The Coherent Framed Join and Biassociahedra Joint work with Samson Saneblidze

Ron Umble
Millersville University

Celebrating the legacies of Jim Stasheff and Murray Gerstenhaber
5 March 2018

Background

- In our 2011 paper entitled, "Matrads, Biassociahedra, and A_{∞}-bialgebras", we constructed a basis for the free matrad \mathcal{H}_{∞} and the polytopes $K K_{n, m}$ in the ranges $1 \leq m \leq 3$ and $1 \leq n \leq 3$

Background

- In our 2011 paper entitled, "Matrads, Biassociahedra, and A_{∞}-bialgebras", we constructed a basis for the free matrad \mathcal{H}_{∞} and the polytopes $K K_{n, m}$ in the ranges $1 \leq m \leq 3$ and $1 \leq n \leq 3$
- Outside these ranges we are unable to define an operator that simultaneously preserves coherency and satisfies $d^{2}=0$. In fact...

Background

- In our 2011 paper entitled, "Matrads, Biassociahedra, and A_{∞}-bialgebras", we constructed a basis for the free matrad \mathcal{H}_{∞} and the polytopes $K K_{n, m}$ in the ranges $1 \leq m \leq 3$ and $1 \leq n \leq 3$
- Outside these ranges we are unable to define an operator that simultaneously preserves coherency and satisfies $d^{2}=0$. In fact...
- When $m=n=4$, Saneblidze constructed an example with the following property: If we use all available components of the face operator to extend the differential, coherency is lost; if we use only those available components that preserve coherency, $d^{2} \neq 0$

Background

- In our 2011 paper entitled, "Matrads, Biassociahedra, and A_{∞}-bialgebras", we constructed a basis for the free matrad \mathcal{H}_{∞} and the polytopes $K K_{n, m}$ in the ranges $1 \leq m \leq 3$ and $1 \leq n \leq 3$
- Outside these ranges we are unable to define an operator that simultaneously preserves coherency and satisfies $d^{2}=0$. In fact...
- When $m=n=4$, Saneblidze constructed an example with the following property: If we use all available components of the face operator to extend the differential, coherency is lost; if we use only those available components that preserve coherency, $d^{2} \neq 0$
- Let us construct $K K_{n, m}$ in the ranges $1 \leq m \leq 3$ and $1 \leq n \leq 3$

Augmented Partitions

- An ordered set is \varnothing or a finite strictly increasing subset of \mathbb{N}

Augmented Partitions

- An ordered set is \varnothing or a finite strictly increasing subset of \mathbb{N}
- Let A be an ordered set; let $r>0$

Augmented Partitions

- An ordered set is \varnothing or a finite strictly increasing subset of \mathbb{N}
- Let A be an ordered set; let $r>0$
- $P_{r}^{\prime}(A)$ denotes the augmented length r partitions of A

Augmented Partitions

- An ordered set is \varnothing or a finite strictly increasing subset of \mathbb{N}
- Let A be an ordered set; let $r>0$
- $P_{r}^{\prime}(A)$ denotes the augmented length r partitions of A
- $P_{r}^{\prime}(\varnothing)=\{0|\cdots| 0\}$ with r empty blocks

Augmented Partitions

- An ordered set is \varnothing or a finite strictly increasing subset of \mathbb{N}
- Let A be an ordered set; let $r>0$
- $P_{r}^{\prime}(A)$ denotes the augmented length r partitions of A
- $P_{r}^{\prime}(\varnothing)=\{0|\cdots| 0\}$ with r empty blocks
- $P_{r}^{\prime}(A)=\left\{A_{1}|\cdots| A_{r}\right\}$, where $A_{1} \cup \cdots \cup A_{r}=A$

Augmented Partitions

- An ordered set is \varnothing or a finite strictly increasing subset of \mathbb{N}
- Let A be an ordered set; let $r>0$
- $P_{r}^{\prime}(A)$ denotes the augmented length r partitions of A
- $P_{r}^{\prime}(\varnothing)=\{0|\cdots| 0\}$ with r empty blocks
- $P_{r}^{\prime}(A)=\left\{A_{1}|\cdots| A_{r}\right\}$, where $A_{1} \cup \cdots \cup A_{r}=A$
- Some A_{i} may be empty

Augmented Partitions

- An ordered set is \varnothing or a finite strictly increasing subset of \mathbb{N}
- Let A be an ordered set; let $r>0$
- $P_{r}^{\prime}(A)$ denotes the augmented length r partitions of A
- $P_{r}^{\prime}(\varnothing)=\{0|\cdots| 0\}$ with r empty blocks
- $P_{r}^{\prime}(A)=\left\{A_{1}|\cdots| A_{r}\right\}$, where $A_{1} \cup \cdots \cup A_{r}=A$
- Some A_{i} may be empty
- Define $\pi: P^{\prime}(A) \rightarrow P(A)$ by deleting empty blocks

Augmented Partitions

- An ordered set is \varnothing or a finite strictly increasing subset of \mathbb{N}
- Let A be an ordered set; let $r>0$
- $P_{r}^{\prime}(A)$ denotes the augmented length r partitions of A
- $P_{r}^{\prime}(\varnothing)=\{0|\cdots| 0\}$ with r empty blocks
- $P_{r}^{\prime}(A)=\left\{A_{1}|\cdots| A_{r}\right\}$, where $A_{1} \cup \cdots \cup A_{r}=A$
- Some A_{i} may be empty
- Define $\pi: P^{\prime}(A) \rightarrow P(A)$ by deleting empty blocks
- Dimension $\left|A_{1}\right| \cdots\left|A_{r}\right|:=\left|\pi\left(A_{1}|\cdots| A_{r}\right)\right|$

Bipartition Matrices

- A bipartition is a pair $\frac{\beta}{\alpha}:=(\alpha, \beta) \in P_{r}^{\prime}(A) \times P_{r}^{\prime}(B)$

Bipartition Matrices

- A bipartition is a pair $\frac{\beta}{\alpha}:=(\alpha, \beta) \in P_{r}^{\prime}(A) \times P_{r}^{\prime}(B)$
- Example

$$
\frac{7|0| 6}{0|1| 0} \in P_{3}^{\prime}(\{1\}) \times P_{3}^{\prime}(\{6,7\})
$$

Bipartition Matrices

- A bipartition is a pair $\frac{\beta}{\alpha}:=(\alpha, \beta) \in P_{r}^{\prime}(A) \times P_{r}^{\prime}(B)$
- Example

$$
\frac{7|0| 6}{0|1| 0} \in P_{3}^{\prime}(\{1\}) \times P_{3}^{\prime}(\{6,7\})
$$

- Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{q}$ be ordered sets; $R=\left(r_{i j}\right) \in \mathbb{N}^{q \times p}$

Bipartition Matrices

- A bipartition is a pair $\frac{\beta}{\alpha}:=(\alpha, \beta) \in P_{r}^{\prime}(A) \times P_{r}^{\prime}(B)$
- Example

$$
\frac{7|0| 6}{0|1| 0} \in P_{3}^{\prime}(\{1\}) \times P_{3}^{\prime}(\{6,7\})
$$

- Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{q}$ be ordered sets; $R=\left(r_{i j}\right) \in \mathbb{N}^{q \times p}$
- For simplicity, assume the \mathbf{a}_{i} 's (and \mathbf{b}_{j} 's) are disjoint

Bipartition Matrices

- A bipartition is a pair $\frac{\beta}{\alpha}:=(\alpha, \beta) \in P_{r}^{\prime}(A) \times P_{r}^{\prime}(B)$
- Example $\frac{7|0| 6}{0|1| 0} \in P_{3}^{\prime}(\{1\}) \times P_{3}^{\prime}(\{6,7\})$
- Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{q}$ be ordered sets; $R=\left(r_{i j}\right) \in \mathbb{N}^{q \times p}$
- For simplicity, assume the \mathbf{a}_{i} 's (and \mathbf{b}_{j} 's) are disjoint
- Choose bipartitions $\frac{\beta_{i j}}{\alpha_{i j}} \in P_{r_{i j}}^{\prime}\left(\mathbf{a}_{j}\right) \times P_{r_{i j}}^{\prime}\left(\mathbf{b}_{i}\right)$

