AN A_{∞}-COALGEBRA STRUCTURE ON A CLOSED COMPACT SURFACE

QUINN MINNICH ${ }^{1}$ AND RONALD UMBLE

Abstract

Let P be an n-gon with $n \geq 3$. There is a formal combinatorial A_{∞}-coalgebra structure on cellular chains $C_{*}(P)$ with non-vanishing higher order structure when $n \geq 5$. If X_{g} is a closed compact surface of genus $g \geq 2$ and P_{g} is a polygonal decomposition, the quotient map $q: P_{g} \rightarrow X_{g}$ projects the formal A_{∞}-coalgebra structure on $C_{*}\left(P_{g}\right)$ to a quotient structure on $C_{*}\left(X_{g}\right)$, which persists to homology $H_{*}\left(X_{g} ; \mathbb{Z}_{2}\right)$, whose operations are determined by the quotient map q, and whose higher order structure is nontrivial if and only if X_{g} is orientable or unorientable with $g \geq 3$. But whether or not the A_{∞}-coalgebra structure on homology observed here is topologically invariant is an open question.

To Tornike Kadeishvili on the occasion of his 70th birthday

1. Introduction

Let R be a commutative ring with unity and let P be an n-gon with $n \geq 3$. In this paper we construct a formal combinatorial A_{∞}-coalgebra structure on the cellular chains of P, denoted by $C_{*}(P)$, which is the graded R-module generated by the vertices, edges, and region of P. For an application, let X_{g} be a closed compact surface of genus $g \geq 2$ and let P_{g} be a polygonal decomposition. The quotient $\operatorname{map} q: P_{g} \rightarrow X_{g}$ sends the formal A_{∞}-coalgebra structure on $C_{*}\left(P_{g}\right)$ to a quotient structure on $C_{*}\left(X_{g}\right)$, which persists to homology $H_{*}\left(X_{g} ; \mathbb{Z}_{2}\right)$, whose operations are determined by the quotient map q, and whose higher order structure is non-trivial if and only if X_{g} is orientable or unorientable with $g \geq 3$.

An A_{∞}-coalgebra is the linear dual of an A_{∞}-algebra defined by J. Stasheff [6] in the setting of base pointed loop spaces. As motivation, we begin with a brief description of A_{∞}-algebras.

Let S be a surface embedded in \mathbb{R}^{3} and let $*$ be some specified base point on S. A base pointed loop on S is a continuous map $\alpha: I \rightarrow S$ such that $\alpha(0)=\alpha(1)=*$. Let ΩS denote the space of all base pointed loops on S. Given $\alpha, \beta \in \Omega S$, define their product $\alpha \cdot \beta \in \Omega S$ to be

$$
(\alpha \cdot \beta)(t)= \begin{cases}\alpha(2 t), & t \in\left[0, \frac{1}{2}\right] \\ \beta(2 t-1), & t \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Date: May 2, 2018.
1991 Mathematics Subject Classification. Primary 57N05, 57N65; Secondary 55P35.
Key words and phrases. A_{∞}-coalgebra, associahedron, non-orientable surface.
${ }^{1}$ The main result (Theorem 4) was proved by the first author in his senior honors thesis [4].

A homotopy from α to β is a continuous map $H: I \rightarrow \Omega S$ such that $H(0)=\alpha$ and $H(1)=\beta$. Thus $\{H(s): s \in I\}$ is a 1-parameter family of loops that continuously deforms α to β.

Let $\alpha, \beta, \gamma \in \Omega S$. Although $(\alpha \cdot \beta) \cdot \gamma \neq \alpha \cdot(\beta \cdot \gamma)$, the loops $(\alpha \cdot \beta) \cdot \gamma$ and $\alpha \cdot(\beta \cdot \gamma)$ are homotopic via a linear change of parameter homotopy H. Let $1: \Omega S \rightarrow \Omega S$ be the identity map and define $m_{2}: \Omega S \otimes \Omega S \rightarrow \Omega S$ by $m_{2}(\alpha \otimes \beta)=\alpha \cdot \beta$. Then $m_{2}\left(m_{2} \otimes \mathbf{1}\right)(\alpha \otimes \beta \otimes \gamma)=(\alpha \cdot \beta) \cdot \gamma$ and $m_{2}\left(\mathbf{1} \otimes m_{2}\right)(\alpha \otimes \beta \otimes \gamma)=\alpha \cdot(\beta \cdot \gamma)$. Consider $m_{2}\left(m_{2} \otimes \mathbf{1}\right), m_{2}\left(\mathbf{1} \otimes m_{2}\right): \Omega S^{\otimes 3} \rightarrow \Omega S$ and think of the homotopy H from $(\alpha \cdot \beta) \cdot \gamma$ to $\alpha \cdot(\beta \cdot \gamma)$ as a 3-ary operation $m_{3}: \Omega S^{\otimes 3} \rightarrow \Omega S$. Identify m_{3} with the interval $[0,1]$, its endpoint 0 with $m_{2}\left(m_{2} \otimes \mathbf{1}\right)$, and its endpoint 1 with $m_{2}\left(\mathbf{1} \otimes m_{2}\right)$. Then the boundary $\partial m_{3}=m_{2}\left(\mathbf{1} \otimes m_{2}\right)-m_{2}\left(m_{2} \otimes \mathbf{1}\right)$ and the parameter space $[0,1]$ identified with m_{3} is called the associahedron K_{3}. Thus K_{3} controls homotopy associativity in three variables.

