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GENERALIZATIONS; OF THE BRACHISTOCHRONE PROBLEM
JOHN A. GEMMER*, MICHAEL NOLAN!, AND RON UMBLE?

Abstract. Consider a frictionless surface S in a gravitational field that need not be uniform.
Given two points A and B on S, what curve is traced out by a particle that starts at A and reaches
B in the shortest time? This paper considers this preblem on simple surfaces such as surfaces of
revolution and solves the problem two ways: First, we use conservation of mechanical energy and the
Euler-Lagange equation; second, we use geometrical optics and the eikonal equation. We conclude
with a discussion of the relativistic effects at relativistic velocities.

1. Introduction. In 1696, Johann Bernouli posed the “Brachistochrone prob-
lem” Find the shape of the curve down which a bead sliding from rest and acceleraied
by grovity will fall from one point to another in the least time. This problem assumes
that the particle is falling on a vertical plane in a uniform gravitational field. Sir
Isaac Newton, Gottfried Leibniz, Guillaume De L'Hospital, Jakob Bernouli, and Jo-
hann Bernouli showed that the solution is a cycloid, the curve traced out by a point on
the rim of a rolling circle, see Dunham [1]. Solutions of the classical Brachistochrone
problem typically use techniques of calculus of variations, see Gelfand and Fomin [2],
or geometrical optics, see Erlichson {3].

The problem of finding Brachistochrone curves with coulomb friction lying on a
vertical plane in a uniform gravitational field has been discussed by Ashby et al. [4],
Hayen [5], Heijden and Diepstraten [6], and further generalized to a curve with friction
lying on a cylinder by Covie and Veskovic [7]. Vratanar and Saje [8] discuss the related
problem of finding the brachistochrone curve in a non-conservative resistance field.
The problem of finding Brachistochrone curves on cylinders in uniform fields has been
solved by Yamani and Mulhem {9] and on cylinders and spheres and in the unpublished
work of Palmieri [10]. The generalization to non-uniform fields has been discussed in
the works of Aravind [11], Denman {12}, and Venezian [13], who find Brachistochrone
solutions in linear radial fields, and the works of Denman [12], Parnovsky [14], and
Tee [15], who find solutions in inverse square radial fields. Further generalizations of
this problem to include special relativistic effects have been studied by Farina [16},
Goldstein and Bender [17], and Scarpello and Ritelli [18].

This paper considers the following generalized problem: Let S be a smooth fric-
tionless surface in a (not necessarily uniform) gravitetional field. Given twe points
A and B on S, find the curve from A to B along which o particle released from A
reaches B in minimal time. In section 2 of this paper we use the Euler-Lagrange
equation to present a theorem that solves the problem for a large class of surfaces in
various gravitational fields. Our solution is general enough so that Yamani and Mul-
hem’ [9] solution on a cylinder is a direct application of our theorem as is Parnovsky
[14] and Tee’s [15] solution to the inverse square problem. Furthermore, generalizing
the result of Parnovsky [14] and Tee [15], we prove that for a central force field with
V = —r~" no solution curve enters the sector —2r/(n+2) < ¢ < 2n/(n +2). In
section 3 we generalize the optico-mechanical analogy used by Aravind (11], Farina
(16}, and Parnovsky [14] to surfaces. In particular, we use the eikonal equation [21] to
provide another proof of the theorem proved in section 2. Using the eikonal equation
we find a solution for a charged particle moving at relativistic velocities lying in a
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uniform electric field which coincides. with Goldstein and Bender's [17] and Farina’s
[16] result. Finally, we apply the light ray curvature equation {21] to prove that tor-
sion always vanishes along Brachistochrone solutions in a central force fields. This
result proves the implicit or explicit assumption taken by Aravind [11], Denman {12],
Venezian (13}, Parnovsky [14], and Tee [15] that Brachistochrone solutions in radial
fields are planar curves.

The numerical computations and graphics in this paper were carried out and
created in Mathematica [23)].