Bipartition Matrices

- A bipartition is a pair $\frac{\beta}{\alpha}:=(\alpha, \beta) \in P_{r}^{\prime}(A) \times P_{r}^{\prime}(B)$
- Example $\quad \frac{7|0| 6}{0|1| 0} \in P_{3}^{\prime}(\{1\}) \times P_{3}^{\prime}(\{6,7\})$
- Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}, \mathbf{b}_{1}, \ldots, \mathbf{b}_{q}$ be ordered sets; $R=\left(r_{i j}\right) \in \mathbb{N}^{q \times p}$
- For simplicity, assume the \mathbf{a}_{i} 's (and \mathbf{b}_{j} 's) are disjoint
- Choose bipartitions $\frac{\beta_{i j}}{\alpha_{i j}} \in P_{r_{i j}}^{\prime}\left(\mathbf{a}_{j}\right) \times P_{r_{i j}}^{\prime}\left(\mathbf{b}_{i}\right)$
- $\left(\frac{\beta_{i j}}{\alpha_{i j}}\right)^{q \times p}$ is a bipartition matrix over $\left\{\mathbf{a}_{i}, \mathbf{b}_{j}\right\}$ w.r.t. R

Bipartition Matrices

- Example $\left(\begin{array}{cc}\frac{4 \mid 5}{1 \mid 0} & \frac{5 \mid 4}{3 \mid 2} \\ \frac{7|0| 6}{0|1| 0} & \frac{67}{23}\end{array}\right)$ is a bipartition matrix
over $\mathbf{a}_{1}=\{1\}, \mathbf{a}_{2}=\{2,3\}, \mathbf{b}_{1}=\{4,5\}, \mathbf{b}_{2}=\{6,7\}$
with respect to $\left(\begin{array}{ll}2 & 2 \\ 3 & 1\end{array}\right)$

The Lambda Merging Map

- Let λ be an ordered subset of $\{1,2, \ldots, n\}$ of order k

The Lambda Merging Map

- Let λ be an ordered subset of $\{1,2, \ldots, n\}$ of order k
- $\mu_{\lambda}: P_{n+1}^{\prime}(A) \rightarrow P_{k+1}^{\prime}(A)$

The Lambda Merging Map

- Let λ be an ordered subset of $\{1,2, \ldots, n\}$ of order k
- $\mu_{\lambda}: P_{n+1}^{\prime}(A) \rightarrow P_{k+1}^{\prime}(A)$
- Example: $\mu_{\{2,3,5\}} 2|1| 0|5| 4|3=12| 0|45| 3$

The Lambda Merging Map

- Let λ be an ordered subset of $\{1,2, \ldots, n\}$ of order k
- $\mu_{\lambda}: P_{n+1}^{\prime}(A) \rightarrow P_{k+1}^{\prime}(A)$
- Example: $\mu_{\{2,3,5\}} 2|1| 0|5| 4|3=12| 0|45| 3$
- Extreme cases:

$$
\begin{aligned}
\mu_{\varnothing}\left(A_{1}|\cdots| A_{n+1}\right) & =A \\
\mu_{\{1,2, \ldots, n\}}\left(A_{1}|\cdots| A_{n+1}\right) & =A_{1}|\cdots| A_{n+1}
\end{aligned}
$$

Proposition 1

Given a $q \times p$ bipartition matrix $\left(\frac{\beta_{i j}}{\alpha_{i j}}\right)$ over $\left\{\mathbf{a}_{j}, \mathbf{b}_{i}\right\}$ w.r.t. $\left(r_{i j}\right)$, there is a unique $q \times p$ matrix of ordered sets $\left(\lambda_{i j}\right)$ such that

1. $\mu_{\lambda_{1 j}}\left(\alpha_{1 j}\right)=\cdots=\mu_{\lambda_{q j}}\left(\alpha_{q j}\right)$ for each j
(equal denominators in $j^{t h}$ column)

Proposition 1

Given a $q \times p$ bipartition matrix $\left(\frac{\beta_{i j}}{\alpha_{i j}}\right)$ over $\left\{\mathbf{a}_{j}, \mathbf{b}_{i}\right\}$ w.r.t. $\left(r_{i j}\right)$, there is a unique $q \times p$ matrix of ordered sets $\left(\lambda_{i j}\right)$ such that

1. $\mu_{\lambda_{1 j}}\left(\alpha_{1 j}\right)=\cdots=\mu_{\lambda_{q j}}\left(\alpha_{q j}\right)$ for each j
(equal denominators in $j^{t h}$ column)
2. $\mu_{\lambda_{i 1}}\left(\beta_{i 1}\right)=\cdots=\mu_{\lambda_{i p}}\left(\beta_{i p}\right)$ for each i (equal numerators in $i^{\text {th }}$ row)

Proposition 1

Given a $q \times p$ bipartition matrix $\left(\frac{\beta_{i j}}{\alpha_{i j}}\right)$ over $\left\{\mathbf{a}_{j}, \mathbf{b}_{i}\right\}$ w.r.t. $\left(r_{i j}\right)$, there is a unique $q \times p$ matrix of ordered sets $\left(\lambda_{i j}\right)$ such that

1. $\mu_{\lambda_{1 j}}\left(\alpha_{1 j}\right)=\cdots=\mu_{\lambda_{q j}}\left(\alpha_{q j}\right)$ for each j
(equal denominators in $j^{t h}$ column)
2. $\mu_{\lambda_{i 1}}\left(\beta_{i 1}\right)=\cdots=\mu_{\lambda_{i p}}\left(\beta_{i p}\right)$ for each i (equal numerators in $i^{\text {th }}$ row)
3. all $\lambda_{i j}$ have the same maximal cardinality $r<\min \left\{r_{i j}\right\}$

Proposition 1

Given a $q \times p$ bipartition matrix $\left(\frac{\beta_{i j}}{\alpha_{i j}}\right)$ over $\left\{\mathbf{a}_{j}, \mathbf{b}_{i}\right\}$ w.r.t. $\left(r_{i j}\right)$, there is a unique $q \times p$ matrix of ordered sets $\left(\lambda_{i j}\right)$ such that

1. $\mu_{\lambda_{1 j}}\left(\alpha_{1 j}\right)=\cdots=\mu_{\lambda_{q j}}\left(\alpha_{q j}\right)$ for each j
(equal denominators in $j^{\text {th }}$ column)
2. $\mu_{\lambda_{i 1}}\left(\beta_{i 1}\right)=\cdots=\mu_{\lambda_{i p}}\left(\beta_{i p}\right)$ for each i
(equal numerators in $i^{\text {th }}$ row)
3. all $\lambda_{i j}$ have the same maximal cardinality $r<\min \left\{r_{i j}\right\}$

Example: $\left(\begin{array}{cc}\frac{45 \mid 0}{1 \mid 0} & \frac{5|4| 0}{0|2| 3} \\ \frac{7|0| 0 \mid 6}{0|1| 0 \mid 0} & \frac{0|7| 6}{2|0| 3}\end{array}\right) \stackrel{\mu_{\lambda}}{\sim}\left(\begin{array}{cc}\frac{45 \mid 0}{1 \mid 0} & \frac{45 \mid 0}{2 \mid 3} \\ \frac{7 \mid 6}{1 \mid 0} & \frac{7 \mid 6}{2 \mid 3}\end{array}\right)$,

$$
\text { where } \lambda=\left(\begin{array}{ll}
\{1\} & \{2\} \\
\{2\} & \{2\}
\end{array}\right)
$$

Decomposability

- Definition A bipartition matrix is indecomposable if its associated λ matrix is null

Decomposability

- Definition A bipartition matrix is indecomposable if its associated λ matrix is null
- Theorem A bipartition matrix has a unique indecomposable factorization

Augmented Consecutive Partitions

- Let B be an ordered set

Augmented Consecutive Partitions

- Let B be an ordered set
- $\mathcal{A C P}_{B} B=B$

Augmented Consecutive Partitions

- Let B be an ordered set
- $\mathcal{A C P}_{B} B=B$
- $\mathcal{A C P}_{B} \varnothing=0|\cdots| 0(\#$ empty blocks $=\# B+1)$

Augmented Consecutive Partitions

- Let B be an ordered set
- $\mathcal{A C P}_{B} B=B$
- $\mathcal{A C P}_{B} \varnothing=0|\cdots| 0(\#$ empty blocks $=\# B+1)$
- $\mathcal{A C P}{ }_{\{1,2, \ldots, 9\}}\{2,5,6,8\}=0|2| 0|56| 8 \mid 0$

Factoring a Bipartition

- Given $C=\frac{B_{1}|\cdots| B_{r}}{A_{1}|\cdots| A_{r}}$, for each $k=1,2, \ldots r$:

