An A_{∞}-coalgebra Structure on the Cellular Chains of a Polygon

Quinn Minnich

Millersville University

December 6, 2017

Introduction

- Suppose you had several objects that you wanted to combine using a binary operation.

Introduction

- Suppose you had several objects that you wanted to combine using a binary operation.
- What are all the different ways that you could associate them?

Introduction

Example

Three objects can be associated in two ways:

- (\bullet - •
- •(\bullet)

Introduction

Example

Three objects can be associated in two ways:

- (••) •
- •(\bullet •)

Example

Four objects can be associated in five ways:

- ($(\bullet \bullet) \bullet$ •
- $(\bullet(\bullet \bullet)) \bullet$
- $(\bullet \bullet)(\bullet \bullet)$
- • ((\bullet • $\bullet)$
- • $(\bullet(\bullet \bullet))$

Definition of an Associahedron

Definition

An associahedron, denoted K_{n}, is an $n-2$ dimensional polytope whose vertices are identified with the various ways one can parenthesize n variables.

Definition of an Associahedron

Definition

An associahedron, denoted K_{n}, is an $n-2$ dimensional polytope whose vertices are identified with the various ways one can parenthesize n variables.

Example: The associahedron K_{3}.

Another Associahedron Example

Example: The associahedron K_{4}.

Definition of a Differential Graded Vector Space

Definition

A differential graded (d.g.) vector space is a vector space $V=\oplus_{i \geq 0} V_{i}$ equipped with a differential operator $\partial: V_{*} \rightarrow V_{*-1}$ such that $\partial \circ \partial=0$.

Example of a Differential Graded Vector Space

Example

An n-gon for $n=6$

- $C_{0}(P)$ is the vector space generated by the vertices
- $C_{1}(P)$ is the vector space generated by the edges
- $C_{2}(P)$ is the vector space generated by the single face P
- $C_{*}(P)=C_{0}(P) \oplus C_{1}(P) \oplus C_{2}(P)$ is called the cellular chains of P

Example of a Differential Graded Vector Space

- In order to properly define ∂, we first choose a initial vertex and a terminal vertex. In this example, we will say that v_{1} is the initial vertex and that v_{6} is the terminal vertex (in general, the last vertex will be the terminal vertex).

Example of a Differential Graded Vector Space

- In order to properly define ∂, we first choose a initial vertex and a terminal vertex. In this example, we will say that v_{1} is the initial vertex and that v_{6} is the terminal vertex (in general, the last vertex will be the terminal vertex).
- This defines a poset in which all verticies along each side of the n-gon form an increasing sequence from the initial vertex to the terminal vertex. Next we orient each edge so that it is pointing away from the initial vertex and towards the terminal vertex

Example of a Differential Graded Vector Space

- In order to properly define ∂, we first choose a initial vertex and a terminal vertex. In this example, we will say that v_{1} is the initial vertex and that v_{6} is the terminal vertex (in general, the last vertex will be the terminal vertex).
- This defines a poset in which all verticies along each side of the n-gon form an increasing sequence from the initial vertex to the terminal vertex. Next we orient each edge so that it is pointing away from the initial vertex and towards the terminal vertex
- Finally, we choose to orient the polygon counterclockwise, and assign a sign to each edge based on whether or not it goes "against" the orientation

Example of a Differential Graded Vector Space

Example of a Differential Graded Vector Space

Define ∂ as the geometric boundary

- $\partial v_{i}=0$
- $\partial e_{i}=v_{i+1}-v_{i}$ for $i \neq 6$ and $\partial e_{6}=v_{6}-v_{1}$
- $\partial P=e_{1}+e_{2}+e_{3}+e_{4}+e_{5}-e_{6}$

Chain Maps

Definition

Let $\left(V, \partial_{V}\right)$ and $\left(W, \partial_{W}\right)$ be a d.g. vector spaces. A linear map $f: V \rightarrow W$ has degree p if $f: V_{i} \rightarrow W_{i+p}$; the map f is a chain map of degree p if $\partial_{W} \circ f=(-1)^{p} f \circ \partial_{V}$.

