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Abstract

Let P be a polygon with n vertices, let V be the graded vector space generated by the

vertices, edges, and region of P , and let ∂ : V → V be the map induced by the geometric

boundary. There is a homotopy coassociative coproduct ∆2 : V → V ⊗ V , a coassociator

∆3 : V → V ⊗3, and non-vanishing higher order operations ∆k : V → V ⊗k for all k < n.

The vector space V together with ∂ and the operations {∆k} is an A∞-coalgebra. To our

knowledge, this project presents the first such family of examples.
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1 Introduction

This thesis presents an example of an A∞-coalgebra structure on an n-gon. As motivation,

we first define the notion of homotopy associativity, a family of polytopes called associahedra,

and the dual notion of an A∞-algebra, given by J. Stasheff [5] in the setting of base pointed

loop spaces.

Let S be a surface embedded in R3 and let ∗ be a base point on S. A base pointed loop

on S is a continuous map α : I → S such that α (0) = α (1) = ∗. Let ΩS denote the set of

all base pointed loops on S. Given α, β ∈ ΩS, define their product α · β ∈ ΩS to be

(α · β) (t) =

 α (2t) , 0 ≤ t ≤ 1
2

β (2t− 1) , 1
2
≤ t ≤ 1.

A homotopy from α to β is a continuous map H : I → ΩS such that H (0) = α and

H (1) = β. Thus {H (s) : s ∈ I} is a 1-parameter family of loops that continuously deforms

α to β.

Let α, β, γ ∈ ΩS. Although (α · β) · γ 6= α · (β · γ) , the loops (α · β) · γ and α · (β · γ) are

homotopic via a linear change of parameter H that decreases the speed of α from quadruple

to double speed and increases the speed of γ from double to quadruple speed as indicated

by the following diagram:

a

a

b g

gb

H(0)

H(1)

Figure 1: A homotopy H between the two associations of three loops.

Thus loop multiplication is homotopy associative.

Let m2 (α⊗ β) = α ·β; then m2 : ΩS⊗ΩS → ΩS. Let 1 : ΩS → ΩS be the identity map;

then (α · β)·γ = m2 (m2 ⊗ 1) (α⊗ β ⊗ γ) and α·(β · γ) = m2 (1⊗m2) (α⊗ β ⊗ γ) . Consider
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m2 (m2 ⊗ 1) ,m2 (1⊗m2) : ΩS⊗3 → ΩS and think of the homotopy H from (α · β) · γ to

α · (β · γ) as a 3-ary operation m3 : ΩS⊗3 → ΩS. Identify m3 with the interval [0, 1] ; identify

the endpoint 0 with m2 (m2 ⊗ 1) and the endpoint 1 with m2 (1⊗m2) . Then the boundary

∂m3 = m2 (1⊗m2) − m2 (m2 ⊗ 1) and the parameter space [0, 1] identified with m3 is

called the associahedron K3. The associahedron K3 controls homotopy associativity in three

variables.

In a similar way, homotopy associativity in four variables is controlled by a parameter

space called the associahedron K4. The vertices of K4, which is a pentagon, are identified

with the five ways one can parenthesize four variables, the edges of the pentagon are identified

with the homotopies that preform a single shift of parentheses, and the region bounded by the

pentagon is identified with a 4-ary operation m4 : ΩS⊗4 → ΩS. Then ∂m4 = m2 (m3 ⊗ 1)−

m3 (m2 ⊗ 1⊗ 1)+m3 (1⊗m2 ⊗ 1)−m3 (1⊗ 1⊗m2)+m2 (1⊗m3) .Homotopy associativity

in n-variables is controlled by the associahedron Kn, which is an n− 2 dimensional polytope

whose vertices are identified with the various ways one can parenthesize n variables.

(( ))

( )

()

)() )

( ()) ( ( ))

(())

((

()

( )

Figure 2: The associahedron K4.

While associahedra are interesting geometric objects, they can also be used to form some

interesting algebraic structures, including A∞-coalgebras. The definition of an A∞-coalgebra

and how it relates to associahedra requires the definition of a differential graded vector space.

A differential graded (d.g.) vector space is a vector space V = ⊕i≥0Vi equipped with a

differential operator ∂ : V∗ → V∗−1 such that ∂◦∂ = 0. For example, consider a polyhedron P

such as a cube or a tetrahedron and think of its vertices, edges, faces, and 3-dimensional solid

as i-dimensional basis vectors. Let Ci (P ) be the vector space generated by the i-dimensional
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basis vectors; then C∗ (P ) = C0 (P )⊕C1 (P )⊕C2 (P )⊕C3 (P ) is a d.g. vector space whose

differential operator ∂ is induced by the geometric boundary of P. The d.g. vector space

(C∗ (P ) , ∂) is called the cellular chains of P.

Let (V, ∂V ) and (W,∂W ) be d.g. vector spaces. A linear map f : V → W has degree

p if f : Vi → Wi+p; the map f is a chain map of degree p if ∂W ◦ f = (−1)p f ◦ ∂V . Let

Homp (V,W ) denote the vector space of all linear maps f : V → W of degree p.

Proposition 1 Hom∗ (V,W ) is a d.g. vector space with differential defined by δ (f) =

f ◦ ∂V − (−1)p ∂W ◦ f. Where P is the degree of f

Proof. To verify that δ (f) is in fact a differential, we must show that δ ◦ δ (f) = 0. First

of all, note that since f has degree P , f ◦ ∂V and ∂W ◦ f have degree p− 1, and hence δ(f)

has degree p− 1. The proof now proceeds as follows:

δ ◦ δ (f)

=δ (f ◦ ∂V − (−1)p ∂W ◦ f)

=δ (f ◦ ∂V )− (−1)p δ (∂W ◦ f)

=
(
(f ◦ ∂V ) ◦ ∂V − (−1)p−1 ∂W ◦ (f ◦ ∂V )

)
− (−1)p

(
(∂W ◦ f) ◦ ∂V − (−1)p−1 ∂W ◦ (∂W ◦ f)

)
=− (−1)p−1 (∂W ◦ f ◦ ∂V )− (−1)p (∂W ◦ f ◦ ∂V ) = 0

Now if all of the functions in Hom∗ (V,W ) were chain maps, the differential of each

element of Hom∗ (V,W ) would be zero. If the differential is not zero, then we can use the

result to measure, in a sense, how far off the function is from being a chain map. Let

m2 ∈ Hom∗
(
C∗ (P )⊗2 , C∗ (P )

)
and m3 ∈ Hom∗

(
C∗ (P )⊗3 , C∗ (P )

)
. Then in the case of

f = m3, which has degree 1, we have

δ(m3) = m3 ◦ ∂⊗3 − (−1)1 ∂ ◦m3 = ∂ ◦m3 = m2(1⊗m2)−m2(m2 ⊗ 1),

where we use the fact that the boundary of a loop is 0. Then δ(m3) measures the deviation

of m2 from associativity, and under certain circumstances we can express this deviation in
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terms of a chain map from the cellular chains C∗ (Kn) into Hom∗
(
C∗ (P )⊗3 , C∗ (P )

)
and

f = m3.