Factoring a Bipartition

- Given $C=\frac{B_{1}|\cdots| B_{r}}{A_{1}|\cdots| A_{r}}$, for each $k=1,2, \ldots r$:
- Compute

$$
\begin{aligned}
& \mathbf{a}_{k, 1}|\cdots| \mathbf{a}_{k, s_{k}}:=\mathcal{A C P} \mathcal{A}_{A_{1} \cup \cdots \cup A_{k}} A_{k} \\
& \mathbf{b}_{k, 1}|\cdots| \mathbf{b}_{k, t_{k}}:=\mathcal{A C P} \mathcal{B}_{B_{k} \cup \cdots \cup B_{r}} B_{k}
\end{aligned}
$$

Factoring a Bipartition

- Given $C=\frac{B_{1}|\cdots| B_{r}}{A_{1}|\cdots| A_{r}}$, for each $k=1,2, \ldots r$:
- Compute

$$
\begin{aligned}
& \mathbf{a}_{k, 1}|\cdots| \mathbf{a}_{k, s_{k}}:=\mathcal{A C P} \mathcal{A}_{A_{1} \cup \cdots \cup A_{k}} A_{k} \\
& \mathbf{b}_{k, 1}|\cdots| \mathbf{b}_{k, t_{k}}:=\mathcal{A C P} \mathcal{B}_{B_{k} \cup \cdots \cup B_{r}} B_{k}
\end{aligned}
$$

- Construct the bipartition matrix

$$
C_{k}=\left(\begin{array}{ccc}
\frac{\mathbf{b}_{k, 1}}{\mathbf{a}_{k, 1}} & \cdots & \frac{\mathbf{b}_{k, 1}}{\mathbf{a}_{k, s}} \\
\vdots & & \vdots \\
\frac{\mathbf{b}_{k, t_{k}}}{\mathbf{a}_{k, 1}} & \cdots & \frac{\mathbf{b}_{k, t_{k}}}{\mathbf{a}_{k, s_{k}}}
\end{array}\right)
$$

Factoring a Bipartition

- Given $C=\frac{B_{1}|\cdots| B_{r}}{A_{1}|\cdots| A_{r}}$, for each $k=1,2, \ldots r$:
- Compute

$$
\begin{aligned}
& \mathbf{a}_{k, 1}|\cdots| \mathbf{a}_{k, s_{k}}:=\mathcal{A C P} \mathcal{A}_{A_{1} \cup \cdots \cup A_{k}} A_{k} \\
& \mathbf{b}_{k, 1}|\cdots| \mathbf{b}_{k, t_{k}}:=\mathcal{A C} \mathcal{P}_{B_{k} \cup \cdots \cup B_{r}} B_{k}
\end{aligned}
$$

- Construct the bipartition matrix

$$
C_{k}=\left(\begin{array}{ccc}
\frac{\mathbf{b}_{k, 1}}{\mathbf{a}_{k, 1}} & \cdots & \frac{\mathbf{b}_{k, 1}}{\mathbf{a}_{k, s_{k}}} \\
\vdots & & \vdots \\
\frac{\mathbf{b}_{k, t_{k}}}{\mathbf{a}_{k, 1}} & \cdots & \frac{\mathbf{b}_{k, t_{k}}}{\mathbf{a}_{k, s_{k}}}
\end{array}\right)
$$

- $C=C_{1} \cdots C_{r}$

Factoring a Bipartition

- Example $\frac{56|7| 8}{1|23| 4}$

$$
\begin{array}{rlrl}
1 & =\mathcal{A C P} \mathcal{P}_{1} 1 & 56|0| 0 & =\mathcal{A C} \mathcal{P}_{5678} 56 \\
0 \mid 23 & =\mathcal{A C P} \mathcal{P}_{123} 23 & 7 \mid 0 & =\mathcal{A C P} \mathcal{P}_{78} 7 \\
0|0| 0 \mid 4 & =\mathcal{A C P} \mathcal{P}_{1234} 4 & 8 & =\mathcal{A C P} 88
\end{array}
$$

Factoring a Bipartition

- Example $\frac{56|7| 8}{1|23| 4}$

$$
\begin{array}{rlrl}
1 & =\mathcal{A C P} \mathcal{P}_{1} 1 & 56|0| 0 & =\mathcal{A C} \mathcal{P}_{5678} 56 \\
0 \mid 23 & =\mathcal{A C P} \mathcal{P}_{123} 23 & 7 \mid 0 & =\mathcal{A C \mathcal { P } _ { 7 8 } 7} \\
0|0| 0 \mid 4 & =\mathcal{A C P} \mathcal{P}_{1234} 4 & 8 & =\mathcal{A C P} 88
\end{array}
$$

$$
\frac{56|7| 8}{1|23| 4}=\left(\begin{array}{c}
\frac{56}{1} \\
\frac{0}{1} \\
\frac{0}{1}
\end{array}\right)\left(\begin{array}{cc}
\frac{7}{0} & \frac{7}{23} \\
\frac{0}{0} & \frac{0}{23}
\end{array}\right)\left(\begin{array}{llll}
\frac{8}{0} & \frac{8}{0} & \frac{8}{0} & \frac{8}{4}
\end{array}\right)
$$

Graphical Representation

$$
-\frac{B}{A} \leftarrow \bigwedge_{\# A+1}^{\# B+1}
$$

Graphical Representation

$$
-\frac{B}{A} \leftarrow \prod_{\# A \cdots}^{\# B+1}
$$

$$
\left(\begin{array}{c}
\frac{56|7| 8}{1|23| 4}
\end{array}\right)=\left(\begin{array}{c}
\frac{56}{1} \\
\frac{0}{1} \\
\frac{0}{1}
\end{array}\right)\left(\begin{array}{cc}
\frac{7}{0} & \frac{7}{23} \\
\frac{0}{0} & \frac{0}{23}
\end{array}\right)\left(\begin{array}{cccc}
\frac{8}{0} & \frac{8}{0} & \frac{8}{0} & \frac{8}{4}
\end{array}\right)
$$

$$
=\left[\begin{array}{l}
X \\
\lambda \\
\lambda
\end{array}\right]\left[\begin{array}{ll}
Y & X \\
1 & A
\end{array}\right]\left[Y Y Y \neq \frac{X \lambda}{Y X} \frac{X A}{Y X Y}\right.
$$

Dimension of a Bipartition Matrix

- A null matrix with entries of the form $\frac{0|\cdots| 0}{0|\cdots| 0}$ has dim 0

Dimension of a Bipartition Matrix

- A null matrix with entries of the form $\frac{0|\cdots| 0}{0|\cdots| 0}$ has dim 0
- $\left|\left(\frac{B}{A}\right)\right|:=\# A+\# B-1$

Dimension of a Bipartition Matrix

- A null matrix with entries of the form $\frac{0|\cdots| 0}{0|\cdots| 0}$ has dim 0
- $\left|\left(\frac{B}{A}\right)\right|:=\# A+\# B-1$
- $\left|C_{1} \cdots C_{r}\right|:=\left|C_{1}\right|+\cdots+\left|C_{r}\right|$

Dimension of a Bipartition Matrix

- A null matrix with entries of the form $\frac{0|\cdots| 0}{0|\cdots| 0}$ has dim 0
- $\left|\left(\frac{B}{A}\right)\right|:=\# A+\# B-1$
$-\left|C_{1} \cdots C_{r}\right|:=\left|C_{1}\right|+\cdots+\left|C_{r}\right|$
- Unique factorization \Rightarrow Define $|C|$ for C indecomposable

Dimension of a Bipartition Matrix

- A null matrix with entries of the form $\frac{0|\cdots| 0}{0|\cdots| 0}$ has dim 0
- $\left|\left(\frac{B}{A}\right)\right|:=\# A+\# B-1$
$-\left|C_{1} \cdots C_{r}\right|:=\left|C_{1}\right|+\cdots+\left|C_{r}\right|$
- Unique factorization \Rightarrow Define $|C|$ for C indecomposable
- Let $C=\left(\frac{\beta_{i j}}{\alpha_{i j}}\right)$ be a $q \times p$ indecomposable bipartition matrix $\operatorname{over}\left\{\mathbf{a}_{j}, \mathbf{b}_{i}\right\}$

Dimension of a Bipartition Matrix

- If $\frac{\beta_{i j}}{\alpha_{i j}}=\frac{0|\cdots| 0}{\alpha_{i j}}$ for all (i, j), let $C_{i *}$ denote the $i^{\text {th }}$ row of C

Dimension of a Bipartition Matrix

- If $\frac{\beta_{i j}}{\alpha_{i j}}=\frac{0|\cdots| 0}{\alpha_{i j}}$ for all (i, j), let $C_{i *}$ denote the $i^{\text {th }}$ row of C
- Let $\left(\lambda_{1}^{i} \cdots \lambda_{p}^{i}\right)$ be the λ matrix associated with $C_{i *}$