2. Solutions using Calculus of Variations. Let S be a smooth frictionless
surface in some gravitational field and let V' (P) be the gravitational potential at poiat
P on 5. Choose distinct points A and B with V(A) > V(B} and assure that the
velocity of a particle falling along a smooth curve from A to B is much less than the
speed of light. Then by Newtonian conservation of mechanical energy we have

1 /ds 2
(Y hvav
Z(dt) PV = V(4),

where ds is the arclength on S. Solving for (%)2 gives

AV(A) - V) = (%)2

and separating variables yields

1

Thus the total time T is given by

T=ﬂ:\/§[431./—f(—:4)17ds. (1)

Now, let I/ be an open subset of R3 ana let x : I -5 § be an orthogonal coordinate
pa.tch Then x{u,v) = (z1(u,v), z2{u, v), z3(x,v)) is a subset of §in Wthh d32 =

Edu? +Gduv?, where E and G are the metric coefficents £ = 2% ¢ 2% and G = 53 ¢ 2%,
and we may rewrite equation (1) in the form

1 /8] 1 .
T = - ——— / Edu? 2 2
:I:\/;/A V{A)WV\/ du? + Gdv (2)
and either as

T = :i:\/7f V(A d'u— \/7-/ Fu,v,u)d (3)
T= if/ EV-,(_,f g:: —i\f/ Flu,v,v)du, 4)

or
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where " denotes differentiation with respect to the other variable.
To minimize T in (3}, we must solve the Euler-Lagrange equation

d OF OF
dv '~ Hu =0 (%)
Since 2 = gﬁ = 3u =0 implies & —;; = 0 (see [2]), equation (5) simplifies to
OF
o " ©

where C is a constant that depends upon B. By differentiating F with respect to u’
we obtain the separable differential equation

4 Eu' -
VIV(A) - VYEW)? +G)

Squaring both sides and simplifying gives

du _ (V(4) -
dv ~ TV E(E - CV(A) - V)))

whose solution expresses u as a function of v {see item 1 in Theorem 1 below). Simi-

farly, since %f = 0 when 2£ au = gf = %’—v = (), we may use equation (4) and a modified

form of (8) to obtain v as a function of u.
TusoreM 1. Lef x : I = S be an orthogonal coerdinate patch on a smooth
frictionless surface S.
r O£ . 9G
o df du cc'?u
S is given by &

= 0, then the solution to the Brachistochrone problem on
curve x(u(v),v), where

C2G(w)(V(A) — V(w))
/ \/ B(w)B(w) — C2(V(A) - V{w))] 7 (©)

gy _
d
he ¢

2. If %’5 = 30 = au = 0, then the solution to the Brachistochrone problem on
S is given by the curve x{u,v(u)), where

CEw)(V(A) - V(w))
vle)==% f \/G(wno(w ~ VA — V)] @

2.1. Applications of Theorem 1.

2.1.1. The Classical Brachistochrone Problem. Let us apply Theorem 1 to
solve the classical Brachistochrone Problem. In this case, the particle is falling on the
vertical plane given by x(u, v} = (,0,v). Since E =G =1 and F = 0, we obtain

C*a—w)

U(‘U) ==+ A m dw,

where V{v) = v and a is the particle’s initial v-coordinate. Figure 1 illustrates
several solution curves for a particle starting at the origin, each of which is uniquely
determined by C and a choice of sign. Physically, the value of C is determined by the
destination point B and the sign indicates motion to the left or right. Note that each
of these curves represents a family of solution curves since the terminal point B can
be positioned anywhere along the curve.
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FiG. 1. Cycloid solutions in e uniform fleld

2.1.2. Surfaces of Revolution. Let us consider the Brachistochrone problem
on smooth surfaces of revolution § parametrized by the coordinate patches

xq (4, ) = (h{w) cos v, h{w)sinv, g(u)), (u,v) € Rx ((2n = L)m, {2n + 1)n)
Valu,v) = (h{u)cos v, h(u)sinv, g(u)), (u,v) € Rx (2nm, (2n + 2)7),
where g, h: R — R are differentiable functions with 2 >0, n € Z, and

| xa{u,v), v € (2nx, (2n + 1))
yn (v.0) = { Xng {u,v), v€{((2n+ 1w, (2n+ 2)7).