Definition 2 A d.g. algebra is a d.g. vector space (V, ∂) together with an associative product

m2 : V ⊗V → V of degree 0 such that ∂ is a derivation of m2 , i.e. ∂m2 = m2(∂⊗1+1⊗∂).

If m2 fails to be associative, but is associative up to homotopy, there is a 3-ary chain

homotopy m3 : V ⊗3 → V such that δ (m3) = (m2 ⊗ 1)m2 − (1⊗m2)m2. This 3-ary chain

homotopy can still exist even if m2 is associative, but it’s required when m2 is associative

up to homotopy.

For each n ≥ 2, let Kn denote the (n− 2)-dimensional associahedron and consider its

cellular chains C∗ (Kn). Choose a top dimensional generator θn ∈ Cn−2 (Kn) .

Definition 3 Let (V, ∂) be a d.g. vector space. For each n ≥ 2, choose a chain map

αn : C∗(Kn) → Hom(V ⊗n, V ) of degree 0. Define mn := αn(θn). Then (V, ∂,m2,m3, . . . ) is

an A∞-algebra if for all n ≥ 2,

δ(m3) =
n−2∑
l=1

n−l−1∑
i=0

(−1)l(i+1)mn−l(1
⊗i ⊗ml+1 ⊗ 1⊗n−l−i−1).

The definitions of a d.g. coalgebra and an A∞-coalgebra mirror the definitions of a d.g.

algebra and an A∞-algebra, and proceed as follows.

Definition 4 A d.g. coalgebra is a d.g. vector space (V, ∂) together with a coassociative

coproduct ∆2 : V → V ⊗ V of degree 0 such that ∂ is a coderivation of ∆2, i.e. ∆2∂ = ∂∆2.

For each n ≥ 2, let Kn denote the (n− 2)-dimensional associahedron and consider its

cellular chains C∗ (Kn). Choose a top dimensional generator θn ∈ Cn−2 (Kn) .

Definition 5 Let (V, ∂) be a d.g vector space. For each n ≥ 2, choose a chain map α :

C∗ (Kn)→ Hom (V, V ⊗n) of degree 0 and define ∆n := αn (θn) .

Then (V, ∂,∆2,∆3, . . .) is an A∞-coalgebra if for all n ≥ 2,

δ (∆n) =
n−2∑
l=1

n−l−1∑
i=0

(−1)l(n+i+1) (1⊗i ⊗∆l+1 ⊗ 1⊗n−l−i−1
)

∆n−l. (1)
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Since αn is a chain map of degree 0, the map αn commutes with differentials and we have

δ (∆n) = δαn (θn) = αn∂ (θn) .

Thus the right-hand side of (1) is image of ∂ (θn) under αn, which is the sum of the compo-

sitions represented by the dimension n − 3 cells in the boundary of Kn, and (−1)l(n+i+1) is

the combinatorial sign derived by Sansblidze and Umble[4]. For low dimensional values of n

we have

∆2∂ − ∂∆2 = 0

∆3∂ + ∂∆3 = (∆2 ⊗ 1) ∆2 − (1⊗∆2) ∆2

∆4∂ − ∂∆4 = (∆3 ⊗ 1) ∆2 + (1⊗∆3) ∆2 − (∆2 ⊗ 1⊗ 1) ∆3

(1⊗∆2 ⊗ 1) ∆3 − (1⊗ 1⊗∆2) ∆3.

Note that the first relation written in the form (∂ ⊗ 1 + 1⊗ ∂) ∆2 = ∆2∂ says that ∂ is a

coderivation of ∆2 and is dual to the Leibniz Rule dm = m (d⊗ 1 + 1⊗ d) in calculus.

In the discussion that follows, we will use the Sign Commutation Rule, which states the

following:

Sign Commutation Rule: If an object of degree p passes an object of degree q, it introduces

the sign (−1)pq.

This thesis presents an A∞-coalgebra structure on the cellular chains of an n-gon. This

structure is interesting because the operation ∆k is non-trivial for all k < n and vanishes for

all k ≥ n.

2 Statement of Main Result

Let P be a counterclockwise oriented polygon with n sides where n ≥ 3. Label the vertices

v1, v2, . . . vn and the edges e1, e2, . . . en as in the following diagram:
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v
1

v
2

e
1

e
2

e
3

e
4

e
5

e
6

v
6

v
5

v
4

v
3

Figure 3: An n-gon for n = 6

Next we define one of the vertices to be the initial vertex and one of them to be the

terminal vertex. This specifies a partially ordered set where all vertices along one side of the

polygon are ordered in a chain from the initial vertex to the terminal vertex, and all vertices

along the other are ordered in a similar chain, but vertices in different chains cannot be

compared to each other. For example, suppose we had an 6-gon and we labeled v1 to be the

initial vertex and v3 to be the terminal vertex. Then we would have that v1 < v2 < v3 and

v1 < v6 < v5 < v4 < v3. Because of this, we sometimes call the initial vertex the minimal

vertex and the terminal vertex the maximal vertex.

For our proof, we will start by labeling v1 as the initial vertex and vn as the terminal

vertex, but later on we will relax this condition when we prove our corollary in section 5.

Next, we assign an orientation to each edge based off this ordering, and we say that edges

with direction consistent with the counterclockwise orientation of P are positive and those

that go against it are negative.

Figure 3: An n-gon for n = 6
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Then ∂(vi) = 0, ∂(ei) = vi+1 − vi if i < n, ∂(en) = vn − v1, and ∂(p) = e1 + e2 + · · · +

en−1 − en.

The ∆2 that we use here was first discovered by Kravatz in [2]. A more general exposition

of ∆2 subsequently appeared in [1]. Define the diagonal ∆2 by:

∆2(P ) = v1 ⊗ P + P ⊗ vn +
∑

0<i1<i2<n

ei1 ⊗ ei2 ,

∆2(ei) = vi ⊗ ei + ei ⊗ vi+1 if i < n,

∆2(en) = v1 ⊗ en + en ⊗ vn,

∆2(vi) = vi ⊗ vi,

and define the k-ary A∞-coalgebra operations ∆k where 2 < k as:

∆k(P ) =
∑

0<i1<i2<···<ik<n

ei1 ⊗ ei2 ⊗ · · · ⊗ eik

∆k(σ) = 0 when σ 6= P.