Dimension of a Bipartition Matrix

- If $\frac{\beta_{i j}}{\alpha_{i j}}=\frac{0|\cdots| 0}{\alpha_{i j}}$ for all (i, j), let $C_{i *}$ denote the $i^{\text {th }}$ row of C
- Let $\left(\lambda_{1}^{i} \cdots \lambda_{p}^{i}\right)$ be the λ matrix associated with $C_{i *}$
- Define

$$
A_{1}|\cdots| A_{n} \uplus A_{1}^{\prime}|\cdots| A_{n}^{\prime}:=\left(A_{1} \cup A_{1}^{\prime}\right)|\cdots|\left(A_{n} \cup A_{n}^{\prime}\right)
$$

Dimension of a Bipartition Matrix

- If $\frac{\beta_{i j}}{\alpha_{i j}}=\frac{0|\cdots| 0}{\alpha_{i j}}$ for all (i, j), let $C_{i *}$ denote the $i^{\text {th }}$ row of C
- Let $\left(\lambda_{1}^{i} \cdots \lambda_{p}^{i}\right)$ be the λ matrix associated with $C_{i *}$
- Define

$$
A_{1}|\cdots| A_{n} \uplus A_{1}^{\prime}|\cdots| A_{n}^{\prime}:=\left(A_{1} \cup A_{1}^{\prime}\right)|\cdots|\left(A_{n} \cup A_{n}^{\prime}\right)
$$

- Form partitions

$$
\left.\hat{\alpha}_{i}:=\mu_{\lambda_{1}^{i}}\left(\alpha_{i 1}\right) 巴 \cdots ய \mu_{\lambda_{p}^{i}}\left(\alpha_{i p}\right)\right)
$$

Dimension of a Bipartition Matrix

- If $\frac{\beta_{i j}}{\alpha_{i j}}=\frac{0|\cdots| 0}{\alpha_{i j}}$ for all (i, j), let $C_{i *}$ denote the $i^{\text {th }}$ row of C
- Let $\left(\lambda_{1}^{i} \cdots \lambda_{p}^{i}\right)$ be the λ matrix associated with $C_{i *}$
- Define

$$
A_{1}|\cdots| A_{n} \uplus A_{1}^{\prime}|\cdots| A_{n}^{\prime}:=\left(A_{1} \cup A_{1}^{\prime}\right)|\cdots|\left(A_{n} \cup A_{n}^{\prime}\right)
$$

- Form partitions

$$
\left.\hat{\alpha}_{i}:=\mu_{\lambda_{1}^{i}}\left(\alpha_{i 1}\right) \mathbb{U} \cdots \mathbb{U} \mu_{\lambda_{p}^{i}}\left(\alpha_{i p}\right)\right)
$$

- Define $|C|:=\sum_{1 \leq i \leq q}\left|\hat{\alpha}_{i}\right|$

Dimension of a Bipartition Matrix

- Example $\left|\left(\begin{array}{ll}0 & \frac{0}{1}\end{array}\right)\right|=|13|=1$

Dimension of a Bipartition Matrix

- Example $\left|\left(\begin{array}{ll}0 & \frac{0}{1}\end{array}\right)\right|=|13|=1$
- $|C|$ is not necessarily the sum of the dim's of its entries

Dimension of a Bipartition Matrix

- Example $\left|\left(\begin{array}{ll}0 & \frac{0}{1}\end{array}\right)\right|=|13|=1$
- $|C|$ is not necessarily the sum of the dim's of its entries
- If $c_{i j}=\frac{\beta_{i j}}{0|\cdots| 0}$ for all (i, j), form partitions $\stackrel{\vee}{\beta}_{j}$ in each column

Dimension of a Bipartition Matrix

- Example $\left|\left(\begin{array}{ll}0 & \frac{0}{1}\end{array}\right)\right|=|13|=1$
- $|C|$ is not necessarily the sum of the dim's of its entries
- If $c_{i j}=\frac{\beta_{i j}}{0|\cdots| 0}$ for all (i, j), form partitions $\stackrel{\vee}{\beta_{j}}$ in each column
- Define $|C|=\sum_{1 \leq j \leq p}\left|\vee^{\vee}\right|$

Dimension of a Bipartition Matrix

- Example $\left|\left(\begin{array}{ll}0 & \frac{0}{1}\end{array}\right)\right|=|13|=1$
- $|C|$ is not necessarily the sum of the dim's of its entries
- If $c_{i j}=\frac{\beta_{i j}}{0|\cdots| 0}$ for all (i, j), form partitions $\stackrel{\vee}{\beta}_{j}$ in each column
- Define $|C|=\sum_{1 \leq j \leq p}\left|\stackrel{\vee}{\beta_{j}}\right|$
- Otherwise...

Conventions for Bipartition Matrices

- Deleting or inserting empty blocks in an entry of a bipartition matrix may preserve or change dimension

Conventions for Bipartition Matrices

- Deleting or inserting empty blocks in an entry of a bipartition matrix may preserve or change dimension
- Discard bipartition matrices whose dimension increases when empty blocks are inserted

Conventions for Bipartition Matrices

- Deleting or inserting empty blocks in an entry of a bipartition matrix may preserve or change dimension
- Discard bipartition matrices whose dimension increases when empty blocks are inserted
- Example Discard the 1-dim'l indecomposable matrix

$$
C=\left(\frac{0 \mid 1}{1 \mid 0} \frac{0 \mid 1}{1 \mid 0} \frac{1}{1}\right)
$$

Inserting empty blocks in the third entry transforms C into the 3-dim'I decomposable

$$
\left(\frac{0 \mid 1}{1 \mid 0} \frac{0 \mid 1}{1 \mid 0} \frac{0 \mid 1}{0 \mid 1}\right)=\left(\begin{array}{ccc}
\frac{0}{1} & \frac{0}{1} & \frac{0}{0} \\
\frac{0}{1} & \frac{0}{1} & \frac{0}{0}
\end{array}\right)\left(\begin{array}{ccccc}
\frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{1}{1}
\end{array}\right) .
$$

Conventions for Bipartition Matrices

- Equate bipartition matrices of the same dimension that differ only in the number of empty blocks in their entries

Conventions for Bipartition Matrices

- Equate bipartition matrices of the same dimension that differ only in the number of empty blocks in their entries
- Example $\left(\begin{array}{cc}\frac{0}{1} & \frac{0}{3} \\ \frac{0|0| 0}{0|1| 0} & \frac{0|0| 0}{0|0| 3}\end{array}\right)=\left(\begin{array}{cc}\frac{0}{1} & \frac{0}{3} \\ \frac{0 \mid 0}{1 \mid 0} & \frac{0 \mid 0}{0 \mid 3}\end{array}\right)$

Conventions for Bipartition Matrices

- Equate bipartition matrices of the same dimension that differ only in the number of empty blocks in their entries
- Example $\left(\begin{array}{cc}\frac{0}{1} & \frac{0}{3} \\ \frac{0|0| 0}{0|1| 0} & \frac{0|0| 0}{0|0| 3}\end{array}\right)=\left(\begin{array}{cc}\frac{0}{1} & \frac{0}{3} \\ \frac{0 \mid 0}{1 \mid 0} & \frac{0 \mid 0}{0 \mid 3}\end{array}\right)$
- Only preserve empty blocks necessary to preserve dimension

Conventions for Bipartition Matrices

- Equate bipartition matrices of the same dimension that differ only in the number of empty blocks in their entries
- Example $\left(\begin{array}{cc}\frac{0}{1} & \frac{0}{3} \\ \frac{0|0| 0}{0|1| 0} & \frac{0|0| 0}{0|0| 3}\end{array}\right)=\left(\begin{array}{cc}\frac{0}{1} & \frac{0}{3} \\ \frac{0 \mid 0}{1 \mid 0} & \frac{0 \mid 0}{0 \mid 3}\end{array}\right)$
- Only preserve empty blocks necessary to preserve dimension
- Example Preserve all empty blocks in

$$
C=\left(\begin{array}{cc}
\frac{0}{1} & \frac{0}{3} \\
\frac{0 \mid 0}{1 \mid 0} & \frac{0 \mid 0}{0 \mid 3}
\end{array}\right)
$$

Removing empty blocks in the second row increases dimension

Coherence

- Definition $A q \times p$ indecomposable bipartition matrix $\left(\frac{\beta_{i j}}{\alpha_{i j}}\right)$ over $\left\{\mathbf{a}_{j}, \mathbf{b}_{i}\right\}$ is