In a similar way, homotopy associativity in four variables is controlled by the associahedron K_{4}, which is a pentagon. The vertices of K_{4} are identified with the five ways one can parenthesize four variables, its edges are identified with the homotopies that preform a single shift of parentheses, and its 2-dimensional region is identified with a 4-ary operation $m_{4}: \Omega S^{\otimes 4} \rightarrow \Omega S$. Thus $\partial m_{4}=m_{2}\left(m_{3} \otimes \mathbf{1}\right)-$ $m_{3}\left(m_{2} \otimes \mathbf{1} \otimes \mathbf{1}\right)+m_{3}\left(\mathbf{1} \otimes m_{2} \otimes \mathbf{1}\right)-m_{3}\left(\mathbf{1} \otimes \mathbf{1} \otimes m_{2}\right)+m_{2}\left(\mathbf{1} \otimes m_{3}\right)$. In general, homotopy associativity in n variables is controlled by the associahedron K_{n}, which is an $n-2$ dimensional polytope whose vertices are identified with the various ways to parenthesize n variables. While associahedra are independently interesting geometric objects, they also organize the data in the definition of an $A_{\infty^{-}}$(co)algebra.

Figure 1. The associahedron K_{4}.
But before we can define an $A_{\infty^{-}}$(co)algebra, we need some preliminaries. A differential graded (d.g.) R-module is a graded R-module $V=\oplus_{i \geq 0} V_{i}$ equipped with a differential operator $\partial: V_{*} \rightarrow V_{*-1}$ such that $\partial \circ \partial=0$. Let $\left(V, \partial_{V}\right)$ and $\left(W, \partial_{W}\right)$ be d.g. R-modules. A linear map $f: V \rightarrow W$ has degree p if $f: V_{i} \rightarrow W_{i+p}$; the map f is a chain map if $f \circ \partial_{V}=(-1)^{p} \partial_{W} \circ f$. Denote the degree f by $|f|$ and the R-module of all linear maps of degree p by $\operatorname{Hom}_{p}(V, W)$.

Proposition 1. $\operatorname{Hom}_{*}(V, W)$ is a d.g. R-module with differential δ given by $\delta(f)=f \circ \partial_{V}-(-1)^{|f|} \partial_{W} \circ f$.

Proof. The proof is straight-forward and omitted.

Note that f is a chain map if and only if $\delta(f)=0$. Now $m_{2} \in \operatorname{Hom}_{*}\left(C_{*}(P)^{\otimes 2}, C_{*}(P)\right)$ and $m_{3} \in \operatorname{Hom}_{*}\left(C_{*}(P)^{\otimes 3}, C_{*}(P)\right)$. Since $\left|m_{3}\right|=1$ we have

$$
\delta\left(m_{3}\right)=m_{3} \circ \partial^{\otimes 3}-(-1)^{1} \partial \circ m_{3}=\partial \circ m_{3}=m_{2}\left(\mathbf{1} \otimes m_{2}\right)-m_{2}\left(m_{2} \otimes \mathbf{1}\right)
$$

where $m_{3} \circ \partial^{\otimes 3}=0$ because loops have empty boundary. Then $\delta\left(m_{3}\right)$ measures the deviation of m_{2} from associativity, and in certain situations we can express this deviation in terms of a degree 0 chain map $\alpha_{3}: C_{*}\left(K_{3}\right) \rightarrow \operatorname{Hom}_{*}\left(C_{*}(P)^{\otimes 3}, C_{*}(P)\right)$. Let θ_{n} denote the top dimensional cell of K_{n}.

Definition 2. Let (V, ∂) be a d.g. R-module. For each $n \geq 2$, choose a map α_{n} : $C_{*}\left(K_{n}\right) \rightarrow \operatorname{Hom}\left(V^{\otimes n}, V\right)$ of degree 0 , and let $m_{n}=\alpha_{n}\left(\theta_{n}\right)$. Then $\left(V, \partial, m_{2}, m_{3}, \ldots\right)$ is an A_{∞}-algebra if $\delta \alpha_{n}=\alpha_{n} \partial$ for each $n \geq 2$.

The definition of an A_{∞}-coalgebra mirrors the definition of an A_{∞}-algebra.
Definition 3. Let (V, ∂) be a d.g R-module. For each $n \geq 2$, choose a map α_{n} : $C_{*}\left(K_{n}\right) \rightarrow \operatorname{Hom}\left(V, V^{\otimes n}\right)$ of degree 0, and let $\Delta_{n}=\alpha_{n}\left(\theta_{n}\right)$. Then $\left(V, \partial, \Delta_{2}, \Delta_{3}, \ldots\right)$ is an A_{∞}-coalgebra if $\delta \alpha_{n}=\alpha_{n} \partial$ for each $n \geq 2$.

Evaluating both sides of the equation in Definition 3 at θ_{n} produces the classical structure relation

$$
\begin{aligned}
& \Delta_{n} \partial-(-1)^{n-2} \sum_{i=0}^{n-1}\left(\mathbf{1}^{\otimes i} \otimes \partial \otimes \mathbf{1}^{\otimes n-i-1}\right) \Delta_{n} \\
& \quad=\sum_{i=1}^{n-2} \sum_{j=0}^{n-i-1}(-1)^{i(j+n+1)}\left(\mathbf{1}^{\otimes j} \otimes \Delta_{i+1} \otimes \mathbf{1}^{\otimes n-i-j-1}\right) \Delta_{n-i}
\end{aligned}
$$

which expresses Δ_{n} as a chain homotopy among the quadratic compositions encoded by the codimension 1 cells of K_{n} (see Figure 2). The $\operatorname{sign}(-1)^{l(n+i+1)}$ is the combinatorial sign derived by Saneblidze and Umble in [5]. Note that when $n=2$, Relation 1 has the form $\Delta_{2} \partial=(\partial \otimes \mathbf{1}+\mathbf{1} \otimes \partial) \Delta_{2}$, which is dual to the Leibniz Rule $d m=m(d \otimes \mathbf{1}+\mathbf{1} \otimes d)$ in calculus and says that ∂ is a coderivation of Δ_{2}.

Figure 2. The quadratic compositions encoded by the codim 1 cells of K_{4}.

