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Introduction

Suppose you had several objects that you wanted to
combine using a binary operation.

What are all the different ways that you could associate
them?
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Introduction

Example

Three objects can be associated in two ways:
()

()

Example

Four objects can be associated in five ways:
(())

(())

()()

(())

(())

Quinn Minnich An A∞-coalgebra Structure on the Cellular Chains of a Polygon



Introduction

Example

Three objects can be associated in two ways:
()

()

Example

Four objects can be associated in five ways:
(())

(())

()()

(())

(())

Quinn Minnich An A∞-coalgebra Structure on the Cellular Chains of a Polygon



Definition of an Associahedron

Definition
An associahedron, denoted Kn, is an n� 2 dimensional polytope
whose vertices are identified with the various ways one can
parenthesize n variables.

()    ()

Example: The associahedron K3.
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Another Associahedron Example
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Example: The associahedron K4.
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Definition of a Differential Graded Vector Space

Definition
A differential graded (d.g.) vector space is a vector space
V = `i©0Vi equipped with a differential operator
B : V� Ñ V��1 such that B � B = 0.

Quinn Minnich An A∞-coalgebra Structure on the Cellular Chains of a Polygon



Example of a Differential Graded Vector Space

Example

P
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An n-gon for n = 6

C0 (P) is the vector space generated by the vertices
C1 (P) is the vector space generated by the edges
C2 (P) is the vector space generated by the single face P
C� (P) = C0 (P)`C1 (P)`C2 (P) is called the cellular chains
of P
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Example of a Differential Graded Vector Space

In order to properly define B, we first choose a initial vertex
and a terminal vertex. In this example, we will say that v1 is
the initial vertex and that v6 is the terminal vertex (in
general, the last vertex will be the terminal vertex).

This defines a poset in which all verticies along each side
of the n-gon form an increasing sequence from the initial
vertex to the terminal vertex. Next we orient each edge so
that it is pointing away from the initial vertex and towards
the terminal vertex
Finally, we choose to orient the polygon counterclockwise,
and assign a sign to each edge based on whether or not it
goes "against" the orientation
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Example of a Differential Graded Vector Space

Define B as the geometric boundary
Bvi = 0
Bei = vi+1 � vi for i � 6 and Be6 = v6 � v1

BP = e1 + e2 + e3 + e4 + e5 � e6
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Chain Maps

Definition
Let (V, BV) and (W, BW) be a d.g. vector spaces. A linear map
f : V Ñ W has degree p if f : Vi Ñ Wi+p; the map f is a chain map
of degree p if BW � f = (�1)p f � BV.

Let Homp (V, W) denote the vector space of all linear maps
f : V Ñ W of degree p. Then,

Theorem
Hom� (V, W) is a d.g. vector space with differential defined by
δ (f ) = f � BV � (�1)p BW � f .
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Differential Graded Coalgebras

Definition
A d.g. coalgebra is a d.g. vector space (V, B) together with a
coassociative coproduct ∆2 : V Ñ VbV of degree 0 such that B
is a coderivation of ∆2, i.e. ∆2B = (B b 1 + 1b B)∆2.

Note that if ∆2 is coassociative, then we would have that
(∆2 b 1)∆2 = (1b∆2)∆2
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Coassociation up to Homotopy

But what if ∆2 is not coassociative?

Then perhaps we can measure its deviation from
coassociativity using some other operator ∆3

Definition
Define ∆3 (if possible), in such a way so that
δ(∆3) = (∆2 b 1)∆2 � (1b∆2)∆2
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Coassociation up to Homotopy

Then ∆3 is second order coassociative if

(∆3 b 1)∆2 + (1b∆3)∆2 � (∆2 b 1b 1)∆3

+ (1b∆2 b 1)∆3 � (1b 1b∆2)∆3 = 0

( )

() ((

()

( )
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Coassociation up to Homotopy

  (   )  (    )

(1b 1b∆2)∆3 (1b∆3)∆2
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Coassociation up to Homotopy
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Coassociation up to Homotopy

(

D4

)D D2 1 1
3

ss

))1 1 D D2 3
s  s ))1 D D3 2

s

) )1D D3 2
s

))1 D 1  D2 3
s    s

(∆3 b 1)∆2 + (1b∆3)∆2 � (∆2 b 1b 1)∆3

+ (1b∆2 b 1)∆3 � (1b 1b∆2)∆3 = 0
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Coassociation up to Homotopy

But what if ∆3 is not second order coassociative?