Coherence

- Definition $A q \times p$ indecomposable bipartition matrix $\left(\frac{\beta_{i j}}{\alpha_{i j}}\right)$ over $\left\{\mathbf{a}_{j}, \mathbf{b}_{i}\right\}$ is
- column coherent if

$$
\pi\left(\hat{\alpha_{q}}\right) \times \cdots \times \pi\left(\hat{\alpha_{1}}\right) \sqsubseteq \Delta^{(q-1)}\left(P_{\#\left(\mathbf{a}_{1} \cup \cdots \cup \mathbf{a}_{p}\right)}\right)
$$

Coherence

- Definition $A q \times p$ indecomposable bipartition matrix $\left(\frac{\beta_{i j}}{\alpha_{i j}}\right)$ over $\left\{\mathbf{a}_{j}, \mathbf{b}_{i}\right\}$ is
- column coherent if

$$
\pi\left(\hat{\alpha_{q}}\right) \times \cdots \times \pi\left(\hat{\alpha_{1}}\right) \sqsubseteq \Delta^{(q-1)}\left(P_{\#\left(\mathbf{a}_{1} \cup \cdots \cup \mathbf{a}_{p}\right)}\right)
$$

- row coherent if

$$
\pi\left(\stackrel{\vee}{1}_{1}\right) \times \cdots \times \pi\left(\stackrel{\vee}{p}_{p}\right) \sqsubseteq \Delta^{(p-1)}\left(P_{\#\left(\mathbf{b}_{1} \cup \cdots \cup \mathbf{b}_{q}\right)}\right)
$$

Coherence

- Definition $A q \times p$ indecomposable bipartition matrix $\left(\frac{\beta_{i j}}{\alpha_{i j}}\right)$ over $\left\{\mathbf{a}_{j}, \mathbf{b}_{i}\right\}$ is
- column coherent if

$$
\pi\left(\hat{\alpha_{q}}\right) \times \cdots \times \pi\left(\hat{\alpha_{1}}\right) \sqsubseteq \Delta^{(q-1)}\left(P_{\#\left(\mathbf{a}_{1} \cup \cdots \cup \mathbf{a}_{p}\right)}\right)
$$

- row coherent if

$$
\pi\left(\stackrel{\vee}{\beta_{1}}\right) \times \cdots \times \pi\left(\stackrel{\vee}{\beta_{p}}\right) \sqsubseteq \Delta^{(p-1)}\left(P_{\#\left(\mathbf{b}_{1} \cup \cdots \cup \mathbf{b}_{q}\right)}\right)
$$

- coherent if column and row coherent

Coherent Framed Elements

- Given $\mathbf{a}(m)$ and $\mathbf{b}(n)$ of orders m and n, and $r \geq 1$, let

$$
\frac{\beta}{\alpha} \in P_{r}^{\prime}(\mathbf{a}(m)) \times P_{r}^{\prime}(\mathbf{b}(n))
$$

Coherent Framed Elements

- Given $\mathbf{a}(m)$ and $\mathbf{b}(n)$ of orders m and n, and $r \geq 1$, let

$$
\frac{\beta}{\alpha} \in P_{r}^{\prime}(\mathbf{a}(m)) \times P_{r}^{\prime}(\mathbf{b}(n))
$$

- If $r=1$ or $m n=0$, the set of coherent framed elements

$$
\alpha \uplus_{c} \beta:=\left\{\left(\frac{\beta}{\alpha}\right)\right\}
$$

Coherent Framed Elements

- Given $\mathbf{a}(m)$ and $\mathbf{b}(n)$ of orders m and n, and $r \geq 1$, let

$$
\frac{\beta}{\alpha} \in P_{r}^{\prime}(\mathbf{a}(m)) \times P_{r}^{\prime}(\mathbf{b}(n))
$$

- If $r=1$ or $m n=0$, the set of coherent framed elements

$$
\alpha ய_{c} \beta:=\left\{\left(\frac{\beta}{\alpha}\right)\right\}
$$

- Otherwise, assume inductively that the set of coherent framed elements $\alpha^{\prime} \mathbb{U}_{c} \beta^{\prime}$ has been defined for all

$$
\begin{aligned}
& \frac{\beta^{\prime}}{\alpha^{\prime}} \in P^{\prime}(\mathbf{a}(s)) \times P^{\prime}(\mathbf{b}(t)) \text { such that }(s, t) \leq(m, n) \text { and } \\
& s+t<m+n
\end{aligned}
$$

Coherent Framed Matrices

- Given $\frac{B_{1}|\cdots| B_{r}}{A_{1}|\cdots| A_{r}}=\frac{\beta}{\alpha}$, for $k=1,2, \ldots, r$:

Coherent Framed Matrices

- Given $\frac{B_{1}|\cdots| B_{r}}{A_{1}|\cdots| A_{r}}=\frac{\beta}{\alpha}$, for $k=1,2, \ldots, r$:
- Compute $\mathbf{a}_{1}|\cdots| \mathbf{a}_{p}:=\mathcal{A C P} \mathcal{A}_{A_{1} \cup \ldots \cup A_{k}} A_{k}$

Coherent Framed Matrices

- Given $\frac{B_{1}|\cdots| B_{r}}{A_{1}|\cdots| A_{r}}=\frac{\beta}{\alpha}$, for $k=1,2, \ldots, r$:
- Compute $\mathbf{a}_{1}|\cdots| \mathbf{a}_{p}:=\mathcal{A C P} \mathcal{A}_{A_{1} \cup \cdots \cup A_{k}} A_{k}$
- Compute $\mathbf{b}_{1}|\cdots| \mathbf{b}_{q}:=\mathcal{A C} \mathcal{P}_{B_{k} \cup \ldots \cup B_{r}} B_{k}$

Coherent Framed Matrices

- Given $\frac{B_{1}|\cdots| B_{r}}{A_{1}|\cdots| A_{r}}=\frac{\beta}{\alpha}$, for $k=1,2, \ldots, r$:
- Compute $\mathbf{a}_{1}|\cdots| \mathbf{a}_{p}:=\mathcal{A C P} \mathcal{A}_{A_{1} \cup \cdots \cup A_{k}} A_{k}$
- Compute $\mathbf{b}_{1}|\cdots| \mathbf{b}_{q}:=\mathcal{A C} \mathcal{P}_{B_{k} \cup \ldots \cup B_{r}} B_{k}$
- Choose $R \in \mathbb{N}^{q \times p}$ and indecomposable $\left(\frac{\beta_{i}^{\prime}}{\alpha_{j}^{\prime}}\right)$ over $\left\{\mathbf{a}_{j}, \mathbf{b}_{i}\right\}$ w.r.t. R

Coherent Framed Matrices

- Given $\frac{B_{1}|\cdots| B_{r}}{A_{1}|\cdots| A_{r}}=\frac{\beta}{\alpha}$, for $k=1,2, \ldots, r$:
- Compute $\mathbf{a}_{1}|\cdots| \mathbf{a}_{p}:=\mathcal{A C P}{ }_{A_{1} \cup \cdots \cup A_{k}} A_{k}$
- Compute $\mathbf{b}_{1}|\cdots| \mathbf{b}_{q}:=\mathcal{A C} \mathcal{P}_{B_{k} \cup \ldots \cup B_{r}} B_{k}$
- Choose $R \in \mathbb{N}^{q \times p}$ and indecomposable $\left(\frac{\beta_{i}^{\prime}}{\alpha_{j}^{\prime}}\right)$ over $\left\{\mathbf{a}_{j}, \mathbf{b}_{i}\right\}$ w.r.t. R
- Choose $c_{i j}^{k} \in \alpha_{j}^{\prime} \Psi_{c} \beta_{i}^{\prime}$

Coherent Framed Matrices

- Given $\frac{B_{1}|\cdots| B_{r}}{A_{1}|\cdots| A_{r}}=\frac{\beta}{\alpha}$, for $k=1,2, \ldots, r$:
- Compute $\mathbf{a}_{1}|\cdots| \mathbf{a}_{p}:=\mathcal{A C P} \mathcal{A}_{A_{1} \cup \cdots \cup A_{k}} A_{k}$
- Compute $\mathbf{b}_{1}|\cdots| \mathbf{b}_{q}:=\mathcal{A C} \mathcal{P}_{B_{k} \cup \ldots \cup B_{r}} B_{k}$
- Choose $R \in \mathbb{N}^{q \times p}$ and indecomposable $\left(\frac{\beta_{i}^{\prime}}{\alpha_{j}^{\prime}}\right)$ over $\left\{\mathbf{a}_{j}, \mathbf{b}_{i}\right\}$ w.r.t. R
- Choose $c_{i j}^{k} \in \alpha_{j}^{\prime} \Psi_{c} \beta_{i}^{\prime}$
- Form the coherent framed matrix $C_{k}=\left(c_{i j}^{k}\right)$