2. Statement of the Main Result

Let P be a counterclockwise oriented n-gon, $n \geq 3$. Label the vertices $v_{1}, v_{2}, \ldots v_{n}$ and the edges $e_{1}, e_{2}, \ldots e_{n}$. Define v_{1} to be the initial vertex and v_{n} to be the terminal vertex, and direct the edges from v_{1} to v_{n}. This assignment partially orders the
vertices as indicated in Figure 3. Edges whose direction is consistent with orientation are positive. Let $\partial: C_{*}(P) \rightarrow C_{*-1}(P)$ be the boundary operator induced by geometric boundary. Then $\partial\left(v_{i}\right)=0, \partial\left(e_{i}\right)=v_{i+1}-v_{i}$ if $i<n, \partial\left(e_{n}\right)=v_{n}-v_{1}$, and $\partial(p)=e_{1}+e_{2}+\cdots+e_{n-1}-e_{n}$.

Figure 3. An n-gon for $n=6$
We will use the diagonal approximation $\Delta_{2}: C_{*}(P) \rightarrow C_{*}(P) \otimes C_{*}(P)$ defined by D. Kravatz in [2] and given by

$$
\begin{aligned}
& \Delta_{2}(P)=v_{1} \otimes P+P \otimes v_{n}+\sum_{0<i_{1}<i_{2}<n} e_{i_{1}} \otimes e_{i_{2}}, \\
& \Delta_{2}\left(e_{i}\right)=v_{i} \otimes e_{i}+e_{i} \otimes v_{i+1} \text { if } i<n, \\
& \Delta_{2}\left(e_{n}\right)=v_{1} \otimes e_{n}+e_{n} \otimes v_{n}, \\
& \Delta_{2}\left(v_{i}\right)=v_{i} \otimes v_{i} .
\end{aligned}
$$

A more general exposition of Kravatz's diagonal appears in [1]. For $k>2$, define the k-ary A_{∞}-coalgebra operation $\Delta_{k}: C_{*}(P) \rightarrow C_{*}(P)^{\otimes k}$ by

$$
\Delta_{k}(\sigma)=\left\{\begin{array}{cl}
\sum_{0<i_{1}<i_{2}<\cdots<i_{k}<n} e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}}, & \text { if } \sigma=P \\
0, & \text { otherwise }
\end{array}\right.
$$

Then by definition, $\Delta_{k}=0$ for all $k \geq n$. We can now state our main result.
Theorem 4. Let P be an n-gon. The structure operations $\left\{\Delta_{k}\right\}_{2 \leq k<n}$ defined above impose an A_{∞}-coalgebra structure on $\left(C_{*}(P), \partial\right)$. Furthermore, Δ_{k} vanishes for all $k \geq n$.

3. Proof of the Main Result

We must verify Relation 1 for all $k \geq 2$. When $k=2$, verification is easy and left to the reader. We first verify Relation 1 for all $k>3$, then consider the special case $k=3$. To simplify notation we establish following notational devices:

- The symbol $\partial \Delta_{k}(P)$ denotes $\sum_{i=0}^{k-1}\left(\mathbf{1}^{\otimes i} \otimes \partial \otimes \mathbf{1}^{\otimes k-i-1}\right) \Delta_{k}(P)$.
- The symbol $\Delta_{j} \Delta_{k}(P)$ denotes $\sum_{i=0}^{k-1}\left(\mathbf{1}^{\otimes i} \otimes \Delta_{j} \otimes \mathbf{1}^{\otimes k-i-1}\right) \Delta_{k}(P)$.

The fact that Δ_{j} and Δ_{k} vanish on edges and vertices when $j, k \geq 3$ implies:
Proposition 5. $\Delta_{j} \Delta_{k}(P)=\partial \Delta_{k}(P)=0$ whenever $i, j \geq 3$.

In view of Proposition 5, all non-vanishing terms in Relation 1 apply some Δ_{k} to the 2-cell P. Therefore (up to sign) Relation 1 reduces to

$$
\begin{equation*}
\left(\Delta_{k-1} \Delta_{2}+\Delta_{2} \Delta_{k-1}+\partial \Delta_{k}\right)(P)=0 \tag{2}
\end{equation*}
$$

The signs in Relation 2 follow from the Sign Commutation Rule: If an object of degree p passes an object of degree q, affix the sign $(-1)^{p q}$. First, consider a term $e_{j_{1}} \otimes e_{j_{2}} \otimes \cdots \otimes e_{j_{k}}$ of $\Delta_{k}(P)$. Since $|\partial|=-1$, multiplying by the sign in Relation 1 and simplifying gives
$(-1)^{k-2}\left(\mathbf{1}^{\otimes i-1} \otimes \partial \otimes \mathbf{1}^{\otimes k-i}\right)\left(e_{j_{1}} \otimes \cdots \otimes e_{j_{k}}\right)=(-1)^{i+k+1} e_{j_{1}} \otimes \cdots \otimes \partial e_{j_{i}} \otimes \cdots \otimes e_{j_{k}}$.
Second, since $\left|\Delta_{2}\right|=0$, the sign of $\Delta_{2} \Delta_{k-1}$ is the $\operatorname{sign}(-1)^{i+k}$, which is opposite the sign in Relation 1, where Δ_{2} is applied in the $i^{t h}$ position. Third, the signs of the terms $\left(\Delta_{k-1} \otimes \mathbf{1}\right) \Delta_{2}$ and $\left(\mathbf{1} \otimes \Delta_{k-1}\right) \Delta_{2}$ given by Relation 1 simplify to -1 and $(-1)^{k+1}$, respectively. Since $\left|\Delta_{k-1}\right|=k-3$, the Sign Commutation Rule can only introduce a sign when $\mathbf{1} \otimes \Delta_{k-1}$ is applied to a pair of edges. However, this particular situation never occurs in our proof.

