Tensor Products of A_∞-algebras with Homotopy Inner Products

(Joint work with Thomas Tradler, CUNY)

Ron Umble
Millersville University

Lehigh Geometry and Topology Conference

May 25, 2013
Tensor Products of A-infinity Algebras

- Let $K = \square K_n$ denote Stasheff’s associahedra
Tensor Products of A-infinity Algebras

- Let $K = \biguplus K_n$ denote Stasheff’s associahedra

- Let R be a commutative ring with unity
Tensor Products of A-infinity Algebras

- Let $K = \sqcup K_n$ denote Stasheff’s associahedra
- Let R be a commutative ring with unity
- Let $(A, \{\mu_n\})$ and $(B, \{\nu_n\})$ be A_∞-algebras over R
Tensor Products of A-infinity Algebras

- Let $K = △K_n$ denote Stasheff’s associahedra
- Let R be a commutative ring with unity
- Let $(A, \{\mu_n\})$ and $(B, \{\nu_n\})$ be A_∞-algebras over R
- A diagonal on cellular chains

$$Δ_K : C_*K \rightarrow C_*K \otimes C_*K$$

was constructed by Saneblidze-U and Markl-Snider
Tensor Products of A-infinity Algebras

- Let $K = \square K_n$ denote Stasheff’s associahedra
- Let R be a commutative ring with unity
- Let $(A, \{\mu_n\})$ and $(B, \{\nu_n\})$ be A_∞-algebras over R
- A diagonal on cellular chains $\Delta_K : C_* K \rightarrow C_* K \otimes C_* K$
 was constructed by Saneblidze-U and Markl-Snider
- Δ_K induces an A_∞-algebra structure $\{\varphi_n\}$ on $A \otimes B$
Define $\varphi_1 = \mu_1 \otimes 1 + 1 \otimes \nu_1$
Tensor Products of A-infinity Algebras

- Define $\varphi_1 = \mu_1 \otimes 1 + 1 \otimes \nu_1$

- Given operadic representations of A_∞-structures

\[
\{ \zeta_n : C_* K \to \text{Hom} (A^\otimes_n, A) \}_{n \geq 2}
\]

\[
\{ \xi_n : C_* K \to \text{Hom} (B^\otimes_n, B) \}_{n \geq 2}
\]
Tensor Products of A-infinity Algebras

- Define $\varphi_1 = \mu_1 \otimes 1 + 1 \otimes \nu_1$

- Given operadic representations of A_∞-structures

 \[\{ \zeta_n : C_* K \to \text{Hom} \left(A \otimes^n, A \right) \}_{n \geq 2} \]

 \[\{ \xi_n : C_* K \to \text{Hom} \left(B \otimes^n, B \right) \}_{n \geq 2} \]

- Define a representation θ_n by the composition

\[
\begin{array}{ccc}
C_* K & \xrightarrow{\theta_n} & \text{Hom} \left((A \otimes B) \otimes^n, A \otimes B \right) \\
\Delta_K & \downarrow & \uparrow \approx \\
C_* K \otimes C_* K & \xrightarrow{\zeta_n \otimes \xi_n} & \text{Hom} \left(A \otimes^n, A \right) \otimes \text{Hom} \left(B \otimes^n, B \right)
\end{array}
\]
Then θ_n sends the top-dimensional cell $e^{n-2} \subset K_n$ to

$$\varphi_n = \left[(\zeta_n \otimes \xi_n) \Delta_K (e^{n-2}) \right] \sigma_n$$

where $\sigma_n : A^\otimes n \otimes B^\otimes n \to (A \otimes B)^\otimes n$ is canonical permutation
Tensor Products of A-infinity Algebras

- Then θ_n sends the top-dimensional cell $e^{n-2} \subset K_n$ to

$$\varphi_n = \left[(\zeta_n \otimes \zeta_n) \Delta_K (e^{n-2}) \right] \sigma_n$$

where $\sigma_n : A^{\otimes n} \otimes B^{\otimes n} \to (A \otimes B)^{\otimes n}$ is canonical permutation

- And lower-dimensional faces to \circ_i-compositions
Then \(\theta_n \) sends the top-dimensional cell \(e^{n-2} \subset K_n \) to

\[
\varphi_n = \left[(\zeta_n \otimes \zeta_n) \Delta_K (e^{n-2}) \right] \sigma_n
\]

where \(\sigma_n : A^{\otimes n} \otimes B^{\otimes n} \to (A \otimes B)^{\otimes n} \) is canonical permutation