Then perhaps we can find a ∆4 such that:
δ(∆4) = (∆3 b 1)∆2 + (1b∆3)∆2 � (∆2 b 1b 1)∆3+

(1b∆2 b 1)∆3 � (1b 1b∆2)∆3

If ∆4 is not third order coassociative, then perhaps we can
find a ∆5, and then maybe a ∆6, and so on as long as
necessary
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Definition of an A∞-coalgebra

Definition
(V, B,∆2,∆3, . . .) is an A∞-coalgebra if for all k © 2,

δ (∆k) =
k�2̧

l=1

k�l�1¸

i=0

(�1)l(k+i+1)
(

1bi b∆l+1 b 1bk�l�i�1
)
∆k�l.

(1)

Today, we will present the first known example of an
A∞-coalgebra which has a finite number of non-vanishing
∆k.

Quinn Minnich An A∞-coalgebra Structure on the Cellular Chains of a Polygon



Definition of an A∞-coalgebra

Definition
(V, B,∆2,∆3, . . .) is an A∞-coalgebra if for all k © 2,

δ (∆k) =
k�2̧

l=1

k�l�1¸

i=0

(�1)l(k+i+1)
(

1bi b∆l+1 b 1bk�l�i�1
)
∆k�l.

(1)

Today, we will present the first known example of an
A∞-coalgebra which has a finite number of non-vanishing
∆k.

Quinn Minnich An A∞-coalgebra Structure on the Cellular Chains of a Polygon



Main Result

Let P be a counterclockwise oriented polygon with n sides
where n © 3. Label the vertices v1, v2, . . . vn and the edges
e1, e2, . . . en as in the following diagram:

Figure 3: An n-gon for n = 6
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Main Result

Define the diagonal ∆2 by:

∆2(P) = v1 b P + Pb vn +
¸

0 i1 i2 n

ei1 b ei2 ,

∆2(ei) = vi b ei + ei b vi+1 if i   n,

∆2(en) = v1 b en + en b vn,

∆2(vi) = vi b vi,

and define the k-ary A∞-coalgebra operations ∆k where k ¡ 2
as:

∆k(P) =
¸

0 i1 i2 ��� ik n

ei1 b ei2 b � � � b eik

∆k(σ) = 0 when σ � P.
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Proof of Main Result

One way to prove this is to take each ∆k and verify relation (1)
for all the cellular chains of P

Example

Verify the relation for ∆2 on ei for i   n
For k = 2, relation (1) simplifies to: ∆2B � B

b2∆2 = 0 Then,

(∆2B � B
b2∆2)(ei)

=∆2B(ei)� B
b2∆2(ei)

=∆2(vi+1 � vi)� (B b 1 + 1b B)(vi b ei + ei b vi+1)

=vi+1 b vi+1 � vi b vi � 0b ei � vi b (vi+1 � vi)

� (vi+1 � vi)b vi+1 � ei b 0 = 0
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Proof of Main Result

For higher k, this approach gets too difficult as relation (1)
becomes more complex.

For easier notation, let ∆j∆i denote an application of ∆i
followed by an application of ∆j in each position created.

Example

Let ∆5∆3(P) denote
((∆5 b 1b 1) + (1b∆5 b 1) + (1b 1b∆5))∆3(P).

Since all ∆k for k ¡ 2 vanish when applied to a vertex or
edge, relation (1) only needs to be verified on P.
Additionally, because of the way that higher ∆k’s vanish
when applied to anything but P, any sequence in relation
(1) of the form ∆j∆i where j, i ¡ 2 vanish.

Example

∆5∆3(P) vanishes.
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Proof of Main Result

Only terms of the following form are non-vanishing:

B∆k(P)
∆k�1∆2(P)
∆2∆k�1(P)
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Proof of Main Result

Recall relation (1):

δ (∆k) =
k�2̧

l=1

k�l�1¸

i=0

(�1)l(k+i+1)
(

1bi b∆l+1 b 1bk�l�i�1
)
∆k�l.

which can be written as:

k�1̧

i=0

(
1bi b Bb 1bk�i�1

)
∆k � (�1)k ∆kB

=
k�2̧

l=1

k�l�1¸

i=0

(�1)l(k+i+1)
(

1bi b∆l+1 b 1bk�l�i�1
)
∆k�l.