Lemma 6. All non-vanishing terms contain exactly one tensor factor v_{j}. Furthermore, if $e_{i} \otimes v_{j}$ or $v_{j} \otimes e_{k}$ appears within some term, then $i<j$ or $j \leq k$.
Proof. Case 1: Consider $\partial \Delta_{k}(P)$. Note that $\Delta_{k}(P)$ will either vanish if $k \geq n$, or it will produce terms of the form $e_{i_{1}} \otimes \cdots \otimes e_{i_{k}}$, where $0<i_{1}<\cdots<i_{k}<n$. Applying ∂ to any e_{i} will create two new terms by replacing it with v_{i} or v_{i+1}. Since the subscript i is between the subscripts on either side, either choice gives the desired result.

Case 2: Consider $\Delta_{k-1} \Delta_{2}(P)$. Since Δ_{k-1} acts non-trivially only on P, the terms of interest produced by Δ_{2} are $v_{1} \otimes P$ and $P \otimes v_{n}$. When Δ_{k-1} acts on the P, it produces a term of the form $e_{i_{1}} \otimes \cdots \otimes e_{i_{k-1}}$, where $0<i_{1}<\cdots<i_{k-1}<n$. Since $0<i<n$ for all i, all terms either begin with v_{1} or end with v_{n} and have the desired form.

Case 3: Consider $\Delta_{2} \Delta_{k-1}(P)$. Notice that $\Delta_{k-1}(P)$ produces terms of the form $e_{i_{1}} \otimes \cdots \otimes e_{i_{k-1}}$, where $0<i_{1}<\cdots<i_{k-1}<n$. When Δ_{2} is applied to an e_{i} factor, it has the effect of either inserting v_{i} to the left, or a v_{i+1} to the right of the e_{i}. Since the subscript i is between the subscripts on either side, either choice gives the desired result.

This information allows us to classify the terms in Relation 2 relative to the position of v_{i} with respect to e_{i-1} and e_{i}. We say that v_{i} is left adjacent if e_{i-1} is immediately to its left; v_{i} is right adjacent if e_{i} is immediately to its right.

Definition 7. A term in which v_{i} is both left and right adjacent is doubly attached. A term in which v_{i} is either left adjacent or right adjacent but not both is singly attached. A term in which v_{i} is neither left adjacent nor right adjacent is unattached.

We can sub-classify within these sets as follows:
Definition 8. A term that begins with v_{1} is extreme minimal. A term that ends with v_{n} is extreme maximal.

Since doubly attached terms cannot be extreme, there are five classes of terms, and the proof reduces to showing that each class cancels itself in Relation 2. But before we can do this, we need some lemmas.

Lemma 9. Let $2<k<n$. If v_{i} appears in the $i^{\text {th }}$ position of a term in $\partial \Delta_{k}(P)$, that term appears at most two times and only in the following ways:

- Way 1: The term will be generated once if and only if it is unattached on the left and is not minimally extreme; the term will have the sign $(-1)^{i+k+1}$.
- Way 2: The term will be generated once if and only if it is unattached on the right and is not maximally extreme; the term will have the sign $(-1)^{i+k}$.

Proof. Case 1: Consider a term that contains $e_{i_{1}} \otimes v_{i_{2}} \otimes e_{i_{3}}$, where $0<i_{1}<i_{2} \leq$ $i_{3}<n$. Since $\Delta_{k}(P)$ cannot generate $v_{i_{2}}$, it was produced by ∂. Since $v_{i_{2}}$ appears between $e_{i_{1}}$ and $e_{i_{3}}$, we know that ∂ was applied to a term of the form $e_{i_{1}} \otimes e_{x} \otimes e_{i_{3}}$ with $0<i_{1}<x<i_{3}<n$. Furthermore, there are only two possible edges e_{x} that ∂ could have acted upon to generate $v_{i_{2}}$, namely when $x=i_{2}-1$ or $x=i_{2}$. Therefore, since there are only two possible values for x, there are at most two ways to generate any given term.

Suppose that $x=i_{2}-1$. Since $i_{1}<x$, we have $i_{1}<i_{2}-1$ forcing the original term to be unattached on the left. To see that all left unattached terms can be generated, simply note that the subscript of any left unattached term will satisfy the inequality $i_{1}<i_{2}-1$ by definition. Then $\Delta_{k}(P)$ produces the term $e_{i_{1}} \otimes e_{i_{2}-1} \otimes e_{i_{3}}$, where $0<i_{1}<i_{2} \leq i_{3}<n$, and produces the desired term after ∂ is applied to $e_{i_{2}-1}$. Now applying ∂ this way produces a positive $v_{i_{2}}$ in the same position in which ∂ was applied, and by the discussion above on the sign commutation rule, the term's final sign can be calculated to be $(-1)^{i+k+1}$. Similarly, suppose $x=i_{2}$. Then all right unattached terms, and only those terms, can be generated. Similar analysis reveals that the term's final sign is $(-1)^{i+k}$.

Case 2: Consider a term of the form $v_{i_{2}} \otimes e_{i_{3}} \otimes \cdots$, where $0<i_{2} \leq i_{3}<n$. By an argument similar to the one above, ∂ must have been applied to a term of the form $e_{x} \otimes e_{i_{3}} \otimes \cdots$, where $x=i_{2}-1$ or $x=i_{2}$. The proof is similar to the case above and left to the reader; the only major difference is that when $x=i_{2}-1$ we cannot immediately conclude that all possible left unattached terms will be formed. This is because $x>0$, and since $x=i_{2}-1$, we have $i_{2}>1$. Hence only non-minimally extreme left unattached terms can be formed, and an analysis similar to that in Case 1 shows that the terms produced have the sign $(-1)^{i+k+1}$.

Case 3: Consider a term of the form $\cdots \otimes e_{i_{1}} \otimes v_{i_{2}}$, where $0<i_{1}<i_{2}<n$. This case is can be proved using an argument very similar to case 2 , the details of which are left to the reader.