And lower-dimensional faces to \(\circ_i \)-compositions

\[
\varphi_2 = (\mu_2 \otimes \nu_2) \sigma_2
\]
Then θ_n sends the top-dimensional cell $e^{n-2} \subset K_n$ to

$$\varphi_n = \left[(\zeta_n \otimes \zeta_n) \Delta_K (e^{n-2}) \right] \sigma_n$$

where $\sigma_n : A^{\otimes n} \otimes B^{\otimes n} \to (A \otimes B)^{\otimes n}$ is canonical permutation

And lower-dimensional faces to \circ_i-compositions

$$\varphi_2 = (\mu_2 \otimes \nu_2) \sigma_2$$

$$\varphi_3 = \mu_2 (\mu_2 \otimes 1) \otimes \nu_3 + \mu_3 \otimes \nu_2 (1 \otimes \nu_2)$$
Tensor Products of A-infinity Algebras

- Then θ_n sends the top-dimensional cell $e_{n-2} \subset K_n$ to
 \[
 \varphi_n = \left[(\zeta_n \otimes \zeta_n) \Delta_K (e^{n-2}) \right] \sigma_n
 \]
 where $\sigma_n : A^{\otimes n} \otimes B^{\otimes n} \rightarrow (A \otimes B)^{\otimes n}$ is canonical permutation

- And lower-dimensional faces to \circ_i-compositions

- $\varphi_2 = (\mu_2 \otimes \nu_2) \sigma_2$

- $\varphi_3 = \mu_2 (\mu_2 \otimes 1) \otimes \nu_3 + \mu_3 \otimes \nu_2 (1 \otimes \nu_2)$

- And so on...
An $A\infty$-algebra $(A, \{\mu_n\})$ is **cyclic** if

A is equipped with a cyclically invariant inner product

$$\langle \mu_n(a_1, \ldots, a_n), a_{n+1} \rangle = \langle \mu_n(a_2, \ldots, a_{n+1}), a_1 \rangle$$
Cyclic A-infinity Algebras

- An A_∞-algebra $(A, \{\mu_n\})$ is cyclic if

 A is equipped with a cyclically invariant inner product

 \[\langle \mu_n(a_1, \ldots, a_n), a_{n+1} \rangle = \langle \mu_n(a_2, \ldots, a_{n+1}), a_1 \rangle \]

- What is the structure of $A \otimes B$ when A and B are cyclic?
An A_{∞}-algebra $(A, \{\mu_n\})$ is **cyclic** if

A is equipped with a cyclically invariant inner product

$$\langle \mu_n(a_1, \ldots, a_n), a_{n+1} \rangle = \langle \mu_n(a_2, \ldots, a_{n+1}), a_1 \rangle$$

What is the structure of $A \otimes B$ when A and B are cyclic?

Inner products $\langle - , - \rangle_A$ and $\langle - , - \rangle_B$ induce an inner product

$$\langle a | b, c | d \rangle_{A \otimes B} = \langle a, c \rangle_A \langle b, d \rangle_B$$
The differential φ_1 is cyclically invariant (ignoring signs):

$$\langle \varphi_1 (a|b) , c|d \rangle = \langle \mu_1 (a) | b + a| \nu_1 (b) , c|d \rangle$$
The differential φ_1 is cyclically invariant (ignoring signs):

\[
\langle \varphi_1 (a|b) , c|d \rangle = \langle \mu_1 (a) | b + a|\nu_1 (b) , c|d \rangle
\]

\[
= \langle \mu_1 (a) , c \rangle_A \langle b , d \rangle_B + \langle a , c \rangle_A \langle \nu_1 (b) , d \rangle_B
\]
The differential φ_1 is cyclically invariant (ignoring signs):

\[
\langle \varphi_1 (a|b), c|d \rangle = \langle \mu_1 (a) | b + a | \nu_1 (b) , c|d \rangle \\
= \langle \mu_1 (a) , c \rangle_A \langle b, d \rangle_B + \langle a, c \rangle_A \langle \nu_1 (b) , d \rangle_B \\
= \langle \mu_1 (c) , a \rangle_A \langle d, b \rangle_B + \langle c, a \rangle_A \langle \nu_1 (d) , b \rangle_B
\]
Tensor Product of Cyclic A-infinity Algebras