Coherent Framed Matrices

- Given $\frac{B_{1}|\cdots| B_{r}}{A_{1}|\cdots| A_{r}}=\frac{\beta}{\alpha}$, for $k=1,2, \ldots, r$:
- Compute $\mathbf{a}_{1}|\cdots| \mathbf{a}_{p}:=\mathcal{A C P} \mathcal{A}_{A_{1} \cup \cdots \cup A_{k}} A_{k}$
- Compute $\mathbf{b}_{1}|\cdots| \mathbf{b}_{q}:=\mathcal{A C} \mathcal{P}_{B_{k} \cup \ldots \cup B_{r}} B_{k}$
- Choose $R \in \mathbb{N}^{q \times p}$ and indecomposable $\left(\frac{\beta_{i}^{\prime}}{\alpha_{j}^{\prime}}\right)$ over $\left\{\mathbf{a}_{j}, \mathbf{b}_{i}\right\}$ w.r.t. R
- Choose $c_{i j}^{k} \in \alpha_{j}^{\prime} \Psi_{c} \beta_{i}^{\prime}$
- Form the coherent framed matrix $C_{k}=\left(c_{i j}^{k}\right)$
- The set of coherent framed elements $\alpha \uplus_{c} \beta:=\left\{C_{1} \cdots C_{r}\right\}$, where C_{i} ranges over all possible coherent framed matrices and the product is formal juxtaposition

The Coherent Framed Join of Ordered Sets

- Definition The coherent framed join of $\mathbf{a}(m)$ and $\mathbf{b}(n)$ is the set

$$
\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n):=\bigcup_{\substack{\frac{\beta}{\alpha} \in P_{r}^{\prime}(\mathbf{a}(m)) \times P_{r}^{\prime}(\mathbf{b}(n)) \\ r \geq 1}}
$$

The Coherent Framed Join of Ordered Sets

- Definition The coherent framed join of $\mathbf{a}(m)$ and $\mathbf{b}(n)$ is the set

$$
\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n):=\bigcup_{\substack{\frac{\beta}{\alpha} \in P_{r}^{\prime}(\mathbf{a}(m)) \times P_{r}^{\prime}(\mathbf{b}(n)) \\ r \geq 1}} \alpha \uplus_{c} \beta
$$

- Example
$1 \circledast_{p p} 1=\left\{\frac{1}{1}, \frac{0 \mid 1}{1 \mid 0}=\binom{\frac{0}{1}}{\frac{0}{1}}\left(\begin{array}{ll}\frac{1}{0} & \frac{1}{0}\end{array}\right), \frac{1 \mid 0}{0 \mid 1}=\left(\frac{1}{0}\right)\left(\frac{0}{1}\right)\right\}$

The Coherent Framed Join of Ordered Sets

- Definition The coherent framed join of $\mathbf{a}(m)$ and $\mathbf{b}(n)$ is the set

$$
\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n):=\bigcup_{\substack{\frac{\beta}{\alpha} \in P_{r}^{\prime}(\mathbf{a}(m)) \times P_{r}^{\prime}(\mathbf{b}(n)) \\ r \geq 1}} \alpha \uplus_{c} \beta
$$

- Example
$1 \circledast_{p p} 1=\left\{\frac{1}{1}, \frac{0 \mid 1}{1 \mid 0}=\binom{\frac{0}{1}}{\frac{0}{1}}\left(\begin{array}{ll}\frac{1}{0} & \frac{1}{0}\end{array}\right), \frac{1 \mid 0}{0 \mid 1}=\left(\frac{1}{0}\right)\left(\frac{0}{1}\right)\right\}$
- $P P_{2,2}=K K_{2,2} \leftrightarrow 1 \circledast_{p p} 1$

The Coherent Framed Join of Ordered Sets

- Definition The coherent framed join of $\mathbf{a}(m)$ and $\mathbf{b}(n)$ is the set

$$
\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n):=\bigcup_{\substack{\frac{\beta}{\alpha} \in P_{r}^{\prime}(\mathbf{a}(m)) \times P_{r}^{\prime}(\mathbf{b}(n)) \\ r \geq 1}} \alpha \uplus_{c} \beta
$$

- Example
$1 \circledast_{p p} 1=\left\{\frac{1}{1}, \frac{0 \mid 1}{1 \mid 0}=\binom{\frac{0}{1}}{\frac{0}{1}}\left(\begin{array}{ll}\frac{1}{0} & \frac{1}{0}\end{array}\right), \frac{1 \mid 0}{0 \mid 1}=\left(\frac{1}{0}\right)\left(\frac{0}{1}\right)\right\}$
- $P P_{2,2}=K K_{2,2} \leftrightarrow 1 \circledast_{p p} 1$

- The Hopf relation holds up to homotopy
- Example For $12 \circledast_{p p} 1$, let W be the set obtained by inserting empty blocks into $\frac{1}{12}$ in all possible ways that preserve coherence
- Example For $12 \circledast_{p p} 1$, let W be the set obtained by inserting empty blocks into $\frac{1}{12}$ in all possible ways that preserve coherence
- $W=\left\{\frac{1}{12}, \frac{0 \mid 1}{1 \mid 2}, \frac{0 \mid 1}{2 \mid 1}, \frac{1 \mid 0}{1 \mid 2}, \frac{1 \mid 0}{2 \mid 1}, \frac{1 \mid 0}{0 \mid 12}\right.$,

$$
\left.\frac{0|0| 1}{1|2| 0}, \frac{0|0| 1}{2|1| 0}, \frac{0|1| 0}{1|0| 2}, \frac{0|1| 0}{2|0| 1}, \frac{1|0| 0}{0|1| 2}, \frac{1|0| 0}{0|2| 1}\right\}
$$

- Example For $12 \circledast_{p p} 1$, let W be the set obtained by inserting empty blocks into $\frac{1}{12}$ in all possible ways that preserve coherence
- $W=\left\{\frac{1}{12}, \frac{0 \mid 1}{1 \mid 2}, \frac{0 \mid 1}{2 \mid 1}, \frac{1 \mid 0}{1 \mid 2}, \frac{1 \mid 0}{2 \mid 1}, \frac{1 \mid 0}{0 \mid 12}\right.$,

$$
\left.\frac{0|0| 1}{1|2| 0}, \frac{0|0| 1}{2|1| 0}, \frac{0|1| 0}{1|0| 2}, \frac{0|1| 0}{2|0| 1}, \frac{1|0| 0}{0|1| 2}, \frac{1|0| 0}{0|2| 1}\right\}
$$

- Note that $\frac{0 \mid 1}{12 \mid 0}=\binom{\frac{0}{12}}{\frac{0}{12}}\left(\begin{array}{lll}\frac{1}{0} & \frac{1}{0} & \frac{1}{0}\end{array}\right)$ is incoherent because

$$
\pi\left(\hat{\alpha_{2}}\right) \times \pi\left(\hat{\alpha_{1}}\right)=12 \times 12 \nsubseteq \Delta^{(1)}\left(P_{2}\right)
$$

- Example For $12 \circledast_{p p} 1$, let W be the set obtained by inserting empty blocks into $\frac{1}{12}$ in all possible ways that preserve coherence
- $W=\left\{\frac{1}{12}, \frac{0 \mid 1}{1 \mid 2}, \frac{0 \mid 1}{2 \mid 1}, \frac{1 \mid 0}{1 \mid 2}, \frac{1 \mid 0}{2 \mid 1}, \frac{1 \mid 0}{0 \mid 12}\right.$,

$$
\left.\frac{0|0| 1}{1|2| 0}, \frac{0|0| 1}{2|1| 0}, \frac{0|1| 0}{1|0| 2}, \frac{0|1| 0}{2|0| 1}, \frac{1|0| 0}{0|1| 2}, \frac{1|0| 0}{0|2| 1}\right\}
$$

- Note that $\frac{0 \mid 1}{12 \mid 0}=\binom{\frac{0}{12}}{\frac{0}{12}}\left(\begin{array}{lll}\frac{1}{0} & \frac{1}{0} & \frac{1}{0}\end{array}\right)$ is incoherent because

$$
\pi\left(\hat{\alpha_{2}}\right) \times \pi\left(\hat{\alpha_{1}}\right)=12 \times 12 \nsubseteq \Delta^{(1)}\left(P_{2}\right)
$$