Note that by definition, ∆k = 0 for all k ≥ n. Recall that (C∗ (P ) , ∂,∆2,∆3, · · · ) is an

A∞-coalgebra if the following relation holds for k ≥ 2 :

k−1∑
i=0

(
1⊗i ⊗ ∂ ⊗ 1⊗k−i−1

)
∆k−(−1)p ∆k∂ =

k−2∑
l=1

k−l−1∑
i=0

(−1)l(k+i+1) (1⊗i ⊗∆l+1 ⊗ 1⊗k−l−i−1
)

∆k−l.

(2)

Our main result, which appears in section 4, is:

Theorem 6 The operations defined above satisfy all A∞-coalgebra relations on C∗ (P ), the

cellular chains of P . Furthermore, all ∆k for k < n are non-trivial, and all ∆k for k ≥ n

vanish.

3 Proof that ∂ is a coderivative of ∆2

The first A∞-coalgebra relation states that ∂ is a coderivative of ∆2. Thus, we must verify

that
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∆2∂ − ∂∆2 = 0 (3)

for all linear combinations of the cellular chains of P . Verifying the relation for edges and

vertices can be done easily as follows:

Proposition 7 Let v be a vertex. Then (∆2∂ − ∂∆2)(v) = 0

Proof.

(∆2∂ − ∂∆2) (v)

=∆2∂(v)− (∂ ⊗ 1 + 1⊗ ∂)∆2(v)

=∆2(0)− (∂ ⊗ 1 + 1⊗ ∂)(v ⊗ v) = 0

Proposition 8 Let ei be an edge of P . Then (∆2∂ − ∂∆2)(ei) = 0

Proof.

Case 1: Suppose i < n. Then

(∆2∂ − ∂∆2)(ei)

=∆2∂(ei)− ∂∆2(ei)

=∆2(vi+1 − vi)− (∂ ⊗ 1 + 1⊗ ∂)(vi ⊗ ei + ei ⊗ vi+1)

=vi+1 ⊗ vi+1 − vi ⊗ vi − 0⊗ ei − vi ⊗ (vi+1 − vi)− (vi+1 − vi)⊗ vi+1 − ei ⊗ 0 = 0

Case 2: Suppose i = n. Then

(∆2∂ − ∂∆2)(en)

=∆2∂(en)− ∂∆2(en)

=∆2(v1 − vn)− (∂ ⊗ 1 + 1⊗ ∂)(v1 ⊗ en + en ⊗ vn)

=v1 ⊗ v1 − vn ⊗ vn − 0⊗ en − v1 ⊗ (v1 − vn)− (v1 − vn)⊗ vn − en ⊗ 0 = 0

Finally, we must verify relation (3) when applied to P . In order to make our proof clearer

however, we first prove a lemma.

12



Lemma 9 Let v1 and vn be vertices of P and let e1, e2, . . . , en−1 be edges of P . Then

∂⊗2

( ∑
0<i<j<n

(ei ⊗ ej)

)
=

(
−
∑

0<i<n

(v1 ⊗ ei)−
∑

0<i<n

(ei ⊗ vn) +
∑

0<i<n

∆2(ei)

)

Proof. We apply ∂⊗2 and simplifying:

∂⊗2

( ∑
0<i<j<n

(ei ⊗ ej)

)

=
∑

0<i<j<n

(∂ei ⊗ ej − ei ⊗ ∂ej)

=
∑

0<i<j<n

(vi+1 ⊗ ej − vi ⊗ ej − ei ⊗ vj+1 + ei ⊗ vj)

=
∑

0<i<j<n

(vi+1 ⊗ ej − vi ⊗ ej) +
∑

0<i<j<n

(ei ⊗ vj − ei ⊗ vj+1)

=
∑

1<j<n

∑
0<i<j

(vi+1 ⊗ ej − vi ⊗ ej) +
∑

0<i<n−1

∑
i<j<n

(ei ⊗ vj − ei ⊗ vj+1)

=
∑

1<j<n

(vj ⊗ ej − v1 ⊗ ej) +
∑

0<i<n−1

(ei ⊗ vi+1 − ei ⊗ vn)

=−
∑

1<j<n

v1 ⊗ ej +
∑

1<j<n

vj ⊗ ej +
∑

0<i<n−1

ei ⊗ vi+1 −
∑

0<i<n−1

ei ⊗ vn

=−
∑

0<j<n

v1 ⊗ ej +
∑

0<j<n

vj ⊗ ej +
∑

0<i<n

ei ⊗ vi+1 −
∑

0<i<n

ei ⊗ vn

=−
∑

0<j<n

v1 ⊗ ej −
∑

0<i<n

ei ⊗ vn +
∑

0<i<n

ei ⊗ vi+1 +
∑

0<j<n

vj ⊗ ej

=−
∑

0<j<n

v1 ⊗ ej −
∑

0<i<n

ei ⊗ vn +
∑

0<i<n

(vi ⊗ ei + ei ⊗ vi+1)

=−
∑

0<j<n

v1 ⊗ ej −
∑

0<i<n

ei ⊗ vn +
∑

0<i<n

∆2ei

Proposition 10 Relation (3) holds for P
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Proof.

[∆2∂ − ∂∆2](P )

=∆2∂(P )− ∂∆2(P )

=∆2∂(P )− ∂

[
v1 ⊗ P + P ⊗ vn +

∑
0<i1<i2<n

(ei1 ⊗ ei2)

]

=∆2∂(P )− ∂[v1 ⊗ P + P ⊗ vn]− ∂

[ ∑
0<i1<i2<n

(ei1 ⊗ ei2)

]

=∆2∂(P )− [v1 ⊗ ∂(P ) + ∂(P )⊗ vn]− ∂

[ ∑
0<i1<i2<n

(ei1 ⊗ ei2)

]

=∆2∂(P )− v1 ⊗ ∂(P )− ∂(P )⊗ vn −

[
−
∑

0<i<n

(v1 ⊗ ei)−
∑

0<i<n

(ei ⊗ vn) +
∑

0<i<n

∆2(ei)

]
=∆2(−en)− v1 ⊗ ∂(P )− ∂(P )⊗ vn +

∑
0<i<n

(v1 ⊗ ei) +
∑

0<i<n

(ei ⊗ vn)

=−∆2(en)− v1 ⊗ ∂(P )− ∂(P )⊗ vn + v1 ⊗

( ∑
0<i<n

ei

)
+

( ∑
0<i<n

ei

)
⊗ vn

=−∆2(en)− v1 ⊗ ∂(P )− ∂(P )⊗ vn + v1 ⊗ (∂(P ) + en) + (∂(P ) + en)⊗ vn

=−∆2(en) + v1 ⊗ en + en ⊗ vn = 0

4 Proof that ∆n satisfies all A∞-coalgebra relations for

n > 2

Since ∂ is a coderivative of ∆2, it is only necessary to justify ∆k(P ) for k > 2. Verifying ∆3

turns out to be a special case and relations with k > n involve vanishing ∆i’s. Consequently

we begin by proving cases for 3 < k ≤ n, followed by n < k, and conclude with the special

case ∆3.