Lemma 10. Let $3<k \leq n$. If v_{i} appears in the $i^{\text {th }}$ position of a term in $\Delta_{2} \Delta_{k-1}(P)$, that term appears at most two times and only in the following ways:

- Way 1: The term will be generated once if and only if it is attached on the left; the term will have the sign $(-1)^{i+k+1}$.
- Way 2: The term will be generated once if and only if it is attached on the right; the term will have the sign $(-1)^{i+k}$.

Proof. Case 1: Consider a term that contains $e_{i_{1}} \otimes v_{i_{2}} \otimes e_{i_{3}}$, where $0<i_{1}<i_{2} \leq$ $i_{3}<n$. Since $\Delta_{k-1}(P)$ cannot produce $v_{i_{2}}$, it is produced by Δ_{2}, and because Δ_{2} inserts a v next to the e to which it was applied, Δ_{2} was applied to either $e_{i_{1}}$ or $e_{i_{3}}$. Additionally, because of how Δ_{2} is defined, the only way $\Delta_{2}\left(e_{i_{1}}\right)$ can generate $v_{i_{2}}$ is if $i_{1}=i_{2}-1$, and the only way $\Delta_{2}\left(e_{i_{3}}\right)$ can generate $v_{i_{2}}$ is if $i_{2}=i_{3}$. Therefore, there are at most two ways to create the desired term.

Now suppose Δ_{2} was applied to $e_{i_{1}}$ and that $i_{1}=i_{2}-1$. Then by definition, the resulting term will be left attached. Furthermore, any given left attached term of the form $e_{i_{2}-1} \otimes v_{i_{2}} \otimes e_{i_{3}}$, where $0<i_{2}-1 \leq i_{3}<n$, can be created by simply applying Δ_{2} to the term $e_{i_{2}-1} \otimes e_{i_{3}}$ generated by $\Delta_{k}(P)$. Now in order to create a term with $v_{i_{2}}$ in the $i^{t h}$ position, we must apply Δ_{2} to the $(i-1)^{s t}$ position, and so by the discussion above on the sign commutation rule, the term's final sign can be calculated as $(-1)^{i+k+1}$. If we suppose that Δ_{2} was applied to $e_{i_{3}}$ and that $i_{2}=i_{3}$, then a very similar analysis shows that all right attached terms of the form $e_{i_{1}} \otimes v_{i_{2}} \otimes e_{i_{2}}$, where $0<i_{2}<n$ are created and will have a final sign of $(-1)^{i+k}$.

Case 2: Consider a term of the form $v_{i_{2}} \otimes e_{i_{3}} \otimes \cdots$, where $0<i_{2}<i_{3}<n$. By an argument similar to the one above, this term can only be generated if Δ_{2} is applied to $e_{i_{3}}$ and if $i_{2}=i_{3}$. The same reasoning as in case one shows that all right attached terms, and only those terms, will be generated with sign $(-1)^{i+k}$.

Case 3: Consider a term of the form $\cdots \otimes e_{i_{1}} \otimes v_{i_{2}}$, where $0<i_{1}<i_{2}<n$. This case is nearly identical to case 2 , and we leave it to the reader to show that all left attached terms, and only those terms, can be generated with $\operatorname{sign}(-1)^{i+k+1}$.

Proposition 11. Let $2<k<n$. If v_{i} appears in the $i^{\text {th }}$ position of a term in $\partial \Delta_{k}(P)$, after cancellations the terms that remain are:

- All maximally extreme unattached terms with positive sign.
- All minimally extreme unattached terms with sign $(-1)^{k}$.
- All left attached terms with sign $(-1)^{i+k}$.
- All right attached terms with sign $(-1)^{i+k+1}$.

Proof. The proof requires several straightforward applications of Lemma 9, some of which show that no doubly attached terms are generated, all unattached terms generated cancel, and all extreme terms generated are unattached. The details are left to the reader.

Proposition 12. Let $3<k \leq n$. Then $\Delta_{k-1} \Delta_{2}(P)$ contains:

- All minimally extreme terms with sign $(-1)^{k+1}$.
- All maximally extreme terms with negative sign.

Proof. Since Δ_{k-1} only acts non-trivially on P, the only terms produced by Δ_{2} that do not immediately vanish are $v_{1} \otimes P+P \otimes v_{n}$. Additionally, note that since $k>3, \Delta_{k-1}$ produces no primitive terms when it is applied by the definition of Δ_{k} for $k>2$.

When Δ_{k-1} is applied to the first term, it generates terms of the form $v_{1} \otimes e_{i_{1}} \otimes$ $e_{i_{2}} \otimes \cdots$, which are all minimally extreme. Since the sign commutation rule does not introduce anything new, we have that the term has the final sign $(-1)^{k+1}$.

When Δ_{k-1} is applied to the second term, it generates terms of the form $\cdots \otimes$ $e_{i_{k-3}} \otimes e_{i_{k-2}} \otimes v_{n}$, which are maximally extreme. Since the sign commutation rule does not introduce anything new, we have that the sign will always be negative.

Proposition 13. Let $3<k \leq n$. If v_{i} appears in the $i^{\text {th }}$ position of a term in $\Delta_{2} \Delta_{k-1}(P)$, after cancellations the terms that remain are:

- All maximally extreme singly attached terms with positive sign.
- All minimally extreme singly attached terms with sign $(-1)^{k}$.
- All left attached terms with sign $(-1)^{i+k+1}$.
- All right attached terms with sign $(-1)^{i+k}$.

Proof. The proof requires several straightforward uses of Lemma 10 some of which show that no unattached terms are generated, all doubly attached terms cancel, and all extreme terms are singly attached. The details are left to the reader.

Now when $k>3$, all three propositions apply and we see that in Relation 2 the singly attached terms in $\partial \Delta_{k}(P)$ and $\Delta_{2} \Delta_{k-1}(P)$ cancel, the extreme unattached terms in $\partial \Delta_{k}(P)$ and $\Delta_{k-1} \Delta_{2}(P)$ cancel, and the extreme singly attached terms in $\Delta_{k-1} \Delta_{2}(P)$ and $\Delta_{2} \Delta_{k-1}(P)$ cancel. Therefore, all terms cancel and the relation is satisfied.