COROLLARY 2. If 8 is in a uniform gravitetional field parallel to the z-axis,
the solution to the Brachistochrone Problem on S for a particle with initial posibion

A = (h{ug),0, g(ug)) is the curve

f xa(w,v(w)), v(u)€ [2nm, (2n+ 1)n)
7 = { wlu)), v{u) € |[(2n4+ D, (2n+ 2)7},

where

d

&

f CE(W (w)? + g'(w)?) (g(uo) — g(w))
h{w)? (h(w — C*(g(uo) — g(w)))
The right circular cone is obtained as a surface of revolution 5 by setting i (u) =
g{u) = v > 0. For a particle with initial position A = (1,0, 1}, the solution curves
7 (u) on & given by Corollary 2 are defined in terms of

u 2 _
o Y 207 = Coug — w))
where the sign 4 positions thie curve in one of the two half-spaces determined by the
yz-plane. Figure 2 illustrates several solution curves.
Another interesting surface of revolution is the hyperboloid of one sheet obtained
by setting h{u) = coshu and g(u) = sinhu. For a particle with initial position
= (1,0, 0), the solution curves~ {u) given by Corollary 2 are defined in terms of

/ C?(sinhug — sinh w)({cosh w)? + (sinh w)?}) dw

vlu) = (coshw)?((cosh w)? — C%(sinh ug — sinh w))

But unlike solution curves on the right circular cone, some solution curves on the
hyperboloid do not attain a minimum z-coordinate but continue downward, spiraling
around the hyperboloid and intersecting other solution curves as they do. When two
spiraling solution curves intersect, one must evaluate the integral in (2) to determine
which curve minimizes time. '
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F1G. 2. Solution curves on the cone

FI1G. 3. Solution curves on the hyperboloid of one-shect

2.1.3. Central Force Fields. Consider a particle confined to a plane and falling
in a central force field with V' = ,-;},; for some n > 0. Using polar coordinates, we
can parametrize R? by x(u, v} = (ucosv, usinv), (&, v) € (0, +00) X (—7, 7); then the
metric coeflicients are simply E=1,F = 0 and G = u?. Now apply Theorem 1 and
set D = 1/C? to obtain the solution curves

u C¥H—gx + o)
vlu) = + [ e dw (8)

W = O~ + )

AL
(g — w")
=+ dw,
/1;0 \/wﬂ (wrt2upD — (uf — wh)) v

where A = x{ug,0) is the initial position of A. Figure 4 illustrates several solution
curves for an inverse square field with n = 1. In this case, the 4 sign positions A in
the first or fourth quadrant. o

Interestingly, when -7 < v < 0, numerical plots of solution curves asymptotically
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FiG. 4. Solution curves for the inverse square field (n=1).

approach the line § = —2/3 as ' — 0. Since solution curves in the regiond<v<nw
are mirror images of those in the region —m < v < 0, these calculations suggest that
no solution curve enters the sector —2r/3 < 8 < 27/3. Note that solution curves
seem fo approach one of two limit curves that follow the z-axis to the origin then
continue along the rays § = —2n/3 or § = 2x/3. This is indeed the case and was
observed and proved by Parnovsky [14] and Tee [15]. The following is an extension of

their work for all n > 0.
Without loss of generality assume that 4 = x(1,0) and the sign in (8) is positive
so that the particle’s trajectory lies in the fourth quadrant. Note that when

dy
= 0 {9)

the particle begins to move away from the origin and the sign in (8) is reversed. We
will show that equation (9) holds for exactly one positive real value by investigating
the zeros of the polynomial

rw) = WD + ™ — 1. (10)

Since r(0) = ~1 and r(1) = D, the Intermediate Value Theorem telis us that r{cg) =0
for some ¢y € (—1,1). Furthermore,

r'(w) = (n+ 2w D 4 p™l = -1 ((n+ 2)w?D +n).

But v'(w) >0forall0<w < Dsoris increasing and ¢g is unigue. Let

Co . 1 —wyn
- \/wZ(wnéD e v

Since solution curves are symmetric in the line through x(co,8) and the origin, we
can determine the least upper bound of the polar angle 8 by evaluating its limit as
co — 0. Using equation (10} we can express D in terms of co by

D= can-Z -2

‘—CO .
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Then, equation (11) can be rewritten as

1 - w")
f \/w2 (wrt2 (g™ % — ¢g%) — (1 —wn)) o (12)

fc" 1 1 —wn dw
wt2(1 — ) — ep (1 — wr)

n+4-2
Let z = (€)% ; then (12) reduces to

=2
1- c”:vﬂ_’rg

9:——Cgrf"2— ;n dz
n 4+ 2 F MH2p=2(] — cn) — 2 (1 N ch:;%)

