basis {cells of X}, and
- a boundary operator $\partial : C(X) \to C(X)$ that is
 - zero on vertices
 - linear on chains

< □ > < 同 > < 回 >

A chain complex is

- a vector space C(X) with basis {cells of X}, and
- a boundary operator $\partial : C(X) \to C(X)$ that is
 - zero on vertices
 - linear on chains
 - a derivation of Cartesian product

- ∢ 🗇 ▶

•
$$H_*(C) = \ker \partial / \operatorname{Im} \partial$$

・ロト ・回ト ・ヨト ・ヨト

æ

- $H_*(C) = \ker \partial / \mathrm{Im} \partial$
- Elements of $H_*(C)$ are cosets $[c] = c + \mathrm{Im}\partial$

< 日 > < 同 > < 三 > < 三 >

э

- $H_*(C) = \ker \partial / \mathrm{Im} \partial$
- Elements of $H_*(C)$ are cosets $[c] = c + \mathrm{Im}\partial$
- equivalence classes of nonbounding cycles that differ only by a boundary

(日)

∃ >

- $H_*(C) = \ker \partial / \mathrm{Im} \partial$
- Elements of $H_*(C)$ are cosets $[c] = c + \mathrm{Im}\partial$
- equivalence classes of nonbounding cycles that differ only by a boundary
- Note: Homology alone does not detect linkage!

(日)

Diagonal Approximation

A map $\Delta : X \to X \times X$ is a **diagonal approximation** if • Δ is homotopic to Δ^{G}

(日)

Diagonal Approximation

A map $\Delta: X \to X \times X$ is a **diagonal approximation** if

- **(1)** Δ is homotopic to Δ^{G}
- **2** $\Delta(c)$ is a subcomplex of $c \times c$

<ロト < 同ト < 三ト

Diagonal Approximation

- A map $\Delta: X \to X \times X$ is a **diagonal approximation** if
 - **(1)** Δ is homotopic to Δ^{G}
 - **2** $\Delta(c)$ is a subcomplex of $c \times c$
 - **3** ∂ is a coderivation of Δ , i.e., $\Delta \partial = (\partial \times \mathrm{Id} + \mathrm{Id} \times \partial) \Delta$

Coproduct Notation

Some notation:

 \bullet We will denote the diagonal approximation on chains by Δ_2

< □ > < 同 >

- ∢ ≣ ▶

Coproduct Notation

Some notation:

- We will denote the diagonal approximation on chains by Δ_2
- Higher coproducts on chains will be denoted by subscripts, e.g., $\Delta_3, \Delta_4, \ldots$

< ∃ →

< A

Coproduct Notation

Some notation:

- We will denote the diagonal approximation on chains by Δ_2
- Higher coproducts on chains will be denoted by subscripts, e.g., $\Delta_3, \Delta_4, \ldots$
- Coproducts transferred to homology will be denoted by superscripts, e.g., $\Delta^2, \Delta^3, \ldots$

Brunnian Links

• A Brunnian link is a nontrivial link such that the removal of any component results in an unlink.

< 日 > < 同 > < 三 > < 三 >

э

Brunnian Links

- A Brunnian link is a nontrivial link such that the removal of any component results in an unlink.
- Example: Borromean rings (3-component Brunnian link)

< □ > < 同 >

- ₹ 🖬 🕨

Brunnian Links

- A Brunnian link is a nontrivial link such that the removal of any component results in an unlink.
- Example: Borromean rings (3-component Brunnian link)

• We will denote the link complement in S^3 of an *n*-component Brunnian link by BR_n , $n \ge 3$.

Conjecture

A diagonal approximation Δ_2 on $C(BR_n)$ induces

- a primitive diagonal Δ^2 : $H(BR_n) \otimes H(BR_n)$,
- trivial k-ary operations Δ^k : $H(BR_n)^{\otimes k}$ for $3 \le k < n$, and
- a non-trivial n-ary operation $\Delta^n : H(BR) \to H(BR)^{\otimes n}$.