Chain Maps

Definition

Let $\left(V, \partial_{V}\right)$ and $\left(W, \partial_{W}\right)$ be a d.g. vector spaces. A linear map $f: V \rightarrow W$ has degree p if $f: V_{i} \rightarrow W_{i+p}$; the map f is a chain map of degree p if $\partial_{W} \circ f=(-1)^{p} f \circ \partial_{V}$.

Let $H o m_{p}(V, W)$ denote the vector space of all linear maps $f: V \rightarrow W$ of degree p. Then,

Chain Maps

Definition

Let $\left(V, \partial_{V}\right)$ and $\left(W, \partial_{W}\right)$ be a d.g. vector spaces. A linear map $f: V \rightarrow W$ has degree p if $f: V_{i} \rightarrow W_{i+p}$; the map f is a chain map of degree p if $\partial_{W} \circ f=(-1)^{p} f \circ \partial_{V}$.

Let $H o m_{p}(V, W)$ denote the vector space of all linear maps $f: V \rightarrow W$ of degree p. Then,

Theorem

Hom $_{*}(V, W)$ is a d.g. vector space with differential defined by $\delta(f)=f \circ \partial_{V}-(-1)^{p} \partial_{W} \circ f$.

Differential Graded Coalgebras

Definition

A d.g. coalgebra is a d.g. vector space (V, ∂) together with a coassociative coproduct $\Delta_{2}: V \rightarrow V \otimes V$ of degree 0 such that ∂ is a coderivation of Δ_{2}, i.e. $\Delta_{2} \partial=(\partial \otimes \mathbf{1}+\mathbf{1} \otimes \partial) \Delta_{2}$.

Differential Graded Coalgebras

Definition

A d.g. coalgebra is a d.g. vector space (V, ∂) together with a coassociative coproduct $\Delta_{2}: V \rightarrow V \otimes V$ of degree 0 such that ∂ is a coderivation of Δ_{2}, i.e. $\Delta_{2} \partial=(\partial \otimes \mathbf{1}+\mathbf{1} \otimes \partial) \Delta_{2}$.

Note that if Δ_{2} is coassociative, then we would have that $\left(\Delta_{2} \otimes \mathbf{1}\right) \Delta_{2}=\left(\mathbf{1} \otimes \Delta_{2}\right) \Delta_{2}$

Coassociation up to Homotopy

- But what if Δ_{2} is not coassociative?

Coassociation up to Homotopy

- But what if Δ_{2} is not coassociative?
- Then perhaps we can measure its deviation from coassociativity using some other operator Δ_{3}

Coassociation up to Homotopy

- But what if Δ_{2} is not coassociative?
- Then perhaps we can measure its deviation from coassociativity using some other operator Δ_{3}

Definition

Define Δ_{3} (if possible), in such a way so that $\delta\left(\Delta_{3}\right)=\left(\Delta_{2} \otimes \mathbf{1}\right) \Delta_{2}-\left(\mathbf{1} \otimes \Delta_{2}\right) \Delta_{2}$

Coassociation up to Homotopy

Then Δ_{3} is second order coassociative if

$$
\begin{aligned}
& \left(\Delta_{3} \otimes \mathbf{1}\right) \Delta_{2}+\left(\mathbf{1} \otimes \Delta_{3}\right) \Delta_{2}-\left(\Delta_{2} \otimes \mathbf{1} \otimes \mathbf{1}\right) \Delta_{3} \\
& \quad+\left(\mathbf{1} \otimes \Delta_{2} \otimes \mathbf{1}\right) \Delta_{3}-\left(\mathbf{1} \otimes \mathbf{1} \otimes \Delta_{2}\right) \Delta_{3}=0
\end{aligned}
$$

Coassociation up to Homotopy

Then Δ_{3} is second order coassociative if

$$
\begin{aligned}
& \left(\Delta_{3} \otimes \mathbf{1}\right) \Delta_{2}+\left(\mathbf{1} \otimes \Delta_{3}\right) \Delta_{2}-\left(\Delta_{2} \otimes \mathbf{1} \otimes \mathbf{1}\right) \Delta_{3} \\
& \quad+\left(\mathbf{1} \otimes \Delta_{2} \otimes \mathbf{1}\right) \Delta_{3}-\left(\mathbf{1} \otimes \mathbf{1} \otimes \Delta_{2}\right) \Delta_{3}=0
\end{aligned}
$$

