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Abstract

Let P be a polygon with n vertices, let V be the graded vector
space generated by the vertices, edges, and region of P , and let
∂ : V → V be the map induced by the geometric boundary.
There is a homotopy coassociative coproduct ∆2 : V → V ⊗ V ,
a coassociator ∆3 : V → V ⊗3, and non-vanishing higher order
operations ∆k : V → V ⊗k for all k < n. The vector space
V together with ∂ and the operations {∆k} is an A∞-coalgebra.
To our knowledge, this project presents the first such family of
examples.

The Associahedra

Given a sequence of n objects, how many different ways are there to
associate them? When n = 3 there are two possibilities: •(••) and
(••)•, when n = 4 there are five possibilities: ((••)•)•, (•(••))•,
(••)(••), •((••)•), and •(•(••)), and so on. The associations of n
objects are encoded combinatorially by the associahedron Kn, which
is an (n− 2)-dimensional polytope: K2 is a point, K3 is a closed in-
terval, K4 is a pentagon, and so on. The top (n− 2)-dimensional cell
of Kn corresponds to the initial sequence of unparenthesized objects;
the (n− 3)-dimensional cells correspond to the various ways to insert
one pair of parentheses; the (n − 4)-dimensional cells correspond to
the various ways to insert two pairs of parentheses, and so on until
you reach the vertices in dimension 0. For example, the 2-dimensional
region of the pentagon K4 corresponds to four unparenthesized ob-
jects, each edge corresponds to one of the five ways to insert one pair
of parentheses, and each vertex corresponds to one of the five ways to
insert a second pair of parentheses (see Figure 1). In our application,
the associahedra organize the data that defines an A∞-coalgebra.
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Figure 1: The associahedron K4.

Differential Graded Vector Spaces

Consider an n-gon P with edges e1, e2, ..., en and vertices v1, v2, ..., vn,
labeled so that vi and vi+1 are the endpoints of ei when i < n. The
vector space generated by P, its vertices, and its edges is a graded
vector space denoted by C∗ (P ). Each basis vector has a geometric
dimension: dimP = 2, dim ei = 1, and dim vj = 0. The vectors
in C∗ (P ) are called the cellular chains of P (see Figure 2). The
geometric boundary induces a linear operator ∂ on C∗ (P ): ∂vi = 0,
∂ei = vi+ vi+1 for i < n, ∂en = v1 + vn, and ∂P = e1 + e2 + · · ·+ en.
Notice that ∂ ◦ ∂ = 0 because the boundary of a vertex is empty,
the boundary of an edge is two vertices, and the boundary of
P is a simple closed curve, all of which have empty boundary.
The pair (C∗ (P ) , ∂) is called a differential graded vector space
(dgvs). Here we use Z2 coefficients, but our results hold over any field.
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Figure 2: The basis for C∗(P ) when n = 6.

The Vector Space Hom∗ (V, V ⊗n)

Given a dgvs (V, ∂), the n-fold tensor product V ⊗n is a dgvs with
differential ∂⊗ defined by

∂⊗ (x1 ⊗ x2 ⊗ · · · ⊗ xn) =
n∑
i=1
x1 ⊗ · · · ⊗ ∂xi ⊗ · · · ⊗ xn.

The degree of a linear map f : V → V ⊗n is the number of dimensions
f raises a vector in V . For example, deg ∂ = −1 because ∂ lowers
dimension by 1. Let Homp (V, V ⊗n) denote the set of all linear maps
f : V → V ⊗n of degree p. Then Hom∗ (V, V ⊗n) is a dgvs with
differntial δ defined by

δ (f ) = f ◦ ∂ + ∂⊗ ◦ f.
Let 1 : V → V be the identity map. For each n ≥ 2, choose a map
∆n ∈ Homn−2 (V, V ⊗n) and think of a parenthesization of n objects
as a composition of these maps. For example,

•(• • •)↔ (1⊗∆3) ∆2.

A∞-coalgebras Defined

For 2 < k ≤ n − 2, let α : Cn−k(Kn) → Homn−k (V, V ⊗n) denote
the correspondence between cells of Kn indexed by parenthesizations
of n objects and compositions of maps as above. Linearly extend α
to all of C∗(Kn). Let θn denote the (n− 2)-dimensional cell of Kn.

Definition. A dgvs (V, ∂) together with a family of maps
{∆2,∆3, . . .} is an A∞ -coalgebra iff for all n ≥ 2,

α∂ (θn) = δα (θn) .
Note that ∂Kn is the sum of those cells in Kn representing n objects
with one pair of inserted parentheses. The map α identifies these cells
with all possible quadratic compositions of the maps {1,∆2,∆3, . . .}
in Hom∗ (V, V ⊗n) . Thus (V, ∂) is an A∞-coalgebra iff the following
relation holds for each n ≥ 2:

δ (∆n) =
n−2∑
l=1

n−l−1∑
i=0

(
1⊗i ⊗∆l+1 ⊗ 1⊗n−l−i−1)4n−l.

Main Result

Given an n-gon P , n ≥ 3, define
∆2(vi) =vi ⊗ vi
∆2(ei) =vi ⊗ ei + ei ⊗ vi+1 for i < n

∆2(en) =v1 ⊗ en + en ⊗ vn
∆2(P ) =v1 ⊗ P + P ⊗ vn +

∑
0<i1<i2<n

ei1 ⊗ ei2

∆k(P ) =
∑

0<i1<i2<···<ik<n
ei1 ⊗ ei2 ⊗ · · · ⊗ eik for k > 2

∆k(σ) =0 for σ 6= P.

Theorem. Let ∂ be the differential operator on C∗(P ) induced
by the geometric boundary. Then (C∗(P ), ∂,∆2,∆3, . . .) is an A∞-
coalgebra. Morevoer, ∆k 6= 0 for all k < n and vanishes for all
k ≥ n.

Open Questions

It would be interesting to know whether or not the theorem above
can be generalized to more complicated objects such as 3-dimensional
polyhedra and higher dimensional polytopes. Future work could begin
with a cube, consider general 3-dimensional solids, and ultimately
consider higher dimensional polytopes.