Having proved the theorem for $k>3$, we consider the special case $k=3$. We must show that:

$$
\left[(\partial \otimes \mathbf{1} \otimes \mathbf{1}+\mathbf{1} \otimes \partial \otimes \mathbf{1}+\mathbf{1} \otimes \mathbf{1} \otimes \partial) \Delta_{3}+\left(-\Delta_{2} \otimes \mathbf{1}+\mathbf{1} \otimes \Delta_{2}\right) \Delta_{2}\right](P)=0
$$

Proposition 14. The terms generated by $\left(\partial \Delta_{3}+\Delta_{2} \Delta_{2}\right)(P)$ form three classes, which independently satisfy the conclusions of Propositions 11, 12, and 13.

Proof. Note that Proposition 11 in the proof above still applies to $\partial \Delta_{3}(P)$ as before since it never used the restriction that $k \geq 3$. Therefore, we must show that $\left(\Delta_{2} \otimes 1-1 \otimes \Delta_{2}\right) \Delta_{2}$ can be divided into parts which respectively satisfy the conclusions of Proposition 12 and Proposition 13. Now expanding we have

$$
\begin{array}{r}
\left(-\Delta_{2} \otimes \mathbf{1}+\mathbf{1} \otimes \Delta_{2}\right) \Delta_{2}(P)=\left(-\Delta_{2} \otimes \mathbf{1}+\mathbf{1} \otimes \Delta_{2}\right)\left(v_{1} \otimes P+P \otimes v_{n}\right) \\
\left(-\Delta_{2} \otimes \mathbf{1}+\mathbf{1} \otimes \Delta_{2}\right) \sum_{i_{1}, i_{2}} e_{i_{1}} \otimes e_{i_{2}} .
\end{array}
$$

Notice that applications of $\left(-\Delta_{2} \otimes \mathbf{1}+\mathbf{1} \otimes \Delta_{2}\right) \sum_{i_{1}, i_{2}} e_{i_{1}} \otimes e_{i_{2}}$ produce terms of the form $e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k-1}}$, where $0<i_{1}<i_{2}<\cdots<i_{k-1}<n$, then applies Δ_{2} to one of them. This is exactly the same set up as in Proposition 13, and since the proof of Proposition 13 only used the condition that $k \geq 3$ to ensure there are no primitive terms, we see that the proof applies to $\left(\Delta_{2} \otimes \mathbf{1}+\mathbf{1} \otimes \Delta_{2}\right) \sum_{i_{1}, i_{2}} e_{i_{1}} \otimes e_{i_{2}}$.
Thus we obtain the same types of terms as given in Proposition 13.
Therefore, we must show that what remains behaves like the general case of $\Delta_{k-1} \Delta_{2}$ and produces all possible extreme terms. By expanding and some simple algebra, it is possible to show that

$$
\begin{aligned}
\left(-\Delta_{2} \otimes \mathbf{1}+\mathbf{1} \otimes\right. & \left.\Delta_{2}\right)\left(v_{1} \otimes P+P \otimes v_{n}\right)= \\
& -\sum_{i_{1}, i_{2}} e_{i_{1}} \otimes e_{i_{2}} \otimes v_{n}+\sum_{i_{1}, i_{2}} v_{1} \otimes e_{i_{1}} \otimes e_{i_{2}}
\end{aligned}
$$

which generates every possible extreme term and only extreme terms, all with the correct sign for $k=3$. Therefore, $\left(\Delta_{2} \otimes \mathbf{1}+\mathbf{1} \otimes \Delta_{2}\right)\left(v_{1} \otimes P+P \otimes v_{n+1}\right)$ satisfies the hypothesis of Proposition 12.

Since the terms generated by $\left(\partial \Delta_{3}+\Delta_{2} \Delta_{2}\right)(P)$ fall into classes that individually satisfy the conclusions of Proposition 11, Proposition 12, and Proposition 13, they cancel each other out as before. Therefore Δ_{3} also satisfies Relation 1 and the proof of Theorem 4 is complete.

4. Generalization of Result

Until now, we have been working with an n-gon P whose initial and terminal vertices are adjacent. Our result extends to situations in which the initial and terminal vertices are non-adjacent. Suppose v_{1} is the initial vertex and v_{t} is the terminal vertex, where $t>1$. Define the generalized Δ_{2}^{\prime} to be the same as in the introduction, except that

$$
\Delta_{2}^{\prime}(P)=v_{1} \otimes P+P \otimes v_{t}+\sum_{0<i_{1}<i_{2}<t} e_{i_{1}} \otimes e_{i_{2}}-\sum_{n \geq i_{1}>i_{2} \geq t} e_{i_{1}} \otimes e_{i_{2}}
$$

Additionally, for $k>2$, define the generalized k-ary A_{∞}-coalgebra operation Δ_{k}^{\prime} by

$$
\Delta_{k}^{\prime}(\sigma)=\left\{\begin{array}{cc}
\sum_{0<i_{1}<i_{2}<\cdots<i_{k}<t} e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}} & \\
-\sum_{n \geq i_{1}>i_{2}>\cdots>i_{k} \geq t} e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}}, & \text { if } \sigma=P \\
0, & \text { otherwise. }
\end{array}\right.
$$

Then by definition, $\Delta_{k}^{\prime}=0$ for all $k \geq \max \{t, n-t+2\}$. Now all that remains is to show that the operations $\left\{\Delta_{n}^{\prime}\right\}_{n \geq 2}$ extend to this general setting.

Corollary 15. Let P be an n-gon with initial vertex v_{1} and terminal vertex v_{t}, where $\dot{t}>1$. The operations $\left\{\Delta_{k}^{\prime}\right\}_{2 \leq k<\max \{t, n-t+2\}}$ defined above impose an A_{∞} coalgebra structure on $\left(C_{*}(P), \partial\right)$.