Coassociation up to Homotopy

-• (••) • (•••)

Coassociation up to Homotopy

$$
\left(\Delta_{3} \otimes 1\right) \Delta_{2}
$$

$$
\begin{aligned}
& \left(\Delta_{3} \otimes \mathbf{1}\right) \Delta_{2}+\left(\mathbf{1} \otimes \Delta_{3}\right) \Delta_{2}-\left(\Delta_{2} \otimes \mathbf{1} \otimes \mathbf{1}\right) \Delta_{3} \\
& \quad+\left(\mathbf{1} \otimes \Delta_{2} \otimes \mathbf{1}\right) \Delta_{3}-\left(\mathbf{1} \otimes \mathbf{1} \otimes \Delta_{2}\right) \Delta_{3}=0
\end{aligned}
$$

Coassociation up to Homotopy

- But what if Δ_{3} is not second order coassociative?

Coassociation up to Homotopy

- But what if Δ_{3} is not second order coassociative?
- Then perhaps we can find a Δ_{4} such that:

$$
\begin{gathered}
\delta\left(\Delta_{4}\right)=\left(\Delta_{3} \otimes \mathbf{1}\right) \Delta_{2}+\left(\mathbf{1} \otimes \Delta_{3}\right) \Delta_{2}-\left(\Delta_{2} \otimes \mathbf{1} \otimes \mathbf{1}\right) \Delta_{3}+ \\
\left(\mathbf{1} \otimes \Delta_{2} \otimes \mathbf{1}\right) \Delta_{3}-\left(\mathbf{1} \otimes \mathbf{1} \otimes \Delta_{2}\right) \Delta_{3}
\end{gathered}
$$

Coassociation up to Homotopy

- But what if Δ_{3} is not second order coassociative?
- Then perhaps we can find a Δ_{4} such that:

$$
\begin{gathered}
\delta\left(\Delta_{4}\right)=\left(\Delta_{3} \otimes \mathbf{1}\right) \Delta_{2}+\left(\mathbf{1} \otimes \Delta_{3}\right) \Delta_{2}-\left(\Delta_{2} \otimes \mathbf{1} \otimes \mathbf{1}\right) \Delta_{3}+ \\
\left(\mathbf{1} \otimes \Delta_{2} \otimes \mathbf{1}\right) \Delta_{3}-\left(\mathbf{1} \otimes \mathbf{1} \otimes \Delta_{2}\right) \Delta_{3}
\end{gathered}
$$

- If Δ_{4} is not third order coassociative, then perhaps we can find a Δ_{5}, and then maybe a Δ_{6}, and so on as long as necessary

Definition of an A_{∞}-coalgebra

Definition

$\left(V, \partial, \Delta_{2}, \Delta_{3}, \ldots\right)$ is an A_{∞}-coalgebra if for all $k \geq 2$,

$$
\delta\left(\Delta_{k}\right)=\sum_{l=1}^{k-2} \sum_{i=0}^{k-l-1}(-1)^{l(k+i+1)}\left(1^{\otimes i} \otimes \Delta_{l+1} \otimes 1^{\otimes k-l-i-1}\right) \Delta_{k-l}
$$

Definition of an A_{∞}-coalgebra

Definition

$\left(V, \partial, \Delta_{2}, \Delta_{3}, \ldots\right)$ is an A_{∞}-coalgebra if for all $k \geq 2$,

$$
\begin{equation*}
\delta\left(\Delta_{k}\right)=\sum_{l=1}^{k-2} \sum_{i=0}^{k-l-1}(-1)^{l(k+i+1)}\left(1^{\otimes i} \otimes \Delta_{l+1} \otimes 1^{\otimes k-l-i-1}\right) \Delta_{k-l} . \tag{1}
\end{equation*}
$$

- Today, we will present the first known example of an A_{∞}-coalgebra which has a finite number of non-vanishing Δ_{k}.