For the rest of the discussion, we will be verifying the A∞-coalgebra relations when ∆k

is applied to P (applying ∆k to other cells always vanishes, and the conclusion is trivial).

To prove our result for ∆k when k > 3, we must show that:
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[∂∆k − (−1)k−2∆k∂](P )

= (∆k−1 ⊗ 1 + 1⊗∆k−1)∆2 + (∆k−2 ⊗ 1⊗ 1 + 1⊗∆k−2 ⊗ 1 + 1⊗ 1⊗∆k−2)∆3

+ · · ·+ (∆2 ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ 1⊗ · · · ⊗∆2)∆k−1](P ).

Each term on the right side of this equation has the sign (−1)l(k+i+1), where l is one less

than the degree of the second operation applied, and i represents the position where the

second operation is applied (starting at position 0).

Proposition 11 Any sequence of compositions of ∆j followed by ∆j where i, j > 2 applied

to P vanishes. Additionally, ∆k∂(P ) = 0.

Proof. Since ∆i only act on P , and since P is not a factor of ∆j(P ), any composition of

∆j followed by ∆i will vanish. By the same reasoning, ∆k∂(P ) vanishes as well since ∂(P )

only involves edges.

Therefore, the proof reduces to verifying that:

− (−1)k∂∆k(P ) =

[(∆k−1 ⊗ 1 + 1⊗∆k−1)∆2 + (∆2 ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ 1⊗ · · · ⊗∆2)∆k−1](P ),

(4)

where the signs on the right are determined by (−1)l(k+i+1). To simplify notation, we will

use the following:

• Let ∂∆k(P ) denote: (∂ ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ 1⊗ · · · ⊗ ∂)∆k(P )

• Let ∆k−1∆2(P ) denote: (∆k−1 ⊗ 1 + 1⊗∆k−1)∆2(P )

• Let ∆2∆k−1(P ) denote: (∆2 ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ 1⊗ · · · ⊗∆2)∆k−1(P )

So in other words, we must show that:

[(−1)k+1∂∆k + (−1)l(k+i+1)+1∆k−1∆2 + (−1)l(k+i+1)+1∆2∆k−1](P ) = 0, (5)
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where all terms in relation (4) have been moved to the left-hand side of the equation. Before

we begin, we note the restrictions on the types of terms to be considered.

Lemma 12 All non-vanishing terms contain exactly one vj factor. Furthermore, if ei ⊗ vj
or vj ⊗ ek appears as part of a term, then i < j and j ≤ k, respectively.

Proof.

Case 1: Consider ∂∆k(P ). Note that ∆k(P ) will either vanish if k ≥ n, or it will produce

terms of the form ei1 ⊗ ei2 ⊗ · · · ⊗ eik where 0 < i1 < i2 < · · · < ik < n. The effect of

applying ∂ to any ei is to create two new terms, where ei is replaced with vi or vi+1.

Since the subscript i is greater than the subscript on the term to its left and less than

the subscript of the term to its right, either choice gives the desired result.

Case 2: Consider ∆k−1∆2(P ). Note that since any non-vanishing ∆k−1 only acts nontrivial

on P , the only terms produced by ∆2 that we need to consider are v1⊗P and P ⊗ vn.

When ∆k−1 acts on the P , it produces a term of the form ei1⊗ei2⊗· · ·⊗eik−1
where 0 <

i1 < i2 < · · · < ik−1 < n. Since 0 < i < n for all i, all terms either begin with v1 or

end with vn and have the desired form.

Case 3: Consider ∆2∆k−1(P ). Notice that non-vanishing ∆k−1(P ) produces terms of the

form ei1 ⊗ ei2 ⊗ · · · ⊗ eik−1
where 0 < i1 < i2 < · · · < ik−1 < n. When ∆2 is applied,

it acts on a factor ei, which will have the effect of either inserting vi to the left of the

ei, or of inserting vi+1 to the right of the ei. Since the subscript i is bigger than the

subscript of the term to its left, inserting a vi to the left of the ei produces a term of

the desired form. Additionally, since the subscript i is less than the subscript on the

term to its right, inserting a vi+1 to the right of the ei produces a term of the desired

form.

With this information, we can partition all terms into several disjoint sets based on the

position of the vi. We say that vi is left adjacent if ei−1 is immediately to its left; vi is right

adjacent if ei is immediately to its right. Then we may partition the terms as follows
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Definition 13 A term in which vi is both left and right adjacent is doubly attached.

Definition 14 A term in which vi is left adjacent but not right adjacent or vice versa is

singly attached.

Definition 15 A term in which vi is neither left adjacent nor right adjacent is unattached.

These definitions partition all terms into pairwise disjoint sets. Each term satisfies ex-

actly one of the definitions. Additionally, we can sub-classify these sets using the following

definition:

Definition 16 A term of the form v1⊗ ej ⊗ · · · is called an extreme minimal term. A term

of the form · · · ⊗ ej ⊗ vn, is called an extreme maximal term. An extreme term either starts

with v1 or ends with vn.

Note that doubly attached terms cannot be extreme. Hence, there are five classes of

terms.

Example 17 For n = 6, we have:

• v1 ⊗ e1 ⊗ e3 is minimally extreme and right attached

• e1 ⊗ e5 ⊗ v6 is maximally extreme and left attached

• v1 ⊗ e2 ⊗ e3 is minimally extreme and unattached

• e1 ⊗ e4 ⊗ v6 is maximally extreme and unattached

• v2 ⊗ e2 ⊗ e5 is right attached (but not minimally extreme)

• e1 ⊗ e4 ⊗ v5 is left attached (but not maximally extreme)

• v2 ⊗ e3 ⊗ e5 is unattached

• e1 ⊗ e3 ⊗ v5 is unattached

• e1 ⊗ v2 ⊗ e3 is left attached
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• e1 ⊗ v4 ⊗ e4 is right attached

• e2 ⊗ v3 ⊗ e3 is doubly attached

• e1 ⊗ v3 ⊗ e4 is unattached

The proof now reduces to showing that each class cancels itself out in the relation:

[−(−1)k∂∆k + (−1)l(k+i+1)+1∆k−1∆2 + (−1)l(k+i+1)+1∆2∆k−1](P ) = 0.

