Transformational Plane geometry – Errata List

By R. Umble and Z. Han

- p. 53, Proof. Let $\rho_{C,\Theta}$ be a rotation. Let P and Q be distinct points; ...
- p. 59, #13. Let $P = \begin{bmatrix} a \\ b \end{bmatrix}$ and $Q = \begin{bmatrix} c \\ d \end{bmatrix}$ be points.
- p. 68, #8. ...points on l and l', respectively, that are ... Let S and T be the feet of the perpendiculars from P and R to m, respectively.
- p. 75, Definition 137. Given intersecting lines l and m, let...
- p. 75, Section 5.2, para 2. In fact, twice the measures of any two angles from l to m are congruent (mod 360).
- p. 75, Exploratory Activity 4, item 1. Construct four points, no three of which are collinear, label \dots
- p. 76, Theorem 138. Given intersecting lines ...
- p. 77, Theorem 139. ...is the composition of two reflections in intersecting lines.
- p. 81, Exploratory Activity 5, item 1. Construct four points, no three of which are collinear, label \dots
- p. 91, Proof. ... So assume $A \neq B$. Since $\Theta + \Phi \in 0^{\circ}$, either both Θ and Φ are multiples of 360 or neither Θ nor Φ is a multiple of 360. If $\Theta, \Phi \in 0^{\circ}$, then $\rho_{A,\Theta} = \rho_{B,\Phi} = \iota$ so that $\rho_{B,\Phi} \circ \rho_{A,\Theta} = \iota = \tau_{\mathbf{0}}$ (the trivial translation). If $\Theta, \Phi \notin 0^{\circ}$, let $\Theta' = \Theta^{\circ} \cap (0, 360)$, let $\Phi' = \Phi^{\circ} \cap (0, 360)$, and let $m = \overrightarrow{AB}$. By Corollary 142, there exist unique lines l and n passing through A and B, respectively, such that $\rho_{B,\Phi} = \sigma_n \circ \sigma_m$ and $\rho_{A,\Theta} = \sigma_m \circ \sigma_l$
- p. 94, #8. ... let $\tau_{\mathbf{v}} = \rho_{B,120} \circ \rho_{A,240}$, and let $m = \overleftrightarrow{AB}$. Use a MIRA ...
- p. 96, line 1. Then $\sigma_m \circ \sigma_l = \rho_{C,\Theta}$ is a rotation ...
- p. 96, line 2. $\alpha = \sigma_n \circ \rho_{C,\Theta}$ so that $\sigma_n = \alpha \circ \rho_{C,-\Theta}$.
- p. 107, Proof, line 2. ...let α be an isometry fixing P and Q. Then α fixes m pointwise. Let R be ...
- p. 107, Proof, line 6. Delete the redundant phrase "P, Q, and R are non-collinear and"
- p. 136, Proof (c), line 3. Let $\rho_{\Phi} \in E$ be ...

- p. 136, Proof (c), line 8. $\rho_{\Phi} = \rho_{k\Theta} = \rho_{\Theta}^{k}$
- p. 136, Proof (d), line 1. ...all reflections in G and let $\sigma \in F$. The elements ...
- p. 137, Proof of closure, line 3. $\alpha(\beta(F)) = \alpha(F) = F$, we have $\alpha \circ \beta \in \text{Sym}(F)$.
- p. 142, Example 228. Case 2: c cuts m.
- p. 146, Proof, line 4. center by Theorem 213, so this is a contradiction.
- p. 160, line -1. Q_1 is not an n-center closest...
- p. 161, para 5, line 3. The points in a primitive translation lattice are vertices of parallelograms with no interior lattice points. The letter c stands for *centered lattice*, in which some non-primitive cell and its centroid form the basic building block of the tessellation.
- p. 171, lines 1 and 2. Delete the redundant sentences "Note that if $D=\xi_{C,r}\left(C\right)$, then CD=rCC=0 and D=C. Thus a stretch fixes its center."
- p. 172, #7. Delete the word "distinct".
- p. 187, para 3, line 1. Delete " β ="
- p. 190, #6. ... If α is a similarity, c is a line, and \mathbf{v} is...
- p. 203 line 2. D_5 D_9 D_5

Date of document: 10-5-2015