Main Result

Let P be a counterclockwise oriented polygon with n sides where $n \geq 3$. Label the vertices $v_{1}, v_{2}, \ldots v_{n}$ and the edges $e_{1}, e_{2}, \ldots e_{n}$ as in the following diagram:

Figure 3: An n-gon for $n=6$

Main Result

Define the diagonal Δ_{2} by:

$$
\begin{aligned}
& \Delta_{2}(P)=v_{1} \otimes P+P \otimes v_{n}+\sum_{0<i_{1}<i_{2}<n} e_{i_{1}} \otimes e_{i_{2}}, \\
& \Delta_{2}\left(e_{i}\right)=v_{i} \otimes e_{i}+e_{i} \otimes v_{i+1} \text { if } i<n, \\
& \Delta_{2}\left(e_{n}\right)=v_{1} \otimes e_{n}+e_{n} \otimes v_{n}, \\
& \Delta_{2}\left(v_{i}\right)=v_{i} \otimes v_{i},
\end{aligned}
$$

and define the k-ary A_{∞}-coalgebra operations Δ_{k} where $k>2$ as:

$$
\begin{aligned}
& \Delta_{k}(P)=\sum_{0<i_{1}<i_{2}<\cdots<i_{k}<n} e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}} \\
& \Delta_{k}(\sigma)=0 \text { when } \sigma \neq P .
\end{aligned}
$$

Proof of Main Result

One way to prove this is to take each Δ_{k} and verify relation (1) for all the cellular chains of P

Proof of Main Result

One way to prove this is to take each Δ_{k} and verify relation (1) for all the cellular chains of P

Example

Verify the relation for Δ_{2} on e_{i} for $i<n$
For $k=2$, relation (1) simplifies to: $\Delta_{2} \partial-\partial^{\otimes 2} \Delta_{2}=0$ Then,

$$
\begin{aligned}
& \left(\Delta_{2} \partial-\partial^{\otimes 2} \Delta_{2}\right)\left(e_{i}\right) \\
= & \Delta_{2} \partial\left(e_{i}\right)-\partial^{\otimes 2} \Delta_{2}\left(e_{i}\right) \\
= & \Delta_{2}\left(v_{i+1}-v_{i}\right)-(\partial \otimes \mathbf{1}+\mathbf{1} \otimes \partial)\left(v_{i} \otimes e_{i}+e_{i} \otimes v_{i+1}\right) \\
= & v_{i+1} \otimes v_{i+1}-v_{i} \otimes v_{i}-0 \otimes e_{i}-v_{i} \otimes\left(v_{i+1}-v_{i}\right) \\
& \quad-\left(v_{i+1}-v_{i}\right) \otimes v_{i+1}-e_{i} \otimes 0=0
\end{aligned}
$$

Proof of Main Result

For higher k, this approach gets too difficult as relation (1) becomes more complex.

Proof of Main Result

For higher k, this approach gets too difficult as relation (1) becomes more complex.

- For easier notation, let $\Delta_{j} \Delta_{i}$ denote an application of Δ_{i} followed by an application of Δ_{j} in each position created.

Proof of Main Result

For higher k, this approach gets too difficult as relation (1) becomes more complex.

- For easier notation, let $\Delta_{j} \Delta_{i}$ denote an application of Δ_{i} followed by an application of Δ_{j} in each position created.

```
Example
Let \(\Delta_{5} \Delta_{3}(P)\) denote
\(\left(\left(\Delta_{5} \otimes \mathbf{1} \otimes \mathbf{1}\right)+\left(\mathbf{1} \otimes \Delta_{5} \otimes \mathbf{1}\right)+\left(\mathbf{1} \otimes \mathbf{1} \otimes \Delta_{5}\right)\right) \Delta_{3}(P)\).
```


Proof of Main Result

For higher k, this approach gets too difficult as relation (1) becomes more complex.

- For easier notation, let $\Delta_{j} \Delta_{i}$ denote an application of Δ_{i} followed by an application of Δ_{j} in each position created.

Example

Let $\Delta_{5} \Delta_{3}(P)$ denote
$\left(\left(\Delta_{5} \otimes \mathbf{1} \otimes \mathbf{1}\right)+\left(\mathbf{1} \otimes \Delta_{5} \otimes \mathbf{1}\right)+\left(\mathbf{1} \otimes \mathbf{1} \otimes \Delta_{5}\right)\right) \Delta_{3}(P)$.