But before we can do this however, we need some lemmas.

Lemma 18 Suppose a term is formed by applying ∆k to P (for 2 < k < n), followed by

applying ∂ in such a way so that vi appears in the ith position. Then that term appears at

most two times and only in the following ways:

• Way 1: The term will be generated once if and only if it is unattached on the left

and is not minimally extreme (note that terms beginning with any vi, where i 6= 1, are

unattached on the left). This term will have the sign (−1)i+k+1.

• Way 2: The term will be generated once if and only if it is unattached on the right

and is not maximally extreme (note that terms ending with any vi, where i 6= n, are

unattached on the right). This term will have the sign (−1)i+k.

Proof.

Case 1: Consider a term that contains ei1 ⊗ vi2 ⊗ ei3 where 0 < i1 < i2 ≤ i3 < n. Since

∆k(P ) cannot generate vi2 , it was produced by ∂. Since vi2 appears between ei1 and ei3 , we

know that ∂ was applied to a term of the form ei1 ⊗ ex ⊗ ei3 with 0 < i1 < x < i3 < n.

Furthermore, there are only two possible edges ex that ∂ could have acted upon to generate

vi2 , namely when x = i2−1 or x = i2. Therefore, since there are only two possible values for

x, there are at most two ways to generate any given term. For example, the term e1⊗v3⊗e4
can only be generated from e1 ⊗ ∂e2 ⊗ e4 or e1 ⊗ ∂e3 ⊗ e4.

Suppose that x = i2− 1. Since i1 < x, we have i1 < i2− 1 forcing the original term to be

unattached on the left. Therefore, only terms that are unattached on the left can appear this
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way. To see that all left unattached terms can be generated, simply note that the subscript

of any left unattached term will satisfy the inequality i1 < i2− 1 by definition. Then ∆k(P )

produces the term ei1 ⊗ ei2−1 ⊗ ei3 where 0 < i1 < i2 ≤ i3 < n, and produces the desired

term after ∂ is applied to ei2−1. Now applying ∂ this way produces a positive vi2 in the same

position in which ∂ was applied, and so if vi appears in the ith position, then a sign of (−1)i

is introduced from ∂ passing the ej factors. If we combine this with the sign given in the

formula, the term’s final sign is (−1)i+k+1.

Similarly, suppose that x = i2. Since x < i3, we have i2 < i3 which forces the original

term to be unattached on the right. Therefore, only terms that are unattached on the

right can appear this way. To see that all right unattached terms can be generated, simply

note that the subscript of any right unattached term will satisfy the inequality i1 < i2 by

definition. Thus, ∆k(P ) produces the term ei1 ⊗ ei2 ⊗ ei3 where 0 < i1 < i2 ≤ i3 < n, and

produces the desired form after applying ∂. Now applying ∂ produces a negative vi2 in the

same position in which ∂ was applied. Consequently, if vi appears in the ith position, then

a sign of (−1)i is introduced from ∂ passing the ej factors. If we combine this with the sign

given in the formula and the negative sign introduced by the vi2 , we have that the term’s

final sign is −(−1)i+k+1 = (−1)i+k.

Case 2: Consider a term of the form vi2 ⊗ ei3 ⊗ · · · where 0 < i2 ≤ i3 < n. By an

argument similar to the one above, this term can only appear if ∂ is applied to a term of the

form ex⊗ei3⊗· · · , where x = i2−1 or x = i2. For example, the term v3⊗e4⊗e5 can only be

generated from ∂e2⊗ e4⊗ e5 or ∂e3⊗ e4⊗ e5. By the same reasoning as in Case 1, it follows

that if x = i2, then all terms generated must be right unattached, any given right unattached

term can be formed, and the term will have the sign (−1)i+k. Similarly, if x = i2−1 all terms

introduced are left unattached, however, we cannot immediately conclude that all possible

left unattached terms will be formed. This is because x > 0, and since x = i2 − 1, we have

i2 > 1. Hence only non-minimally extreme left unattached terms can be formed, and an

analysis similar to that in Case 1 shows that the terms produced have the sign (−1)i+k+1.

Case 3: Consider a term of the form · · · ⊗ ei1 ⊗ vi2 where 0 < i1 < i2 < n. By an

argument similar to the one above, this term can only appear if ∂ is applied to a term of

the form · · · ⊗ ei1 ⊗ ex, where x = i2 − 1 or x = i2. For example, the term e1 ⊗ e2 ⊗ v4 can
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only be generated from e1 ⊗ e2 ⊗ ∂e3 or e1 ⊗ e2 ⊗ ∂e4. By the same reasoning as in Case 1,

it follows that if x = i2− 1, then all terms generated must be left unattached, any given left

unattached term can be formed, and the the term will have the sign (−1)i+k+1. Similarly,

if x = i2 all terms produced are right unattached, however we cannot immediately conclude

that all possible right unattached terms will be formed. This is because x < n, and since

x = i2, we have i2 < n. Hence, only non-maximally extreme right unattached terms can be

formed, and an analysis similar to that in Case 1 shows that the terms produced have the

sign (−1)i+k.

Lemma 19 Let 3 < k ≤ n. Suppose a term is produced by applying ∆k−1 to P followed by

applying ∆2 in such a way so that a vi appears in the ith position. Then that term appears

at most two times and only in the following ways:

• Way 1: The term will be generated once if and only if it is attached on the left. This

term will have the sign (−1)i+k+1.

• Way 2: The term will be generated once if and only if it is attached on the right. This

term will have the sign (−1)i+k.

Proof.

Case 1: Consider a term that contains ei1 ⊗ vi2 ⊗ ei3 where 0 < i1 < i2 ≤ i3 < n.

Since ∆k−1(P ) cannot produce vi2 , it is produced by ∆2, and because ∆2 inserts a v next

to the e to which it was applied, ∆2 was applied to either ei1 or ei3 . Additionally, because

of how ∆2 is defined, the only way ∆2(ei1) can generate vi2 is if i1 = i2 − 1, and the only

way ∆2(ei3) can generate vi2 is if i2 = i3. Therefore, there are at most two ways to create

the desired term. For example, the term e1 ⊗ e2 ⊗ v3 ⊗ e3 ⊗ e5 can only be generated from

e1 ⊗∆2e2 ⊗ e3 ⊗ e5 or e1 ⊗ e2 ⊗∆2e3 ⊗ e5.