< □ > < 同 > < 回 >

Hence, for the Borromean rings we are expected to find:

- a primitive Δ^2
- a non-trivial Δ^3

These coproducts will be induced through the Transfer Algorithm.
Table of Contents

Introduction

2 Transfer Algorithm

3 Implementation

4 Examples

5 Conclusions

3

Transferring Coproducts

Goal:

 $\begin{array}{c} A_{\infty}\text{-coalgebra on chains} \\ (C, \partial, \Delta_2, \Delta_3, ...) \\ \downarrow \\ (H, 0, \Delta^2, \Delta^3, ...) \\ A_{\infty}\text{-coalgebra in homology} \end{array}$

< 17 >

- ₹ 🖬 🕨

Transferring Coproducts

Required input:

- Coalgebra on chains (${\it C}, \partial, \Delta_2, \Delta_3, ...)$ and
- a cycle-selecting map g : H → Z(C), where Z(C) denotes the subspace of cycles in C.

Note: In practice we only required Δ_2 at the outset and computed the rest as needed.

How Does It Work?

Strategy: Construct a chain map from the top dimension and codim-1 cells of the (n-1)-dimensional multiplihedron, denoted J_n , to maps between H and $C^{\otimes n}$.

 J_n is a polytope that captures the combinational structure of mapping between two A_∞-coalgebras.

< 17 ▶

- ∢ ≣ ▶

- J_n is a polytope that captures the combinational structure of mapping between two A_∞-coalgebras.
- Consider J_1 and J_2 .

<ロト < 同ト < 三ト

Extending to J_3

(日) (同) (三) (三)

Table of Contents

Introduction

2 Transfer Algorithm

Implementation

4 Examples

5 Conclusions

< ∃ →

э

Linear Algebraic Methods

Good News

Linear algebra provides robust and theoretically correct methods for solving the various induction steps of the transfer algorithm.

Linear Algebraic Methods

Good News

Linear algebra provides robust and theoretically correct methods for solving the various induction steps of the transfer algorithm.

Bad News

The matrices are too large to be solved within a reasonable amount of storage space and time.

Two Problems

Problem (Preboundary)

Given a cycle $x \in C^{\otimes n}$ of degree k, find a chain $y \in C^{\otimes n}$ of degree k + 1, such that $\partial(y) = x$.

Problem (Factorization)

Given a cycle $c \in Z(C^{\otimes n})$, find all subcycles of c of the form $Z(C)^{\otimes n}$.

< ロ > < 同 > < 三 > <

Preboundary Problem: Δ_3

 \bullet First problem arose in computing Δ_3

(日) (同) (三) (三)

Preboundary Problem: Δ_3

- First problem arose in computing Δ_3
- It is the preboundary of $(\Delta_2 \otimes 1 + 1 \otimes \Delta_2) \Delta_2$

< □ > < 同 >

- ∢ ≣ ▶

Preboundary Problem: Δ_3

- First problem arose in computing Δ_3
- It is the preboundary of $(\Delta_2\otimes 1+1\otimes \Delta_2)\Delta_2$
- $\bullet\,$ Brute force linear algebra approach entails 1.8 mil row $\times\,$ 4 mil column matrix

- ∢ ≣ ▶

< □ > < 向 >

Preboundary Problem: Δ_3

- First problem arose in computing Δ_3
- It is the preboundary of $(\Delta_2 \otimes 1 + 1 \otimes \Delta_2) \Delta_2$
- $\bullet\,$ Brute force linear algebra approach entails 1.8 mil row \times 4 mil column matrix
- Instead, solved with a best-first search algorithm

Factorization Problem

• Second problem comes from deriving Δ^n

(日) (同) (三) (三)

э

Factorization Problem

- Second problem comes from deriving Δ^n
- Transfer Algorithm specifies computing $[\phi_n]$, i.e., $H_*(\text{Hom}(H, Z(C^{\otimes (n+2)})))$

(日)

Factorization Problem

- Second problem comes from deriving Δ^n
- Transfer Algorithm specifies computing $[\phi_n]$, i.e., $H_*(\text{Hom}(H, Z(C^{\otimes (n+2)})))$
- However, Künneth Theorem tells us that $H_*(C^{\otimes n}) \cong H_*(C)^{\otimes n}$

< ∃ >

- ∢ 🗇 ▶

Factorization Problem

- Second problem comes from deriving Δ^n
- Transfer Algorithm specifies computing $[\phi_n]$, i.e., $H_*(\operatorname{Hom}(H, Z(C^{\otimes (n+2)})))$
- However, Künneth Theorem tells us that $H_*(C^{\otimes n}) \cong H_*(C)^{\otimes n}$
- Hence, non-boundary cycles in ϕ_n in should be of the form $Z(C)^{\otimes (n+2)}$