- Since all Δ_{k} for $k>2$ vanish when applied to a vertex or edge, relation (1) only needs to be verified on P.

Proof of Main Result

For higher k, this approach gets too difficult as relation (1) becomes more complex.

- For easier notation, let $\Delta_{j} \Delta_{i}$ denote an application of Δ_{i} followed by an application of Δ_{j} in each position created.

Example

Let $\Delta_{5} \Delta_{3}(P)$ denote

$$
\left(\left(\Delta_{5} \otimes \mathbf{1} \otimes \mathbf{1}\right)+\left(\mathbf{1} \otimes \Delta_{5} \otimes \mathbf{1}\right)+\left(\mathbf{1} \otimes \mathbf{1} \otimes \Delta_{5}\right)\right) \Delta_{3}(P)
$$

- Since all Δ_{k} for $k>2$ vanish when applied to a vertex or edge, relation (1) only needs to be verified on P.
- Additionally, because of the way that higher Δ_{k} 's vanish when applied to anything but P, any sequence in relation (1) of the form $\Delta_{j} \Delta_{i}$ where $j, i>2$ vanish.

Proof of Main Result

For higher k, this approach gets too difficult as relation (1) becomes more complex.

- For easier notation, let $\Delta_{j} \Delta_{i}$ denote an application of Δ_{i} followed by an application of Δ_{j} in each position created.

Example

Let $\Delta_{5} \Delta_{3}(P)$ denote

$$
\left(\left(\Delta_{5} \otimes \mathbf{1} \otimes \mathbf{1}\right)+\left(1 \otimes \Delta_{5} \otimes 1\right)+\left(1 \otimes \mathbf{1} \otimes \Delta_{5}\right)\right) \Delta_{3}(P)
$$

- Since all Δ_{k} for $k>2$ vanish when applied to a vertex or edge, relation (1) only needs to be verified on P.
- Additionally, because of the way that higher Δ_{k} 's vanish when applied to anything but P, any sequence in relation (1) of the form $\Delta_{j} \Delta_{i}$ where $j, i>2$ vanish.

Example

$\Delta_{5} \Delta_{3}(P)$ vanishes.

Proof of Main Result

Only terms of the following form are non-vanishing:

Proof of Main Result

Only terms of the following form are non-vanishing:

- $\partial \Delta_{k}(P)$

Proof of Main Result

Only terms of the following form are non-vanishing:

- $\partial \Delta_{k}(P)$
- $\Delta_{k-1} \Delta_{2}(P)$

Proof of Main Result

Only terms of the following form are non-vanishing:

- $\partial \Delta_{k}(P)$
- $\Delta_{k-1} \Delta_{2}(P)$
- $\Delta_{2} \Delta_{k-1}(P)$

Proof of Main Result

Recall relation (1):

$$
\delta\left(\Delta_{k}\right)=\sum_{l=1}^{k-2} \sum_{i=0}^{k-l-1}(-1)^{l(k+i+1)}\left(1^{\otimes i} \otimes \Delta_{l+1} \otimes 1^{\otimes k-l-i-1}\right) \Delta_{k-l}
$$

Proof of Main Result

Recall relation (1):

$$
\delta\left(\Delta_{k}\right)=\sum_{l=1}^{k-2} \sum_{i=0}^{k-l-1}(-1)^{l(k+i+1)}\left(1^{\otimes i} \otimes \Delta_{l+1} \otimes 1^{\otimes k-l-i-1}\right) \Delta_{k-l}
$$

which can be written as:

$$
\begin{aligned}
& \sum_{i=0}^{k-1}\left(1^{\otimes i} \otimes \partial \otimes 1^{\otimes k-i-1}\right) \Delta_{k}-(-1)^{k} \Delta_{k} \partial \\
& \quad=\sum_{l=1}^{k-2} \sum_{i=0}^{k-l-1}(-1)^{l(k+i+1)}\left(1^{\otimes i} \otimes \Delta_{l+1} \otimes 1^{\otimes k-l-i-1}\right) \Delta_{k-l} .
\end{aligned}
$$