Proof. Draw an additional edge from v_{1} to v_{t} and denote it by e_{0}. Define P_{1} to be the polygon with vertices $v_{1}, v_{2}, \ldots, v_{t}$ oriented counterclockwise and let P_{2} to be the polygon with vertices $v_{t}, v_{t+1}, \ldots, v_{n}, v_{1}$ oriented counterclockwise as illustrated in Figure 4.

Figure 4. A 7 -gon with $v_{t}=v_{5}$.
Then by the way edges are directed with respect to the orientation, we have $\partial\left(P_{1}\right)=e_{1}+e_{2}+\cdots+e_{t-1}-e_{0}$ and $\partial\left(P_{2}\right)=-e_{t}-e_{t+1}-\cdots-e_{n}+e_{0}$. Note that $\partial\left(P_{1}\right)+\partial\left(P_{2}\right)=\partial(P)$. Furthermore, define v_{1} to be the initial vertex and v_{t} to be the terminal vertex in both P_{1} and P_{2}; then P_{1} and P_{2} satisfy the hypothesis of Theorem 4 and it is straightforward algebra to show that $\Delta_{2}\left(P_{1}\right)+\Delta_{2}\left(P_{2}\right)=\Delta_{2}^{\prime}(P)$ and $\Delta_{k}\left(P_{1}\right)+\Delta_{k}\left(P_{2}\right)=\Delta_{k}^{\prime}(P)$ for $k>2$. All that remains is to verify that Relation 1 holds on P for all $k \geq 2$. This can be done using the relations above and applying the main theorem to each part. The details are left to the reader. Therefore,
the operations $\left\{\Delta_{n}^{\prime}\right\}_{n \geq 2}$ defined on P above satisfy all A_{∞}-coalgebra relations on cellular chains of P.

5. Application to Closed compact surfaces

The celebrated classification of closed compact surfaces (cf. [3], for example) states that a closed compact surface of genus g, denoted by X_{g}, is homeomorphic to a sphere with $g \geq 0$ handles when orientable or a connected sum of $g \geq 1$ real projective planes when unorientable.

To obtain the connected sum $X \# Y$ of two surfaces X and Y, remove the interior of a disk from X and from Y then glue the two surfaces together along their boundaries. Of course, a sphere with $g \geq 1$ handles is the connected sum of g tori, and a Klein bottle is the connected sum of two real projective planes.

Figure 5. A polygonal decomposition of the connected sum of three and four real projective planes.

Figure 6. A polygonal decomposition of the connected sum of three tori.

Furthermore, when $g \geq 1, X_{g}$ can be expressed as the quotient of a $4 g$-gon when orientable or a $2 g$-gon when unorientable as pictured in Figures 5 and 6 (the dotted lines represent common boundaries in the connected sums). To recover X_{g} from a
polygonal decomposition P_{g}, glue the edges with the same label together so that the arrows directing the edges align. This gluing operation defines the projection $p: P_{g} \rightarrow X_{g}$, which encodes the topology of X_{g}.

The cutting and pasting procedures indicated in Figures 5 and 6 can be continued indefinitely, and the directed edges of a particular polygonal decomposition P_{g} so obtained define a vertex poset with initial and terminal vertices labeled v (all vertices are identified in X_{g}). These are exactly the configurations to which Corollary 15 applies.

Indeed, the formal A_{∞}-coalgebra structure on $C_{*}\left(P_{g}\right)$ given by Corollary 15 projects to a quotient structure on $C_{*}\left(X_{g}\right)$ in the obvious way. If X_{3} is the connected sum of three real projective planes, for example, using the decomposition in Figure 5 we obtain an A_{∞}-coalgebra structure on $C_{*}\left(X_{3}\right)$ with non-trivial operations

$$
\begin{aligned}
& \Delta_{2}\left(X_{3}\right)=v \otimes X_{3}+X_{3} \otimes v+e_{1} \otimes e_{1}-e_{2} \otimes e_{2}+e_{3} \otimes e_{3} \\
& \Delta_{4}\left(X_{3}\right)=e_{1} \otimes e_{1} \otimes e_{3} \otimes e_{3}
\end{aligned}
$$

Furthermore, each cellular chain in $C_{*}\left(P_{g}\right) \otimes \mathbb{Z}_{2}$ projects to a non-bounding cycle in $C_{*}\left(X_{g}\right) \otimes \mathbb{Z}_{2}$ so that $H_{*}\left(X_{g} ; \mathbb{Z}_{2}\right)=C_{*}\left(X_{g}\right) \otimes \mathbb{Z}_{2}$.

For a general unorientable X_{g}, label the edge of the $i^{t h}$ real projective plane e_{i}, and label the vertex v. Let $\lfloor x\rfloor$ denote the floor of x, and for a given s define the sequences

$$
\left\{i_{p}=2\left\lfloor\frac{p+1}{2}\right\rfloor-1\right\}_{p=1}^{2 s} \text { and }\left\{j_{q}=2\left\lfloor\frac{q+1}{2}\right\rfloor\right\}_{q=1}^{2 s}
$$