- Replace entries in all possible ways to obtain coherence

$$
12\left|0 ש_{c} 0\right| 1=\left\{\binom{\frac{0 \mid 0}{211}}{\frac{0}{12}}\left(\begin{array}{lll}
\frac{1}{0} & \frac{1}{0} & \frac{1}{0}
\end{array}\right),\binom{\frac{0}{12}}{\frac{0.0}{1 \mid 2}}\left(\begin{array}{lll}
\frac{1}{0} & \frac{1}{0} & \frac{1}{0}
\end{array}\right),\binom{\frac{000}{211}}{\frac{000}{1 \mid 2}}\left(\begin{array}{lll}
\frac{1}{0} & \frac{1}{0} & \frac{1}{0}
\end{array}\right)\right\}
$$

- Example For $12 \circledast_{p p} 1$, let W be the set obtained by inserting empty blocks into $\frac{1}{12}$ in all possible ways that preserve coherence
- $W=\left\{\frac{1}{12}, \frac{0 \mid 1}{1 \mid 2}, \frac{0 \mid 1}{2 \mid 1}, \frac{1 \mid 0}{1 \mid 2}, \frac{1 \mid 0}{2 \mid 1}, \frac{1 \mid 0}{0 \mid 12}\right.$,

$$
\left.\frac{0|0| 1}{1|2| 0}, \frac{0|0| 1}{2|1| 0}, \frac{0|1| 0}{1|0| 2}, \frac{0|1| 0}{2|0| 1}, \frac{1|0| 0}{0|1| 2}, \frac{1|0| 0}{0|2| 1}\right\}
$$

- Note that $\frac{0 \mid 1}{12 \mid 0}=\binom{\frac{0}{12}}{\frac{0}{12}}\left(\begin{array}{lll}\frac{1}{0} & \frac{1}{0} & \frac{1}{0}\end{array}\right)$ is incoherent because

$$
\pi\left(\hat{\alpha_{2}}\right) \times \pi\left(\hat{\alpha_{1}}\right)=12 \times 12 \nsubseteq \Delta^{(1)}\left(P_{2}\right)
$$

- Replace entries in all possible ways to obtain coherence

$$
12\left|0 ש_{c} 0\right| 1=\left\{\binom{\frac{0 \mid 0}{211}}{\frac{0}{12}}\left(\begin{array}{lll}
\frac{1}{0} & \frac{1}{0} & \frac{1}{0}
\end{array}\right),\binom{\frac{0}{12}}{\frac{0.0}{1 \mid 2}}\left(\begin{array}{lll}
\frac{1}{0} & \frac{1}{0} & \frac{1}{0}
\end{array}\right),\binom{\frac{000}{211}}{\frac{000}{1 \mid 2}}\left(\begin{array}{lll}
\frac{1}{0} & \frac{1}{0} & \frac{1}{0}
\end{array}\right)\right\}
$$

- $12 \circledast_{p p} 1=W \cup\left(12\left|0 \uplus_{c} 0\right| 1\right)$

The Differential

- Let $\mathfrak{m}=\{1,2, \ldots, m\}$; let $\rho \in \mathfrak{m} \circledast_{p p} \mathfrak{n}$

The Differential

- Let $\mathfrak{m}=\{1,2, \ldots, m\} ;$ let $\rho \in \mathfrak{m} \circledast_{p p} \mathfrak{n}$
- For top $\operatorname{dim}^{\prime} l \rho=\frac{\mathfrak{n}}{\mathfrak{m}}$ define

$$
\tilde{\partial}\left(\frac{\mathfrak{n}}{\mathfrak{m}}\right)=\left\{\operatorname{codim} 1 \text { elements of } \mathfrak{m} \circledast_{p p} \mathfrak{n}\right\}
$$

The Differential

- Let $\mathfrak{m}=\{1,2, \ldots, m\}$; let $\rho \in \mathfrak{m} \circledast_{p p} \mathfrak{n}$
- For top $\operatorname{dim}^{\prime} l \rho=\frac{\mathfrak{n}}{\mathfrak{m}}$ define

$$
\tilde{\partial}\left(\frac{\mathfrak{n}}{\mathfrak{m}}\right)=\left\{\operatorname{codim} 1 \text { elements of } \mathfrak{m} \circledast_{p p} \mathfrak{n}\right\}
$$

- Example
$\tilde{\partial}\left(\frac{1}{12}\right)=\left\{\frac{0 \mid 1}{1 \mid 2}, \frac{0 \mid 1}{2 \mid 1}, \frac{1 \mid 0}{1 \mid 2}, \frac{1 \mid 0}{2 \mid 1}, \frac{1 \mid 0}{0 \mid 12},\binom{\frac{0 \mid 0}{21 \mid}}{\frac{0}{12}}\left(\begin{array}{ll}\frac{1}{0} & \frac{1}{0} \\ \frac{1}{0}\end{array}\right),\binom{\frac{0}{12}}{\frac{000}{12}}\left(\begin{array}{lll}\frac{1}{0} & \frac{1}{0} & \frac{1}{0}\end{array}\right)\right\}$

The Differential

- For lower dim'l cells insert empty blocks and subdivide in all possible ways that preserve coherence

The Differential

- For lower dim'l cells insert empty blocks and subdivide in all possible ways that preserve coherence
- $\tilde{\partial}\left(\frac{0 \mid 1}{1 \mid 2}\right)=\frac{0|1| 0}{1|0| 2} \cup \frac{0|0| 1}{1|2| 0}$

The Differential

- For lower dim'l cells insert empty blocks and subdivide in all possible ways that preserve coherence
- $\tilde{\partial}\left(\frac{0 \mid 1}{1 \mid 2}\right)=\frac{0|1| 0}{1|0| 2} \cup \frac{0|0| 1}{1|2| 0}$
$-\tilde{\partial}\left(\frac{1 \mid 0}{0 \mid 12}\right)=\frac{1|0| 0}{0|1| 2} \cup \frac{1|0| 0}{0|2| 1}$

The Differential

- For lower dim'l cells insert empty blocks and subdivide in all possible ways that preserve coherence
$-\tilde{\partial}\left(\frac{0 \mid 1}{1 \mid 2}\right)=\frac{0|1| 0}{1|0| 2} \cup \frac{0|0| 1}{1|2| 0}$
- $\tilde{\partial}\left(\frac{1 \mid 0}{0 \mid 12}\right)=\frac{1|0| 0}{0|1| 2} \cup \frac{1|0| 0}{0|2| 1}$
- $\tilde{\partial}\left(\binom{\frac{00}{211}}{\frac{0}{12}}\left(\begin{array}{lll}\frac{1}{0} & \frac{1}{0} & \frac{1}{0}\end{array}\right)\right)=\binom{\frac{010}{21}}{\frac{000}{12}}\left(\begin{array}{lll}\frac{1}{0} & \frac{1}{0} & \frac{1}{0}\end{array}\right) \cup\binom{\frac{010}{211}}{\frac{000}{211}}\left(\begin{array}{lll}\frac{1}{0} & \frac{1}{0} & \frac{1}{0}\end{array}\right)$

$\operatorname{PP}(2,3)=\operatorname{KK}(2,3)$

$\operatorname{PP}(2,3)=\operatorname{KK}(2,3)$

$$
\begin{aligned}
& \text { K }
\end{aligned}
$$

The Reduced Coherent Framed Join of Ordered Sets

- Define an equivalence relation \sim on $\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n)$:

The Reduced Coherent Framed Join of Ordered Sets

- Define an equivalence relation \sim on $\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n)$:
- $C=\left(c_{i j}\right) \sim C^{\prime}=\left(c_{i j}^{\prime}\right)$ iff $c_{i j}$ and $c_{i j}^{\prime}$ differ only in the number or placement of empty blocks $\frac{0}{0}$

The Reduced Coherent Framed Join of Ordered Sets

- Define an equivalence relation \sim on $\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n)$:
- $C=\left(c_{i j}\right) \sim C^{\prime}=\left(c_{i j}^{\prime}\right)$ iff $c_{i j}$ and $c_{i j}^{\prime}$ differ only in the number or placement of empty blocks $\frac{0}{0}$
- Example $\left(\begin{array}{ll}\frac{0}{1} & \frac{0}{3}\end{array}\right)=\left(\begin{array}{ll}\frac{0 \mid 0}{1 \mid 0} & \frac{0 \mid 0}{0 \mid 3}\end{array}\right)=\left(\begin{array}{ll}\frac{0 \mid 0}{0 \mid 1} & \frac{0 \mid 0}{3 \mid 0}\end{array}\right)$