Proof of Main Result

Recall relation (1):

$$
\delta\left(\Delta_{k}\right)=\sum_{l=1}^{k-2} \sum_{i=0}^{k-l-1}(-1)^{l(k+i+1)}\left(1^{\otimes i} \otimes \Delta_{l+1} \otimes 1^{\otimes k-l-i-1}\right) \Delta_{k-l}
$$

which can be written as:

$$
\begin{aligned}
& \sum_{i=0}^{k-1}\left(1^{\otimes i} \otimes \partial \otimes 1^{\otimes k-i-1}\right) \Delta_{k}-(-1)^{k} \Delta_{k} \partial \\
& \quad=\sum_{l=1}^{k-2} \sum_{i=0}^{k-l-1}(-1)^{l(k+i+1)}\left(1^{\otimes i} \otimes \Delta_{l+1} \otimes 1^{\otimes k-l-i-1}\right) \Delta_{k-l} .
\end{aligned}
$$

Which can be simplified to

$$
\begin{equation*}
\left(\partial \Delta_{k}+\Delta_{k-1} \Delta_{2}+\Delta_{2} \Delta_{k-1}\right)(P)=0 \tag{2}
\end{equation*}
$$

Main Idea

- In order to verify relation (2), we will simply examine each of the three sets of operations and ask what type of terms they produce when applied to P

Main Idea

- In order to verify relation (2), we will simply examine each of the three sets of operations and ask what type of terms they produce when applied to P
- We can then note that any terms generated by one sequence of operations cancel with terms generated by another sequence of operations.

Classifying Types of Terms

It is possible to show that all terms produced by the three sequences of operations will be of a certain type.

Classifying Types of Terms

It is possible to show that all terms produced by the three sequences of operations will be of a certain type.

- If we are verifying relation (2) for a particular k, each term will have k factors in it.

Classifying Types of Terms

It is possible to show that all terms produced by the three sequences of operations will be of a certain type.

- If we are verifying relation (2) for a particular k, each term will have k factors in it.
- All terms will be made up of e_{i} factors with exactly one v_{j} factor somewhere in it.

Classifying Types of Terms

It is possible to show that all terms produced by the three sequences of operations will be of a certain type.

- If we are verifying relation (2) for a particular k, each term will have k factors in it.
- All terms will be made up of e_{i} factors with exactly one v_{j} factor somewhere in it.
- The indexes of all factors will be monotone increasing.

Classifying Types of Terms

It is possible to show that all terms produced by the three sequences of operations will be of a certain type.

- If we are verifying relation (2) for a particular k, each term will have k factors in it.
- All terms will be made up of e_{i} factors with exactly one v_{j} factor somewhere in it.
- The indexes of all factors will be monotone increasing.

Example

Some terms that can be generated:

- $e_{3} \otimes e_{7} \otimes v_{10} \otimes e_{13}$
- $v_{1} \otimes e_{2} \otimes e_{4} \otimes e_{5} \otimes e_{6}$
- $e_{4} \otimes v_{7} \otimes e_{7}$
- $e_{1} \otimes v_{2} \otimes e_{6} \otimes e_{8} \otimes e_{9} \otimes e_{17}$

Classifying Types of Terms

Definition
Let a term be called attached if v_{i} an end point of the edge on either side of it.

Classifying Types of Terms

Definition

Let a term be called attached if v_{i} an end point of the edge on either side of it.

Definition

Let a term be called extreme if it contains either a v_{1} or a v_{n}

Classifying Types of Terms

Definition

Let a term be called attached if v_{i} an end point of the edge on either side of it.

Definition

Let a term be called extreme if it contains either a v_{1} or a v_{n}
There are basically five classes of terms :

Classifying Types of Terms

Definition

Let a term be called attached if v_{i} an end point of the edge on either side of it.

Definition

Let a term be called extreme if it contains either a v_{1} or a v_{n}
There are basically five classes of terms :

- Singly attached: $e_{1} \otimes v_{2} \otimes e_{3}$ and $e_{1} \otimes v_{4} \otimes e_{4}$

Classifying Types of Terms

Definition

Let a term be called attached if v_{i} an end point of the edge on either side of it.

Definition

Let a term be called extreme if it contains either a v_{1} or a v_{n}
There are basically five classes of terms :

- Singly attached: $e_{1} \otimes v_{2} \otimes e_{3}$ and $e_{1} \otimes v_{4} \otimes e_{4}$
- Doubly attached: $e_{2} \otimes v_{3} \otimes e_{3}$

Classifying Types of Terms

Definition

Let a term be called attached if v_{i} an end point of the edge on either side of it.