Corollary 16. Let X_{g} be a closed compact unorientable surface of genus $g \geq 2$ and let P_{g} be the polygonal decomposition of X_{g} indicated in Figure 5. The formal A_{∞}-coalgebra structure on $C_{*}\left(P_{g}\right)$ projects to a non-trivial A_{∞}-coalgebra structure on $C_{*}\left(X_{g}\right)$ with operations $\left\{\Delta_{k}\right\}_{k \geq 2}$ determined by the quotient map $q: P_{g} \rightarrow X_{g}$ and defined by

$$
\begin{aligned}
& \Delta_{2}(v)=v \otimes v \\
& \Delta_{2}\left(e_{i}\right)=v \otimes e_{i}+e_{i} \otimes v \\
& \Delta_{2}\left(X_{g}\right)=v \otimes X_{g}+X_{g} \otimes v+\sum_{\substack{i=1 \\
g \in\{2 s-1,2 s\}}}^{s} e_{2 i-1} \otimes e_{2 i-1}-\sum_{\substack{j=1 \\
g \in\{2 s, 2 s+1\}}}^{s} e_{2 j} \otimes e_{2 j} \\
& \Delta_{k}\left(X_{g}\right)=\sum_{\substack{0<p_{1}<\cdots<p_{k} \leq 2 s \\
g \in\{2 s-1,2 s\}}} e_{i_{p_{1}}} \otimes \cdots \otimes e_{i_{p_{k}}}-\sum_{\substack{0<q_{1}<\cdots<q_{k} \leq 2 s \\
g \in\{2 s, 2 s+1\}}} e_{j_{q_{1}}} \otimes \cdots \otimes e_{j q_{k}}, k \geq 3 \\
& \Delta_{k}(\sigma)=0, \text { for all } \sigma \neq X_{g} \text { and } k \geq 3 .
\end{aligned}
$$

For a general orientable X_{g}, label the edges along one edge-path from initial to terminal vertex $e_{1}, e_{2}, \ldots, e_{2 g}$. Let $\hat{e}_{i_{2 k-1}}=e_{i_{2 k}}$ and $\hat{e}_{i_{2 k}}=e_{i_{2 k}-1}$, and label the edges along the other edge-path $\hat{e}_{1}, \hat{e}_{2}, \ldots, \hat{e}_{2 g}$.

Corollary 17. Let X_{g} be a closed compact orientable surface of genus $g \geq 2$ and let P_{g} be the polygonal decomposition of X_{g} indicated in Figure 6. The formal $A_{\infty^{-}}$ coalgebra structure on $C_{*}\left(P_{g}\right)$ projects to a non-trivial A_{∞}-coalgebra structure on $C_{*}\left(X_{g}\right)$ with operations $\left\{\Delta_{k}\right\}_{k \geq 2}$ determined by the the quotient map $q: P_{g} \rightarrow X_{g}$ and defined by

$$
\Delta_{2}(v)=v \otimes v
$$

$$
\begin{aligned}
& \Delta_{2}\left(e_{i}\right)=v \otimes e_{i}+e_{i} \otimes v \\
& \Delta_{2}\left(X_{g}\right)=v \otimes X_{g}+X_{g} \otimes v+\sum_{i=1}^{g} e_{2 i-1} \otimes e_{2 i}-e_{2 i} \otimes e_{2 i-1} \\
& \Delta_{k}\left(X_{g}\right)=\sum_{0<i_{1}<\cdots<i_{k} \leq 2 g} e_{i_{1}} \otimes \cdots \otimes e_{i_{k}}-\hat{e}_{i_{1}} \otimes \cdots \otimes \hat{e}_{i_{k}}, k \geq 3 \\
& \Delta_{k}(\sigma)=0, \text { for all } \sigma \neq X_{g} \text { and } k \geq 3 .
\end{aligned}
$$

It is interesting to note that our definitions of Δ_{2} in Corollaries 16 and 17 allow us to read off the cup product on $H_{*}\left(X_{g} ; \mathbb{Z}_{2}\right)$ directly from the components of Δ_{2} without performing additional calculations. In general, one has a choice: Compute cup products using a standard diagonal at the expense of long calculations or construct an application-specific diagonal that minimizes the calculations at the expense of the accompanying combinatorial difficulties.

Finally, when X_{g} is the sphere S^{2}, the A_{∞}-coalgebra structure on $C_{*}\left(X_{g}\right)$ is clearly degenerate; if X_{g} is a real projective plane, a torus, or a Klein bottle, there is one non-vanishing A_{∞}-coalgebra operation on $C_{*}\left(X_{g}\right)$, namely Δ_{2}, which induces the non-trivial cup product in cohomology (the formula for Δ_{2} on a real projective plane requires independent verification; the proof is straight-forward and omitted). But if X_{g} is a closed compact surface that is orientable with $g \geq 2$ or unorientable with $g \geq 3$, the combinatorial homotopy coassociative diagonal on $C_{*}\left(P_{g}\right)$ induces a formal A_{∞}-coalgebra structure that projects to a strictly coassociative A_{∞}-coalgebra structure on $C_{*}\left(X_{g}\right)$ with non-trivial higher order structure determined by the quotient map q. But whether or not the A_{∞}-coalgebra structure $\left(H=H_{*}\left(X_{g} ; \mathbb{Z}_{2}\right), \Delta_{k}\right)$ observed here is topologically invariant is an open question.

References

[1] R. Gonzalez-Diaz, J. Lamar, R. Umble. Computing Cup Product in \mathbb{Z}_{2}-cohomology of 3D polyhedral complex. Found. Comp. Math. 14, Springer 2014.
[2] D. Kravatz. Diagonal Approximations on an n-gon and the cohomology Ring of Closed Compact Orientable Surfaces. Senior Honors Thesis. Millersville University Department of Mathematics, 2008. http://sites.millersville.edu/rumble/StudentProjects/Kravatz/finaldraft.pdf
[3] W.S. Massey, Algebraic Topology An Introduction. Harcourt, Brace, and World, Inc., 1967.
[4] Q. Minnich. An A_{∞}-coalgebra Structure on the Cellular Chains of a Polygon. Senior Honors Thesis. Millersville University Department of Mathematics, 2017. http://sites.millersville.edu/rumble/StudentProjects/Minnich/thesis.pdf
[5] S. Saneblidze and R. Umble, Diagonals on the Permutahedra, Multiplihedra and Associahedra, "J. Homology, Homotopy and Appl., 6 (1) (2004), 363-411.
[6] J. D. Stasheff, Homotopy Associativity of H-spaces I, II, Trans. A. M. S. 108 (1963), 275-312.
Millersville University of Pennsylvania, Department of Mathematics, Millersville, PA 17551

E-mail address: ron.umble@millersville.edu