Let us suppose that ∆2 was applied to ei1 and that i1 = i2 − 1. Then by definition the

resulting term will be left attached. Furthermore, any given left attached term of the form

ei2−1⊗ vi2 ⊗ ei3 where 0 < i2− 1 ≤ i3 < n can be created by simply applying ∆2 to the term

ei2−1 ⊗ ei3 generated by ∆k(P ). Now in order to create a term with vi2 in the ith position,

we must apply ∆2 to the (i − 1)st position. Since ∆2 has even degree, no additional sign
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is introduced by the sign commutation rule and the term has the sign from the formula,

namely (−1)l((i−1)+k+1)+1 = (−1)i+k+1 since l = 1.

Now suppose that ∆2 was applied to ei3 and that i2 = i3. Then by definition the resulting

term will be right attached, and additionally we can see that any given right attached term

of the form ei1 ⊗ vi2 ⊗ ei2 where 0 < i2 < n can be created by simply applying ∆2 to

the term ei1 ⊗ ei2 generated by ∆k(P ). Now in order to create a term with vi2 in the ith

position, we must apply ∆2 to the ith position. Since ∆2 has even degree, no additional sign

is introduced by the sign commutation rule and the term has the sign from the formula,

namely (−1)l(i+k+1)+1 = (−1)i+k since l = 1.

Case 2: Consider a term of the form vi2 ⊗ ei3 ⊗ · · · where 0 < i2 < i3 < n. By an

argument similar to the one above, this term can only be generated if ∆2 is applied to ei3

and if i2 = i3. For example, the term v3⊗e3⊗e5 can only be generated from ∆2e3⊗e5. Using

the same reasoning as in Case 1, all terms generated by this method will be right attached,

and any given right attached term can be generated. The sign of the term, which follows in

the same manner as above, is (−1)i+k.

Case 3: Consider a term of the form · · · ⊗ ei1 ⊗ vi2 where 0 < i1 < i2 < n. By an

argument similar to the one above, this term can only be generated if ∆2 is applied to ei1 and

if i1 = i2−1. For example, the term e1⊗e2⊗v3 can only be generated from e1⊗∆2e2. Using

the same reasoning as in Case 1, all terms generated by this method will be left attached,

and any given left attached term can be generated. The sign of the term, which follows in

the same manner as above, is (−1)i+k+1.

Proposition 20 Let 2 < k < n Suppose a term is produced by applying ∆k to P , followed

by applying ∂ in such a way so that a vi appears in the ith position. Then:

• No doubly attached terms are generated.

• All unattached terms that are produced cancel.

• All extreme terms generated are unattached.

• All maximally extreme terms are generated and have positive sign.

• All minimally extreme terms are generated and have the sign (−1)k.
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• All left attached terms are generated and each has the sign (−1)i+k.

• All right attached terms are generated and each has the sign (−1)i+k+1.

Proof. First, note that both ways of generating a term require it to be unattached on at

least one side by Lemma 18. Therefore no doubly attached terms are generated. Additionally,

any term that is unattached on both sides with be created in both ways, and since the two

ways generate terms with opposite signs, all unattached terms cancel. If a term is attached

on exactly one side, it was produced exactly once with sign given by Lemma 18 depending

on which side it was attached. Finally, let us consider extreme terms. By the conclusion

of Lemma 18, we see that any minimally extreme term attached on the right along with

any maximally extreme term attached on the left cannot be generated. If an extreme term

is unattached however, it can be generated in exactly one way with sign given by Lemma

18 (maximally extreme terms are generated using the first method, and minimally extreme

are generated using the second). Since minimally extreme terms produce a vi in the zeroth

position, we have i = 0 which gives the term a sign of (−1)k. On the other hand, maximally

extreme terms produce a vi in the k− 1 position, so that i = k− 1, which gives the term the

positive sign of (−1)2k.

Proposition 21 Let 3 < k ≤ n. Suppose a term is formed by applying ∆2 to P , followed

by applying ∆k−1. Then:

• All terms generated are extreme.

• All minimally extreme terms (both attached and unattached) are generated and have

the sign (−1)k+1.

• All maximally extreme terms (both attached and unattached) are generated and have

negative the sign.

Proof. Since ∆k−1 only acts non-trivially on P , the only terms produced by ∆2 that

do not immediately vanish are v1 ⊗ P + P ⊗ vn. Additionally, note that since k > 3, ∆k−1

produces no primitive terms when it is applied by the definition of ∆k for k > 2.
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When ∆k−1 is applied to the first term, it generates terms of the form v1⊗ ei1⊗ ei2⊗· · · ,

which are all minimally extreme. Since ∆k−1 must be applied to the second position, it

passes v1 which has an even degree, so no additional sign is added by the sign commutation

rule and the term has the final sign (−1)l(k+i+1)+1 = (−1)lk+1. Furthermore, since l = k− 2,

we see that l and k have the same parity, and the sign is simply (−1)k+1.

When ∆k−1 is applied to the second term, it generates terms of the form · · · ⊗ eik−3
⊗

eik−2
⊗ vn, which are maximally extreme. Since ∆k−1 must be applied to the first position,

no additional sign is introduced by the sign commutation rule and the term has the final

sign (−1)l(k+i+1)+1 = (−1)l(k+1)+1. Furthermore, since l and k have the same parity as noted

before, the expression l(n+ 1) is even, and all terms have negative sign.

Proposition 22 Let 3 < k ≤ n. Suppose a term is formed by applying ∆k−1 to P , followed

by applying ∆2 in such a way so that vi appears in the ith position. Then:

• All doubly attached terms that are generated cancel.

• No unattached terms are generated.

• All extreme terms generated are singly attached.

• All maximally extreme terms are generated and have positive sign.

• All minimally extreme terms are generated and have the sign (−1)k.

• All left attached terms have the sign (−1)i+k+1.

• All right attached terms have the sign (−1)i+k.

Proof. First, note that both ways of generating a term require it to be attached on at

least one side by Lemma 19. Therefore no unattached terms can be generated. Additionally,

any term that is attached on both sides is created both ways, and since the two ways generate

terms with opposite signs, all doubly attached terms cancel. If a term is attached on exactly

one side, it was produced exactly once with sign given by Lemma 19 depending on which

side it was attached. Finally, let us consider extreme terms. By the conclusion of Lemma

19, any extreme term cannot be generated unless it is attached, which means that minimally
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extreme terms must be attached on the right (and are therefore produced by the second

method described in the statement of the lemma), and any maximally extreme terms will

be attached on the left (and are therefore produced by the first method described in the

statement of the lemma). Since minimally extreme terms will result in vi in the zeroth

position, we have that i = 0 which gives the term the sign of (−1)k. On the other hand,

maximally extreme terms will result in vi in the (k − 1) position, so that i = k − 1, which

gives the term the positive sign of (−1)2k.