- ∢ f型 ▶

Factorization Problem

- Second problem comes from deriving Δ^n
- Transfer Algorithm specifies computing $[\phi_n]$, i.e., $H_*(\operatorname{Hom}(H, Z(C^{\otimes (n+2)})))$
- However, Künneth Theorem tells us that $H_*(C^{\otimes n}) \cong H_*(C)^{\otimes n}$
- Hence, non-boundary cycles in ϕ_n in should be of the form $Z(C)^{\otimes (n+2)}$
- Again, an algorithmic approach appears to be a feasible alternative

Table of Contents

Introduction

- 2 Transfer Algorithm
- Implementation

3

Unlink vs. Hopf Link

Hopf Link

・ロッ ・ 一 ・ ・ ・ ・

3 x 3

2-Component Unlink

・ロット (雪) () () (

3 x 3

イロン イロン イヨン イヨン

æ

Table of Contents

Introduction

- 2 Transfer Algorithm
- 3 Implementation

4 Examples

< ∃ →

$\label{eq:constraint} \begin{array}{l} \mbox{Transfer algorithm yields} \\ \bullet \mbox{ a primitive } \Delta^2 \mbox{ for unlink} \end{array}$

Merv Fansler Transfer Algorithm on BR3

・ロト ・日下・ ・日下

э

-

Transfer algorithm yields

- $\bullet\,$ a primitive Δ^2 for unlink
- a non-primitive Δ^2 for the Hopf

< □ > < 同 >

- E

Transfer algorithm yields

- a primitive Δ^2 for unlink
- $\bullet\,$ a non-primitive Δ^2 for the Hopf
- for the Borromean rings

< 一型

Transfer algorithm yields

- $\bullet\,$ a primitive Δ^2 for unlink
- $\bullet\,$ a non-primitive Δ^2 for the Hopf
- for the Borromean rings
 - $\bullet\,$ a primitive Δ^2

< 一型

Transfer algorithm yields

- a primitive Δ^2 for unlink
- $\bullet\,$ a non-primitive Δ^2 for the Hopf
- for the Borromean rings
 - $\bullet\,$ a primitive Δ^2
 - $\bullet\,$ a non-trivial Δ^3

Transfer algorithm yields

- a primitive Δ^2 for unlink
- a non-primitive Δ^2 for the Hopf
- for the Borromean rings
 - $\bullet\,$ a primitive Δ^2
 - ${\, \bullet \,}$ a non-trivial Δ^3
- all of which are consistent with the conjecture!

• ϕ_2 was non-trivial in BR_3 , so either Δ^4 or g^4 is non-trivial (or both)

э

(日) (同) (三) (三)

- ϕ_2 was non-trivial in BR_3 , so either Δ^4 or g^4 is non-trivial (or both)
- the 4-component Brunnian link is a natural next step, BUT...

(日) (同) (三) (三)

Future Work

- ϕ_2 was non-trivial in BR_3 , so either Δ^4 or g^4 is non-trivial (or both)
- the 4-component Brunnian link is a natural next step, BUT...
 - Δ_3 appears significantly harder to compute

< □ > < 同 >

- A - B - M

Future Work

- ϕ_2 was non-trivial in BR_3 , so either Δ^4 or g^4 is non-trivial (or both)
- the 4-component Brunnian link is a natural next step, BUT...
 - Δ_3 appears significantly harder to compute
 - the last steps of BR_3 were actually done by hand, and BR_4 will only be worse

Future Work

- ϕ_2 was non-trivial in BR_3 , so either Δ^4 or g^4 is non-trivial (or both)
- the 4-component Brunnian link is a natural next step, BUT...
 - Δ_3 appears significantly harder to compute
 - the last steps of BR_3 were actually done by hand, and BR_4 will only be worse
- both the preboundary and factorization algorithms need improvement
Introduction Transfer Algorithm Implementation Examples Conclusions

Thank You!

Merv Fansler Transfer Algorithm on BR3

<ロ> <同> <同> < 回> < 回>

æ