- The differential φ_1 is cyclically invariant (ignoring signs):

$$\langle \varphi_1 (a|b) , c|d \rangle = \langle \mu_1 (a) | b + a | \nu_1 (b) , c|d \rangle$$

$$= \langle \mu_1 (a) , c \rangle_A \langle b , d \rangle_B + \langle a , c \rangle_A \langle \nu_1 (b) , d \rangle_B$$

$$= \langle \mu_1 (c) , a \rangle_A \langle d , b \rangle_B + \langle c , a \rangle_A \langle \nu_1 (d) , b \rangle_B$$

$$= \langle \mu_1 (c) | d + c | \nu_1 (d) , a \rangle_B$$
The differential φ_1 is cyclically invariant (ignoring signs):

$$\langle \varphi_1 (a|b) , c|d \rangle = \langle \mu_1 (a) | b + a|\nu_1 (b) , c|d \rangle$$

$$= \langle \mu_1 (a) , c \rangle_A \langle b , d \rangle_B + \langle a , c \rangle_A \langle \nu_1 (b) , d \rangle_B$$

$$= \langle \mu_1 (c) , a \rangle_A \langle d , b \rangle_B + \langle c , a \rangle_A \langle \nu_1 (d) , b \rangle_B$$

$$= \langle \mu_1 (c) | d + c|\nu_1 (d) , a|b \rangle$$

$$= \langle \varphi_1 (c|d) , a|b \rangle$$
The product φ_2 is cyclically invariant:

$$\langle \varphi_2 (a|b, c|d) , e|f \rangle = \langle \mu_2 (a, c) |v_2 (b, d) , e|f \rangle$$
The product φ_2 is cyclically invariant:

$$\langle \varphi_2 (a \vert b, c \vert d), e \vert f \rangle = \langle \mu_2 (a, c) \vert \nu_2 (b, d), e \vert f \rangle$$

$$= \langle \mu_2 (a, c), e \rangle_A \langle \nu_2 (b, d), f \rangle_B$$
Tensor Product of Cyclic A-infinity Algebras

The product φ_2 is cyclically invariant:

$$
\langle \varphi_2 (a|b,c|d), e|f \rangle = \langle \mu_2 (a,c) | \nu_2 (b,d), e|f \rangle \\
= \langle \mu_2 (a,c), e \rangle_A \langle \nu_2 (b,d), f \rangle_B \\
= \langle \mu_2 (c,e), a \rangle_A \langle \nu_2 (d,f), b \rangle_B
$$
The product φ_2 is cyclically invariant:

$$\langle \varphi_2 (a|b, c|d), e|f \rangle = \langle \mu_2 (a, c) | \nu_2 (b, d), e|f \rangle$$

$$= \langle \mu_2 (a, c), e \rangle_A \langle \nu_2 (b, d), f \rangle_B$$

$$= \langle \mu_2 (c, e), a \rangle_A \langle \nu_2 (d, f), b \rangle_B$$

$$= \langle \mu_2 (c, e) | \nu_2 (d, f), a|b \rangle$$
Tensor Product of Cyclic A-infinity Algebras

The product φ_2 is cyclically invariant:

$$
\langle \varphi_2 (a|b, c|d) , e|f \rangle = \langle \mu_2 (a, c) | \nu_2 (b, d) , e|f \rangle
$$

$$
= \langle \mu_2 (a, c) , e \rangle_A \langle \nu_2 (b, d) , f \rangle_B
$$

$$
= \langle \mu_2 (c, e) , a \rangle_A \langle \nu_2 (d, f) , b \rangle_B
$$

$$
= \langle \mu_2 (c, e) | \nu_2 (d, f) , a|b \rangle
$$

$$
= \langle \varphi_2 (c|d , e|f) , a|b \rangle
$$
Tensor Product of Cyclic A-infinity Algebras

- But φ_3 is not cyclically invariant because...
Tensor Product of Cyclic A-infinity Algebras

- But φ_3 is not cyclically invariant because...

- $\langle \varphi_3 (a|b, c|d, e|f), g|h \rangle = \langle \varphi_3 (c|d, e|f, g|h), a|b \rangle$ implies

 (1) $\langle \mu_2 (\mu_2 (a, c), e), g \rangle_A = \langle \mu_2 (\mu_2 (c, e), g), a \rangle_A$

 (2) $\langle \nu_2 (b, \nu_2 (d, f)), h \rangle_B = \langle \nu_2 (d, \nu_2 (f, h)), b \rangle_B$
But φ_3 is not cyclically invariant because...

\[\langle \varphi_3 (ab, cd, ef), gh \rangle = \langle \varphi_3 (cd, ef, gh), ab \rangle \] implies

\begin{align*}
(1) & \quad \langle \mu_2 (\mu_2 (a, c), e), gh \rangle_A = \langle \mu_2 (\mu_2 (c, e), g), a \rangle_A \\
(2) & \quad \langle v_2 (b, v_2 (d, f)), h \rangle_B = \langle v_2 (d, v_2 (f, h)), b \rangle_B
\end{align*}