Now suppose 3 < k < n. Then all three propositions apply and we see that when

we examine all terms generated in relation (5), the singly attached terms in ∂∆k(P ) and

∆2∆k−1(P ) cancel, the extreme unattached terms in ∂∆k(P ) and ∆k−1∆2(P ) cancel, and

the extreme singly attached terms in ∆k−1∆2(P ) and ∆2∆k−1(P ) cancel. Therefore, nothing

remains and the relation is satisfied.

Now suppose that n ≤ k. Note that if n < k, both ∆k and ∆k−1 will vanish and the

relation will be trivially satisfied, so we really only need to verify the relation for k = n. In

this case, ∆k vanishes and the relation reduces to

[(−1)l(n+i+1)+1∆n−1∆2 + (−1)l(n+i+1)+1∆2∆n−1](P ) = 0

Notice that Proposition 21 and Proposition 22 still apply since k ≤ n, and as before,

the extreme singly attached terms in ∆k−1∆2(P ) and ∆2∆k−1(P ) cancel, leaving only the

singly attached terms in ∆2∆k−1(P ), and the extreme unattached terms in ∆k−∆2(P ). We

will now show that no singly attached terms or extreme unattached terms can actually be

generated when k = n, which will complete the proof.

First of all, notice that each set of operations will produce a tensor product with n fac-

tors, and that exactly one of those factors will be a vi. This means that n− 1 of the factors

must be ei where the index of each ei must be greater than the one preceding it, and where

0 < i < n. Since there are n − 1 such factors, we have that each of e1, e2, ...en−1 must be

present in any term generated by either sequence of operations. Now if the term is extreme,

the vi will be located either before the e1, or after the en−1. In either case, the term will

be singly attached which means extreme unattached terms cannot be generated. Similarly,

we have that if the vi appears somewhere in the middle of the term, then there will be an
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ei on the left and an ei+1 on the right, forcing the term to be doubly attached. Therefore,

no singly attached terms will be generated either. This means that all the terms which

normally would have needed the ∂∆k(P ) to cancel were never actually created in the first

place, allowing the relation to still be satisfied for k = n.

Now we have proven the theorem for all ∆k where k > 3. To prove it for k = 3, we must

show that:

(∂∆3 + ∆2∆2)(P ) = 0, i.e.,

[(∂ ⊗ 1⊗ 1 + 1⊗ ∂ ⊗ 1 + 1⊗ 1⊗ ∂)∆3 + (−∆2 ⊗ 1 + 1⊗∆2)∆2](P ) = 0

when we account for signs.

Proposition 23 The terms generated by (∂∆3 + ∆2∆2)(P ) can be divided into parts that

independently satisfy the conclusions of Propositions 20, 21, and 22.

Proof. Note that Proposition 20 in the proof above still applies to ∂∆3(P ) as before since

it never used a restriction that k ≥ 3. Therefore, we must show that (∆2⊗1−1⊗∆2)∆2 can

be divided into parts that separately satisfy the conclusions of Proposition 21 and Proposition

22. Now

(−∆2 ⊗ 1 + 1⊗∆2)∆2(P )

=(−∆2 ⊗ 1 + 1⊗∆2)

(
v1 ⊗ P + P ⊗ vn +

∑
i1,i2

(ei1 ⊗ ei2)

)

=(−∆2 ⊗ 1 + 1⊗∆2) (v1 ⊗ P + P ⊗ vn) + (−∆2 ⊗ 1 + 1⊗∆2)

(∑
i1,i2

(ei1 ⊗ ei2)

)
.

Notice that the applications (−∆2 ⊗ 1 + 1 ⊗ ∆2)
∑
i1,i2

ei1 ⊗ ei2 produce terms of the form

ei1 ⊗ ei2 ⊗ · · · ⊗ eik−1
where 0 < i1 < i2 < · · · < ik−1 < n, then applies ∆2 to one of them.

This is exactly the same set up as in Proposition 22, and since the proof of Proposition 22

only used the condition that k ≥ 3 in order to ensure there we no primitive terms, we see
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that the proof applies to (∆2 ⊗ 1 + 1⊗∆2)
∑
i1,i2

ei1 ⊗ ei2 and that we obtain the same types

of terms as given in Proposition 22.

Therefore, we must show that what remains behaves like the general case of ∆k−1∆2,

that is, produces all possible extreme terms.

(−∆2 ⊗ 1 + 1⊗∆2) (v1 ⊗ P + P ⊗ vn)

=− v1 ⊗ v1 ⊗ P + P ⊗ vn ⊗ vn −∆2(P )⊗ vn + v1 ⊗∆2(P )

=− v1 ⊗ v1 ⊗ P + P ⊗ vn ⊗ vn −

(
v1 ⊗ P + P ⊗ vn +

∑
i1,i2

ei1 ⊗ ei2

)
⊗ vn

+ v1 ⊗

(
v1 ⊗ P + P ⊗ vn +

∑
i1,i2

ei1 ⊗ ei2

)

=−

(∑
i1,i2

ei1 ⊗ ei2

)
⊗ vn + v1 ⊗

(∑
i1,i2

ei1 ⊗ ei2

)

which generates every possible extreme term and only extreme terms, all with the correct

sign for k = 3. Therefore, (∆2 ⊗ 1 + 1 ⊗ ∆2) (v1 ⊗ P + P ⊗ vn+1) meets the hypothesis of

Proposition 21

Therefore, since the terms generated by (∂∆3 + ∆2∆2)(P ) can be divided into parts that

individually satisfy the conclusions of Proposition 20, Proposition 21, and Proposition 22, we

see that together they cancel each other out as before and so ∆3 also satisfies the relations.

Theorem 24 The operations {∆n}n≥2 defined in the introduction satisfy all A∞-coalgebra

relations on cellular chains of P .

