An A.-Coalgebra Structure on a Polygon

Abstract

Let P be a polygon with n vertices, let V' be the graded vector
space generated by the vertices, edges, and region of P, and let
0 : V. — V be the map induced by the geometric boundary.
There is a homotopy coassociative coproduct Ay : V — V Q V.,

a coassociator As : V. — V' and non-vanishing higher order
operations Ar : V. — V® for all k < n. The vector space
V' together with 0 and the operations {Ax} is an Ay-coalgebra.
To our knowledge, this project presents the first such family of
examples.

The Associahedra

Given a sequence of n objects, how many different ways are there to
associate them? When n = 3 there are two possibilities: e(ee) and
(e@)e. when n = 4 there are five possibilities: ((ee)e)e (o(ee))e
(e0)(0e) o((ee)e) and e(e(ee)) and so on. The associations of n
objects are encoded combinatorially by the associahedron K,,, which
is an (n — 2)-dimensional polytope: K5 is a point, K3 is a closed in-
terval, K} is a pentagon, and so on. The top (n — 2)-dimensional cell
of K, corresponds to the initial sequence of unparenthesized objects;
the (n — 3)-dimensional cells correspond to the various ways to insert
one pair of parentheses; the (n — 4)-dimensional cells correspond to
the various ways to insert two pairs of parentheses, and so on until
you reach the vertices in dimension 0. For example, the 2-dimensional
region of the pentagon K, corresponds to four unparenthesized ob-
jects, each edge corresponds to one of the five ways to insert one pair
of parentheses, and each vertex corresponds to one of the five ways to
insert a second pair of parentheses (see Figure 1). In our application,
the associahedra organize the data that defines an A,.-coalgebra.
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Figure 1: The associahedron K.
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Differential Graded Vector Spaces

Consider an n-gon P with edges €4, eo, ..., e, and vertices vy, vo, ..., Uy,
labeled so that v; and v, are the endpoints of e; when ¢ < n. The
vector space generated by P, its vertices, and its edges is a graded
vector space denoted by C (P). Each basis vector has a geometric
dimension: dim P = 2, dime; = 1, and dimv; = 0. The vectors
in C, (P) are called the cellular chains of P (see Figure 2). The
geometric boundary induces a linear operator 0 on C, (P): dv; = 0,
oe; = v;+v;y1 fori <n, de,, = vi+v,, and OP = e;+ey+---+e,.
Notice that 0 o @ = 0 because the boundary of a vertex is empty;,
the boundary of an edge is two vertices, and the boundary of
P is a simple closed curve, all of which have empty boundary:.
The pair (Cy (P),0) is called a differential graded wvector space
(dgvs). Here we use Zs coefficients, but our results hold over any field.

Figure 2: The basis for C.(P) when n = 6.

The Vector Space Hom, (V, V")

Given a dgvs (V,0), the n-fold tensor product V" is a dgvs with
differential 0% defined by

1=1

The degree of a linear map f : V' — V%™ is the number of dimensions
f raises a vector in V. For example, degd = —1 because 0 lowers
dimension by 1. Let Hom, (V, V") denote the set of all linear maps
f:V — V& of degree p. Then Hom, (V,V®") is a dgvs with
differntial 0 defined by

0(f)=fod+0"0f.
Let 1 : V — V be the identity map. For each n > 2, choose a map

A, € Hom, o (V, V") and think of a parenthesization of n objects
as a composition of these maps. For example,

o000 < (1® A3 A

A, -coalgebras Defined

For2 <k <n-—2let a:C, (K, — Hom,_; (V,V®") denote
the correspondence between cells of K,, indexed by parenthesizations

of n objects and compositions of maps as above. Linearly extend o
to all of Cy(K,). Let 6, denote the (n — 2)-dimensional cell of K,.

Definition. A dguvs (V,0) together with a family of maps
{Ao, A3, ...} is an Ay -coalgebra iff for alln > 2,

ad (0,) = da (6,) .

Note that 0K, is the sum of those cells in K, representing n objects
with one pair of inserted parentheses. The map « identifies these cells
with all possible quadratic compositions of the maps {1, Ay, A3, ...}
in Hom, (V,V®"). Thus (V, ) is an A,-coalgebra iff the following

relation holds for each n > 2:

n—2n—I[(—1 , ,
S =X 3 (e Mm@ ) Ay

Main Result

Given an n-gon P, n > 3, define

A2<€i) =V; K €; + €; @ Vi1 for? < n

AZ(en) =1 &Q €, + €, X Uy
AQ(P):U1®P+P®Un—|— Z 62'1@62'2
0<11<19<n
Ap(P) = > e, ®e, R Qe for k> 2
0<11<19<---<1.<N
Ar(o) =0 for o # P.

Theorem. Let O be the differential operator on Cy(P) induced
by the geometric boundary. Then (Cy(P), 0, Ay, Ag, . ..) is an Ax-
coalgebra. Morevoer, A\, # 0 for all k < n and vanishes for all
k> n.

Open Questions

It would be interesting to know whether or not the theorem above
can be generalized to more complicated objects such as 3-dimensional
polyhedra and higher dimensional polytopes. Future work could begin
with a cube, consider general 3-dimensional solids, and ultimately
consider higher dimensional polytopes.