—=32n
I —cgzn+2

=0 n42 - " dz.
n+2/°j_\(1-—c3)—x2(1—c3x_fﬁ)

1
n+2f—z- —;b: G

l—cga:_ n42

dx

nt3 et
Now, for ¢, < < 1, we have that ‘-—}—(}L’;— > 1. Therefore,
locgm ¥
2 fi
i e da < /
n+2 2| 1 1- :c2
l—cox Az

Finally, it follows by an application of the Dominated Convergence Theorem that

lim 8 = 2 fl ! da:-————z—(arcsin(l)—arcsin(O))—— T
B o Vi—aZz = n+2 T (n+2)

Now, by symmetry the maximum polar angle of the particle is less than twice this
limiting value Therefore the limiting polar angle of a particle falling on a solution
curve is ;2% and the central angle of the “forbidden sector” is 2r — ;20 = 20 Tn
summary, we have proved:

THEOREM 3. Let A(r,¢) € R, r > 0. If V = — 2, n > 0, every Brachistochrone
curve initiating at A lies in the sector ¢ — 25 < 0 < ¢ + ;255

3. Solutions using Geometrical Optics. In this section we approach the
Brachistochrone problem from the perspective of geometrical optics by considering
the path of a light ray in a medium of nonuniform index of refraction. Let S': x {u,v)
be a smooth surface in such a medium with index of refraction n {u,v). According
to Fermat’s Principle, light propagated from source A minimizes the total time T of
travel to destination B, i.e.,

1 B
r=1 /A n(u, v) ds, (13)
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where ¢ is the speed of light in a vacuum. Note that when n(u,v) = \/von=vas

and ¢ = 1m/sec, equation (13) is equivalent to equation (1). Therefore, computing
the path of a light ray in this medium simultaneously produces a Brachistochrone

solution.

3.1. The Eikonal Equation. One can describe light rays in terms of their
wavefronts, which are level surfaces of some differentiable function L : R® ~» R. More
precisely, given a light ray o passing through a medium with index of refraction n,
let T be the unit tahgent. Then L is determined by the eikonal equation

VEL=nT. (14)

We can use {14) to solve the Brachistochrone Problem without appealing to the Buler-
Lagrange equation. Assume that « is constrained to some smooth surface S with
metnc ds? = Edu? 4+ Gdv? in some medium with index of refraction n(u,v). Suppose

Bv = 3‘3 e % = () and that
L=Cv+ flu). (15)

Then equation {14) yields the differential equation
VLeVL=GCt+ g (df)

Solving this separable equation for f gives

flu) = /}/E(nz C2I0) du = + /1/ Gg/g/”z (16)

Using equations (14) and (15), and letting e, = " T and e, = Ii_x‘T we have

_Je~crm? L
nT —_ i G/’n2 eu + CG e'U'

Expressing T in differential form gives

1 du ldv G’—Cz/nz _1
(E —eu+G )_1I—G/zr37“e"+c ey.
wat _ [ gyw
dwpt G- Cime

By solving this equation we obtain:
THEOREM 4. Let x : U = § be an orthogonal coordinate patch on a smooth

ﬁictzonless surface S.
1. If8E e = 9C = 90 — (), the light rays on S are given by x(u(v),v), where

~ B~ Bu
v GC?2/n?
ule) =% f VEE =P

Therefore
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2. [f = gq = —j =0, the light rays on § are given by x(u,v(u)), where

_ EC*Mmr

d
= [\ e Gy
COROLLARY 5. Let x : U — 5 be an orthogonal coordinate patch on a smooth
frictionless surface S z'n a medium with index of refraction n® = -l

1L If %—E == ‘gf ?J = 0, we recover Theroem 1.1.
2 I % = gf = % =0, we recover Theorem 1.2

3.2. Special Relativistic Solutions. The strength of Theorem 4 lies in its

ability to give Brachistochrone solutions in situations where classical conservation of
mechanical energy does not hold. For example, if the particle’s velocity is near the
speed of light, to minimize the time of travel in the lab frame {see [19}) we must replace
the Newtonian mechanical energy equation by its special relativistic counterpart

vt -2V =V, (17)

where ¢ is the speed of light in a vacuum, V is the gravitational potential, and v =
(1— (%)% ~2)=3 (see [19]). Solving (17) for ~ and then for 45)? gives

ds\* _ (Vo — V)(Vo — V,+ 2¢)
dt) (Vo -V +¢2)? ‘

From equation {13} it follows that

1N (G-V)(Ve -V 2

So, in sufficiently nice geometrical settings with reasonable potentials, we can apply
Theorem 4 to find relativistic Brachistochrone solutions.