Definition

Let a term be called extreme if it contains either a v_{1} or a v_{n}
There are basically five classes of terms :

- Singly attached: $e_{1} \otimes v_{2} \otimes e_{3}$ and $e_{1} \otimes v_{4} \otimes e_{4}$
- Doubly attached: $e_{2} \otimes v_{3} \otimes e_{3}$
- Unattached: $e_{1} \otimes v_{3} \otimes e_{4}$

Classifying Types of Terms

Definition

Let a term be called attached if v_{i} an end point of the edge on either side of it.

Definition

Let a term be called extreme if it contains either a v_{1} or a v_{n}
There are basically five classes of terms :

- Singly attached: $e_{1} \otimes v_{2} \otimes e_{3}$ and $e_{1} \otimes v_{4} \otimes e_{4}$
- Doubly attached: $e_{2} \otimes v_{3} \otimes e_{3}$
- Unattached: $e_{1} \otimes v_{3} \otimes e_{4}$
- Extreme singly attached: $v_{1} \otimes e_{1} \otimes e_{3}$ and $e_{1} \otimes e_{5} \otimes v_{6}$

Classifying Types of Terms

Definition

Let a term be called attached if v_{i} an end point of the edge on either side of it.

Definition

Let a term be called extreme if it contains either a v_{1} or a v_{n}
There are basically five classes of terms :

- Singly attached: $e_{1} \otimes v_{2} \otimes e_{3}$ and $e_{1} \otimes v_{4} \otimes e_{4}$
- Doubly attached: $e_{2} \otimes v_{3} \otimes e_{3}$
- Unattached: $e_{1} \otimes v_{3} \otimes e_{4}$
- Extreme singly attached: $v_{1} \otimes e_{1} \otimes e_{3}$ and $e_{1} \otimes e_{5} \otimes v_{6}$
- Extreme singly unattached: $v_{1} \otimes e_{2} \otimes e_{3}$ and $e_{1} \otimes e_{4} \otimes v_{6}$

Terms Produced

So now we can examine the types of terms that each set of operations produces.

Terms Produced

So now we can examine the types of terms that each set of operations produces.

- $\partial \Delta_{k}(P)$: Produces all possible extreme unattached terms and singly attached terms

Terms Produced

So now we can examine the types of terms that each set of operations produces.

- $\partial \Delta_{k}(P)$: Produces all possible extreme unattached terms and singly attached terms
- $\Delta_{k-1} \Delta_{2}(P)$: Produces all possible extreme terms (both attached and unattached)

Terms Produced

So now we can examine the types of terms that each set of operations produces.

- $\partial \Delta_{k}(P)$: Produces all possible extreme unattached terms and singly attached terms
- $\Delta_{k-1} \Delta_{2}(P)$: Produces all possible extreme terms (both attached and unattached)
- $\Delta_{2} \Delta_{k-1}(P)$: Produces all possible singly attached terms (both extreme and non extreme)

Canceling Terms

Proving for Δ_{3}

- Unfortunately, Δ_{3} does not quite follow this process.

Proving for Δ_{3}

- Unfortunately, Δ_{3} does not quite follow this process.
- Relation (1) for Δ_{3} turns out to be $\left(\partial \Delta_{3}+\Delta_{2} \Delta_{2}\right)(P)=0$

Proving for Δ_{3}

- Unfortunately, Δ_{3} does not quite follow this process.
- Relation (1) for Δ_{3} turns out to be $\left(\partial \Delta_{3}+\Delta_{2} \Delta_{2}\right)(P)=0$
- The $\Delta_{2} \Delta_{2}$ term is taking the place of both $\Delta_{k-1} \Delta_{2}(P)$ and $\Delta_{2} \Delta_{k-1}(P)$ in the original proof.