Which can be simplified to

(B∆k +∆k�1∆2 +∆2∆k�1)(P) = 0 (2)
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Main Idea

In order to verify relation (2), we will simply examine each
of the three sets of operations and ask what type of terms
they produce when applied to P

We can then note that any terms generated by one
sequence of operations cancel with terms generated by
another sequence of operations.
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Classifying Types of Terms

It is possible to show that all terms produced by the three
sequences of operations will be of a certain type.

If we are verifying relation (2) for a particular k, each term
will have k factors in it.
All terms will be made up of ei factors with exactly one vj
factor somewhere in it.
The indexes of all factors will be monotone increasing.

Example

Some terms that can be generated:
e3 b e7 b v10 b e13

v1 b e2 b e4 b e5 b e6

e4 b v7 b e7

e1 b v2 b e6 b e8 b e9 b e17
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Classifying Types of Terms

Definition
Let a term be called attached if vi an end point of the edge on
either side of it.

Definition
Let a term be called extreme if it contains either a v1 or a vn

There are basically five classes of terms :
Singly attached: e1 b v2 b e3 and e1 b v4 b e4

Doubly attached: e2 b v3 b e3

Unattached: e1 b v3 b e4

Extreme singly attached: v1 b e1 b e3 and e1 b e5 b v6

Extreme singly unattached: v1 b e2 b e3 and e1 b e4 b v6
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Terms Produced

So now we can examine the types of terms that each set of
operations produces.

B∆k(P): Produces all possible extreme unattached terms
and singly attached terms
∆k�1∆2(P): Produces all possible extreme terms (both
attached and unattached)
∆2∆k�1(P): Produces all possible singly attached terms
(both extreme and non extreme)
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Canceling Terms

B∆k(P) ∆k�1∆2(P)
Extreme Unattached

∆2∆k�1(P)
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Proving for ∆3

Unfortunately, ∆3 does not quite follow this process.

Relation (1) for ∆3 turns out to be (B∆3 +∆2∆2)(P) = 0
The ∆2∆2 term is taking the place of both ∆k�1∆2(P) and
∆2∆k�1(P) in the original proof.
Thankfully however, we can show that ∆2∆2(P) "behaves"
the same way as ∆k�1∆2(P) and ∆2∆k�1(P) together (that
is, produces all the terms that would have normally been
left over after combining the terms produced by ∆k�1∆2(P)
and ∆2∆k�1(P)).
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Proof of Result

Therefore, the proof is complete!

We verified relation (1) directly for ∆2 and a general n.
We verified relation (1) for all ∆k and a general n where
k ¡ 3 by showing that the three sets of operations produce
terms that cancel.
We verified relation (1) for ∆3 by showing that it can be
made to behave as in the case of the general proof.
Therefore, we have verified that we have an A∞-coalgebra!
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Corollary

Using this theorem, we can extend our A∞-coalgebra to allow
some other vertex to be terminal instead of vn. Suppose that vt
is the new terminal vertex.

Then define:

∆12(P) =v1 b P + Pb vt+¸

0 i1 i2 t

(
ei1 b ei2

)
�
¸

n©i1¡i2©t

(
ei1 b ei2

)
and for k ¡ 2

∆1k(P) =
¸

0 i1 i2 ��� ik t

ei1 b ei2 b � � � b eik

�
¸

n©i1¡i2¡���¡ik©t

ei1 b ei2 b � � � b eik and

∆1k(σ) = 0 when σ � P.
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Corollary

To prove this, we divide our polygon, and use our original
result on both parts.

P
1

P
2

v
1

v
7

v
2

e
1

e
2

e
3

e
0

e
4

e
5

e
6

e
7

v
6

v
5

v
4

v
3

Example on a 7-gon with terminal vertex v5
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Corollary

Corollary

The operation t∆1nun©2 defined above satisfies all A∞-coalgebra
relations on cellular chains of P where the initial vertex is v1 and the
terminal vertex is vt where 1   t ¨ n. Furthermore, all ∆k for k   n
are non-trivial, and all ∆k for k © maxtt, n� t + 2u vanish.
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An Application

Using our result, we obtain a higher-order coalgebra structure
on the cellular chains of the Klein bottle!

K a

bv

v b

a

∆2K = Kb v + vbK + ab b + bb b + bb a
∆3K = bb ab b.
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Thanks!
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