5 Generalization of Result

Up until this point, we have been working with an n-gon where v1 is the initial vertex and

vn is the terminal vertex. It is also possible to extend the result to the case where the initial

and terminal vertices are non-adjacent. For this result, we will choose some vertex to be the

initial vertex, call it v1, and label all remaining vertices v2, v3, . . . , vn in a counterclockwise

manner. Suppose vt is then picked to be the terminal vertex where t 6= 1 (t = n was our
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choice above). Then we have that ∂(P ) = e1 + e2 + · · ·+ et−1 − et − et+1 − · · · − en. Define

the generalized ∆′2 to be the same as in the introduction, except that:

∆′2(P ) = v1 ⊗ P + P ⊗ vt +
∑

0<i1<i2<t

(ei1 ⊗ ei2)−
∑

n≥i1>i2≥t

(ei1 ⊗ ei2)

Additionally, define the generalized k-ary A∞-coalgebra operations ∆′k where k > 2, as:

∆′k(P ) =
∑

0<i1<i2<···<ik<t

ei1 ⊗ ei2 ⊗ · · · ⊗ eik −
∑

n≥i1>i2>···>ik≥t

ei1 ⊗ ei2 ⊗ · · · ⊗ eik and

∆′k(σ) = 0 when σ 6= P.

Note that by definition, ∆′k = 0 for all k ≥ max{t, n− t + 2}. Now all we must do is show

that the operation {∆′n}n≥2 can be extended to this general setting.

Corollary 25 The operation {∆′n}n≥2 defined above satisfies all A∞-coalgebra relations on

cellular chains of P where the initial vertex is v1 and the terminal vertex is vt where 1 < t ≤ n.

Furthermore, all ∆k for k < n are non-trivial, and all ∆k for k ≥ max{t, n− t+ 2}

Proof. Draw an additional edge from v1 to vt and denote it by e0. Define P1 to be the

polygon with vertices v1, v2, . . . , vt oriented counterclockwise and let P2 to be the polygon

with vertices vt, vt+1, . . . , vn, v1 oriented counterclockwise.
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Figure 4: A 7-gon with vt = v5

Then by the way edges are directed with respect to the orientation, we have ∂(P1) =
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e1 + e2 + · · ·+ et−1 − e0 and ∂(P2) = −et − et+1 − · · · − en + e0, and we note that

∂(P1) + ∂(P2) = (e1 + e2 + · · ·+ et−1 − e0) + (−et − et+1 − · · · − en + e0)

= e1 + e2 + · · ·+ ek−1 − ek − ek+1 − · · · − en = ∂(P )

Furthermore, we define v1 to be the initial vertex in both P1 and P2, and vt likewise to be the

terminal vertex in both P1 and P2. Then both P1 and P2 satisfy the hypothesis of Theorem

6, and the k-ary operations defined on them define A∞-coalgebra structures. Now we note

the following:

∆2(P1) + ∆2(P2)

= v1 ⊗ P1 + P1 ⊗ vt +
∑

0<i1<i2<t

ei1 ⊗ ei2 + v1 ⊗ P2 + P2 ⊗ vt −
∑

n≥i1>i2≥t

(ei1 ⊗ ei2)

= v1 ⊗ (P1 + P2) + (P1 + P2)⊗ vt +
∑

0<i1<i2<t

ei1 ⊗ ei2 −
∑

n≥i1>i2≥t

ei1 ⊗ ei2

= v1 ⊗ (P ) + (P )⊗ vt +
∑

0<i1<i2<t

ei1 ⊗ ei2 −
∑

n≥i1>i2≥t

ei1 ⊗ ei2 = ∆′2(P )

Additionally, for k > 2 we have

∆k(P1) + ∆k(P2)

=
∑

0<i1<i2<···<ik<t

ei1 ⊗ ei2 ⊗ · · · ⊗ eik −
∑

n≥i1>i2>···>ik≥t

ei1 ⊗ ei2 ⊗ · · · ⊗ eik = ∆′k(P )

Therefore, for all k ≥ 2, we have that ∆′k(P1 + P2) = ∆′k(P1) + ∆k(P2)

All that remains is to verify that the following relation holds on P for all k ≥ 2 :

k−1∑
i=0

(
1⊗i ⊗ ∂ ⊗ 1⊗k−i−1

)
∆′k−(−1)p ∆′k∂ =

k−2∑
l=1

k−l−1∑
i=0

(−1)l(k+i+1) (1⊗i ⊗∆′l+1 ⊗ 1⊗k−l−i−1
)

∆′k−l.

(6)

This can be done in the following manner:
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k−1∑
i=0

(
1⊗i ⊗ ∂ ⊗ 1⊗k−i−1

)
∆′k − (−1)p ∆′k∂(P )

=
k−1∑
i=0

(
1⊗i ⊗ ∂ ⊗ 1⊗k−i−1

)
∆′k − (−1)p ∆′k∂(P1 + P2)

=
k−1∑
i=0

(
1⊗i ⊗ ∂ ⊗ 1⊗k−i−1

)
∆k − (−1)p ∆k∂(P1) +

k−1∑
i=0

(
1⊗i ⊗ ∂ ⊗ 1⊗k−i−1

)
∆k − (−1)p ∆k∂(P2)

=
k−2∑
l=1

k−l−1∑
i=0

(−1)l(k+i+1) (1⊗i ⊗∆l+1 ⊗ 1⊗k−l−i−1
)

∆k−l(P1)

+
k−2∑
l=1

k−l−1∑
i=0

(−1)l(k+i+1) (1⊗i ⊗∆l+1 ⊗ 1⊗k−l−i−1
)

∆k−l(P2)

=
k−2∑
l=1

k−l−1∑
i=0

(−1)l(k+i+1) (1⊗i ⊗∆′l+1 ⊗ 1⊗k−l−i−1
)

∆′k−l(P1 + P2)

=
k−2∑
l=1

k−l−1∑
i=0

(−1)l(k+i+1) (1⊗i ⊗∆′l+1 ⊗ 1⊗k−l−i−1
)

∆′k−l(P )

Therefore, the operation {∆′n}n≥2 defined on P above satisfy all A∞-coalgebra relations

on cellular chains of P .
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6 Application: A non-trivial A∞-coalgebra structure

on the homology of a Klein bottle.

While we have been defining our A∞-coalgebra structure on an n-gon with n distinct edges,

the same structure still holds even if edges in the n-gon are identified. This, for example,

suggests a higher-order coalgebra structure on the Klein bottle as follows.

K a

bv

v b

a

Using Z2-coefficients, ∂K = ∂a = ∂b = ∂v = 0 so that Hn (K) =


Z2, n = 2

Z2 ⊕ Z2, n = 1

Z2, n = 0.

In homology we have

∆2K = K ⊗ v + v ⊗K + a⊗ b+ b⊗ b+ b⊗ a

∆3K = b⊗ a⊗ b.

Since the higher-order coalgebra structure on the torus is degenerate, this gives us a way to

distinguish between a torus and a Klein bottle using their higher-order structures.
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