Proving for Δ_{3}

- Unfortunately, Δ_{3} does not quite follow this process.
- Relation (1) for Δ_{3} turns out to be $\left(\partial \Delta_{3}+\Delta_{2} \Delta_{2}\right)(P)=0$
- The $\Delta_{2} \Delta_{2}$ term is taking the place of both $\Delta_{k-1} \Delta_{2}(P)$ and $\Delta_{2} \Delta_{k-1}(P)$ in the original proof.
- Thankfully however, we can show that $\Delta_{2} \Delta_{2}(P)$ "behaves" the same way as $\Delta_{k-1} \Delta_{2}(P)$ and $\Delta_{2} \Delta_{k-1}(P)$ together (that is, produces all the terms that would have normally been left over after combining the terms produced by $\Delta_{k-1} \Delta_{2}(P)$ and $\left.\Delta_{2} \Delta_{k-1}(P)\right)$.

Proof of Result

- Therefore, the proof is complete!

Proof of Result

- Therefore, the proof is complete!
- We verified relation (1) directly for Δ_{2} and a general n.

Proof of Result

- Therefore, the proof is complete!
- We verified relation (1) directly for Δ_{2} and a general n.
- We verified relation (1) for all Δ_{k} and a general n where $k>3$ by showing that the three sets of operations produce terms that cancel.

Proof of Result

- Therefore, the proof is complete!
- We verified relation (1) directly for Δ_{2} and a general n.
- We verified relation (1) for all Δ_{k} and a general n where $k>3$ by showing that the three sets of operations produce terms that cancel.
- We verified relation (1) for Δ_{3} by showing that it can be made to behave as in the case of the general proof.

Proof of Result

- Therefore, the proof is complete!
- We verified relation (1) directly for Δ_{2} and a general n.
- We verified relation (1) for all Δ_{k} and a general n where $k>3$ by showing that the three sets of operations produce terms that cancel.
- We verified relation (1) for Δ_{3} by showing that it can be made to behave as in the case of the general proof.
- Therefore, we have verified that we have an A_{∞}-coalgebra!

Corollary

Using this theorem, we can extend our A_{∞}-coalgebra to allow some other vertex to be terminal instead of v_{n}. Suppose that v_{t} is the new terminal vertex.

Corollary

Using this theorem, we can extend our A_{∞}-coalgebra to allow some other vertex to be terminal instead of v_{n}. Suppose that v_{t} is the new terminal vertex. Then define:

$$
\begin{aligned}
\Delta_{2}^{\prime}(P)= & v_{1} \otimes P+P \otimes v_{t}+ \\
& \sum_{0<i_{1}<i_{2}<t}\left(e_{i_{1}} \otimes e_{i_{2}}\right)-\sum_{n \geq i_{1}>i_{2} \geq t}\left(e_{i_{1}} \otimes e_{i_{2}}\right)
\end{aligned}
$$

and for $k>2$

$$
\begin{aligned}
\Delta_{k}^{\prime}(P)= & \sum_{0<i_{1}<i_{2}<\cdots<i_{k}<t} e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}} \\
& -\sum_{n \geq i_{1}>i_{2}>\cdots>i_{k} \geq t} e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}} \text { and } \\
\Delta_{k}^{\prime}(\sigma) & =0 \text { when } \sigma \neq P .
\end{aligned}
$$

Corollary

To prove this, we divide our polygon, and use our original result on both parts.

Example on a 7 -gon with terminal vertex v_{5}

Corollary

The operation $\left\{\Delta_{n}^{\prime}\right\}_{n \geq 2}$ defined above satisfies all A_{∞}-coalgebra relations on cellular chains of P where the initial vertex is v_{1} and the terminal vertex is v_{t} where $1<t \leq n$. Furthermore, all Δ_{k} for $k<n$ are non-trivial, and all Δ_{k} for $k \geq \max \{t, n-t+2\}$ vanish.

An Application

Using our result, we obtain a higher-order coalgebra structure on the cellular chains of the Klein bottle!

An Application

Using our result, we obtain a higher-order coalgebra structure on the cellular chains of the Klein bottle!

- $\Delta_{2} K=K \otimes v+v \otimes K+a \otimes b+b \otimes b+b \otimes a$
- $\Delta_{3} K=b \otimes a \otimes b$.

Acknowledgements

- I would like to thank my thesis adviser, Dr. Umble for introducing me to the topic, for his help, and all his advice.
- I would also like to thank all of you for coming today.

Thanks!