The Reduced Coherent Framed Join of Ordered Sets

- Define an equivalence relation \sim on $\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n)$:
- $C=\left(c_{i j}\right) \sim C^{\prime}=\left(c_{i j}^{\prime}\right)$ iff $c_{i j}$ and $c_{i j}^{\prime}$ differ only in the number or placement of empty blocks $\frac{0}{0}$
- Example $\left(\begin{array}{ll}\frac{0}{1} & \frac{0}{3}\end{array}\right)=\left(\begin{array}{ll}\frac{0 \mid 0}{1 \mid 0} & 0 \mid 0 \\ 0 \mid 3\end{array}\right)=\left(\begin{array}{ll}0|0| 0 \mid 0 \\ 0 \mid 1 & \frac{0}{3 \mid 0}\end{array}\right)$
- Definition The reduced coherent framed join of $\mathbf{a}(\mathrm{m})$ and $\mathbf{b}(n)$ is the set

$$
\mathbf{a}(m) \circledast_{k k} \mathbf{b}(n)=\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n) / \sim
$$

The Reduced Coherent Framed Join of Ordered Sets

- Define an equivalence relation \sim on $\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n)$:
- $C=\left(c_{i j}\right) \sim C^{\prime}=\left(c_{i j}^{\prime}\right)$ iff $c_{i j}$ and $c_{i j}^{\prime}$ differ only in the number or placement of empty blocks $\frac{0}{0}$
- Example $\left(\begin{array}{ll}\frac{0}{1} & \frac{0}{3}\end{array}\right)=\left(\begin{array}{ll}\frac{0 \mid 0}{1 \mid 0} & \frac{0 \mid 0}{0 \mid 3}\end{array}\right)=\left(\begin{array}{ll}\frac{0 \mid 0}{0 \mid 1} & 0 \mid 0 \\ 3 \mid 0\end{array}\right)$
- Definition The reduced coherent framed join of $\mathbf{a}(\mathrm{m})$ and $\mathbf{b}(n)$ is the set

$$
\mathbf{a}(m) \circledast_{k k} \mathbf{b}(n)=\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n) / \sim
$$

$-\ln \mathbf{a}(m) \circledast_{k k} \mathbf{b}(n)$

The Reduced Coherent Framed Join of Ordered Sets

- Define an equivalence relation \sim on $\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n)$:
- $C=\left(c_{i j}\right) \sim C^{\prime}=\left(c_{i j}^{\prime}\right)$ iff $c_{i j}$ and $c_{i j}^{\prime}$ differ only in the number or placement of empty blocks $\frac{0}{0}$
- Example $\left(\begin{array}{ll}\frac{0}{1} & \frac{0}{3}\end{array}\right)=\left(\begin{array}{ll}\frac{0 \mid 0}{1 \mid 0} & 0 \mid 0 \\ 0 \mid 3\end{array}\right)=\left(\begin{array}{ll}0 \mid 0 & 0 \mid 0 \\ 0 \mid 1 & 3 \mid 0\end{array}\right)$
- Definition The reduced coherent framed join of $\mathbf{a}(\mathrm{m})$ and $\mathbf{b}(n)$ is the set

$$
\mathbf{a}(m) \circledast_{k k} \mathbf{b}(n)=\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n) / \sim
$$

$-\ln \mathbf{a}(m) \circledast_{k k} \mathbf{b}(n)$

- Dim of a matrix is the sum of the dim's of its entries

The Reduced Coherent Framed Join of Ordered Sets

- Define an equivalence relation \sim on $\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n)$:
- $C=\left(c_{i j}\right) \sim C^{\prime}=\left(c_{i j}^{\prime}\right)$ iff $c_{i j}$ and $c_{i j}^{\prime}$ differ only in the number or placement of empty blocks $\frac{0}{0}$
- Example $\left(\begin{array}{ll}\frac{0}{1} & \frac{0}{3}\end{array}\right)=\left(\begin{array}{ll}\frac{0 \mid 0}{1 \mid 0} & \frac{0 \mid 0}{0 \mid 3}\end{array}\right)=\left(\begin{array}{ll}\frac{0 \mid 0}{0 \mid 1} & 0 \mid 0 \\ 3 \mid 0\end{array}\right)$
- Definition The reduced coherent framed join of $\mathbf{a}(\mathrm{m})$ and $\mathbf{b}(n)$ is the set

$$
\mathbf{a}(m) \circledast_{k k} \mathbf{b}(n)=\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n) / \sim
$$

$-\ln \mathbf{a}(m) \circledast_{k k} \mathbf{b}(n)$

- Dim of a matrix is the sum of the dim's of its entries
- Differential acts on matrix as a derivation of its entries

The Polytopes KK

- $K K_{n+1, m+1} \leftrightarrow \mathfrak{m} \circledast_{k k} \mathfrak{n}$

The Polytopes KK

- $K K_{n+1, m+1} \leftrightarrow \mathfrak{m} \circledast_{k k} \mathfrak{n}$
- In $K K_{1,4} \leftrightarrow 3 \circledast_{k k} 0$ we have

$$
\left(\frac{0}{2}\right)\left(\begin{array}{ll}
\frac{0}{1} & \frac{0}{3}
\end{array}\right)=\left(\frac{0}{2}\right)\left(\begin{array}{ll}
\frac{0 \mid 0}{1 \mid 0} & \frac{0 \mid 0}{0 \mid 3}
\end{array}\right)=\left(\begin{array}{l}
\frac{0}{2}
\end{array}\right)\left(\begin{array}{ll}
\frac{0 \mid 0}{0 \mid 1} & \frac{0 \mid 0}{3 \mid 0}
\end{array}\right)
$$

so that

$$
\frac{0 \mid 0}{2 \mid 13}=\frac{0|0| 0}{2|1| 3}=\frac{0|0| 0}{2|3| 1}
$$

Stasheff's Associahedron K(4)

$K K(3,3)$

Front view

Rear view

- $\partial K K_{3,3}$ consists of 8 heptagons and 22 squares

A-infinity Bialgebras

- We define a global differential on $\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n)$ but at the cost of coherence

A-infinity Bialgebras

- We define a global differential on $\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n)$ but at the cost of coherence
- Identify the cellular chains $C_{*}(K K)$ with the free matrad \mathcal{H}_{∞}

A-infinity Bialgebras

- We define a global differential on $\mathbf{a}(m) \circledast_{p p} \mathbf{b}(n)$ but at the cost of coherence
- Identify the cellular chains $C_{*}(K K)$ with the free matrad \mathcal{H}_{∞}
- Definition $A n A_{\infty}$-bialgebra is an algebra over \mathcal{H}_{∞}

Concluding Remarks

- Applications require parallel construction of bimultiplihedra JJ

Concluding Remarks

- Applications require parallel construction of bimultiplihedra JJ
- We transfer a biassociative bialgebra on chains to homology

Concluding Remarks

- Applications require parallel construction of bimultiplihedra JJ
- We transfer a biassociative bialgebra on chains to homology
- Realize an induced A_{∞}-bialgebra structure on homology

Concluding Remarks

- Applications require parallel construction of bimultiplihedra JJ
- We transfer a biassociative bialgebra on chains to homology
- Realize an induced A_{∞}-bialgebra structure on homology
- Theorem A non-trivial A_{∞}-coalgebra structure on $H_{*}(X ; Q)$ induces a non-trivial A_{∞}-bialgebra structure on $H_{*}(\Omega \Sigma X ; \mathbb{Q})$

Concluding Remarks

- Applications require parallel construction of bimultiplihedra JJ
- We transfer a biassociative bialgebra on chains to homology
- Realize an induced A_{∞}-bialgebra structure on homology
- Theorem A non-trivial A_{∞}-coalgebra structure on $H_{*}(X ; Q)$ induces a non-trivial A_{∞}-bialgebra structure on $H_{*}(\Omega \Sigma X ; \mathbb{Q})$
- The A_{∞}-bialgebra structure on $H_{*}(\Omega \Sigma X ; \mathbb{Q})$ is a rational homology invariant

Concluding Remarks

- Applications require parallel construction of bimultiplihedra JJ
- We transfer a biassociative bialgebra on chains to homology
- Realize an induced A_{∞}-bialgebra structure on homology
- Theorem A non-trivial A_{∞}-coalgebra structure on $H_{*}(X ; \mathbb{Q})$ induces a non-trivial A_{∞}-bialgebra structure on $H_{*}(\Omega \Sigma X ; \mathbb{Q})$
- The A_{∞}-bialgebra structure on $H_{*}(\Omega \Sigma X ; \mathbb{Q})$ is a rational homology invariant
- Prior to this work, all known rational homology invariants of $\Omega \Sigma X$ were trivial

Happy Birthday
 Jim and Murray!