For exarple, let us again consider a particle falling in a uniform gravitational
field but confined to the vertical plane x(u,v) = (u,0,v}. If the particle is falling at
relativistic speeds we have

(1)2=('vg—v)(vo—-v+2cz)
n (vo —v+¢2)?

where vg is the initial height of the particle. Note, in actuality the gravitational
potential energy depends upon the relativistic mass and not the rest mass. Therefore,
the potential we have chosen corresponds to a charged particle under the influence of
a uniform electric fleld (see Goldstein {19] and Goldstein and Bender [17]). Setting
vp = 0 and applying Theorem 4 gives the solution curves x{u(v), v), where

v ’ k2 /n?
’U;(U)=:L"/0. m%‘;ﬁdw

v L2092 _
- / - k2(2¢? — wiw dw
o et + 2¢%(k% - 1w — (k% — 1)w?
and to avoid confusion we have indicated the constant of integration by k. Figure 5
illustrates several relativistic sclution curves and classical Brachistochrone solutions

¥
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with ¢ = 10m/sec. The relativistic solutions are plotted in solid blue; the classi-
cal solutions are plotted with dashed green lines and closely approximate relativistic
solutions in this region. However, Figure 6 illustrates situations in which such ap-

proximations are poor.

F16. 6. Relativistic and classical Brachistochrone solutions.

3.3. Curvature of Light Rays. Finally, we consider the curvature of light rays
in a medium with index of refraction n. Recall the following definitions and theorem
from the classical theory of curves (see [20]):

DEFINITION 6. Let a(s) be o light ray with arc length parameter s and let T {s) be
the unit tangent vector field along a. The eurvature of a(s) is defined by x = ||2X]].
If & # 0, the unit normal and binormal vector fields along o are given by N = %T’
and B = T x N, respectively .

THEOREM 7. (Frenet-Serret). If a(s) is a curve with arc length parameter s
such that x(s) # 0 for ¢ll 3, then

T =N, N'=—xT(s)+ 7B and B’ = —7N.

DEFINITION 8. The function 7(s) is called the torsion of afs).
Now, light rays are distinguished curves with the following property:

Vn =ngN+ (T ¢« V)T (19}

In fact, when falling in a central force field, the torsion vanishes. To see this,
differentiate (19} and get

N’ = (LIE)”‘”N + % [(V7)' ~ &(T » V)N -~ { T » Vaa)'T)

1 !
= [(—) K - -:l—(ToVn)} N - —l——(To Vn)'T + L (Vn)'.

Kn n Kn Kn
By Theorem 7, the torsion of a light ray is determined by the component of (Vn)’
in the direction of B. But for a particle falling in a central force field, n{r) =

rir™/(rf — ™), where r is the distance from the origin and rg is the initial dis-

tance from the origin. Let &, denote the unit radial vector. Then, Vn = %:%ér and

(Vn)' = (%)’ér- Thus, (Vn)' and Vn are parallel and ke in the osculating plane.




BRACHISTGCHRONE PROBLEM 217

Consequently 7 = 0 and Brachistochrone solutions in central force fields are planar.
Futhermore, since Vn is parallel to the line from the particle to the origin, the os-
culating plane passes through the origin and contains the initial and terminal point
of the curve. But, this is exactly the problem we investigated when we confined the
particle to a plane. Therefore, a solution curve with critical radius ¢g and initial
point A generates a surface of revolution whose meridians are solution curves. These
remarks are summarized in our concluding theorem:

THEOREM 9. If afs) is a solution curve lying in a central force field with critical
radius co, then 7 s identicelly 0 and a(s) is o meridian of the surface of revolution

generated by the curve (8).
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