Which only hold up to homotopy
Tensor Product of Cyclic A-infinity Algebras

- Cyclicity and homotopy associativity give chain homotopies
Tensor Product of Cyclic A-infinity Algebras

- Cyclicity and homotopy associativity give chain homotopies

- For relation (1):

\[
\langle \mu_2 (\mu_2 (a, c), e), g \rangle = \langle [\mu_1, \mu_3] (a, c, e) \pm \mu_2 (a, \mu_2 (c, e)), g \rangle
\]

\[
= \langle [\mu_1, \mu_3] (a, c, e), g \rangle \pm \langle \mu_2 (\mu_2 (c, e), g), a \rangle
\]
Tensor Product of Cyclic A-infinity Algebras

- Cyclicity and homotopy associativity give chain homotopies

- For relation (1):

$$\langle \mu_2 (\mu_2 (a, c), e), g \rangle = \langle [\mu_1, \mu_3] (a, c, e) \pm \mu_2 (a, \mu_2 (c, e)), g \rangle$$

$$= \langle [\mu_1, \mu_3] (a, c, e), g \rangle \pm \langle \mu_2 (\mu_2 (c, e), g), a \rangle$$

- Another application of cyclicity gives the chain homotopy

$$(\langle \mu_3, - \rangle \circ d) (a, c, e, g) =$$

$$\langle \mu_2 (\mu_2 (a, c), e), g \rangle \pm \langle \mu_2 (\mu_2 (c, e), g), a \rangle$$

where d is the linear extension of μ_1
Tensor Product of Cyclic A-infinity Algebras

- Chain homotopies (1) and (2) induce a chain homotopy

$$\varrho_{2,0} : (A \otimes B)^{\otimes 4} \to R$$

such that

$$(\varrho_{2,0} \circ d) (a|b, c|d, e|f, g|h) =$$

$$\langle \varphi_3 (a|b, c|d, e|f), g|h \rangle - \langle \varphi_3 (c|d, e|f, g|h), a|b \rangle$$
Tensor Product of Cyclic A-infinity Algebras

- Chain homotopies (1) and (2) induce a chain homotopy
 \[\varrho_{2,0} : (A \otimes B)^{\otimes 4} \to R \text{ such that} \]
 \[(\varrho_{2,0} \circ d) (a \vert b, c \vert d, e \vert f, g \vert h) = \]
 \[\langle \varphi_3 (a \vert b, c \vert d, e \vert f) , g \vert h \rangle - \langle \varphi_3 (c \vert d, e \vert f, g \vert h) , a \vert b \rangle \]

- $\varrho_{2,0}$ extends to an infinite family of higher homotopies $\{ \varrho_{k,l} \}$
Tensor Product of Cyclic A-infinity Algebras

- Chain homotopies (1) and (2) induce a chain homotopy $\varrho_{2,0} : (A \otimes B)^{\otimes 4} \rightarrow R$ such that

$$
(\varrho_{2,0} \circ d) (a|b, c|d, e|f, g|h) =
\langle \varphi_3 (a|b, c|d, e|f), g|h \rangle - \langle \varphi_3 (c|d, e|f, g|h), a|b \rangle
$$

- $\varrho_{2,0}$ extends to an infinite family of higher homotopies $\{\varrho_{k,l}\}$

- **Conclusion:** The tensor product of cyclic A_∞-algebras is cyclic up to homotopy, and in fact...
Tensor Product of Cyclic A-infinity Algebras

- Chain homotopies (1) and (2) induce a chain homotopy $\varrho_{2,0} : (A \otimes B)^{\otimes 4} \to R$ such that

$$ (\varrho_{2,0} \circ d) (a|b, c|d, e|f, g|h) = \langle \varphi_3 (a|b, c|d, e|f), g|h \rangle - \langle \varphi_3 (c|d, e|f, g|h), a|b \rangle $$

- $\varrho_{2,0}$ extends to an infinite family of higher homotopies $\{\varrho_{k,l}\}$

- **Conclusion:** The tensor product of cyclic A_∞-algebras is cyclic up to homotopy, and in fact...

- There exists additional bimodule structure s.t. $\left(A \otimes B, \{ \varphi_n \}, \{ \varrho_{k,l} \} \right)$ is an A_∞-algebra with homotopy inner products (HIPs)
A-infinity Algebras with HIPs

- **Goal:** Define tensor product of general A_∞-algebras with HIPs
A-infinity Algebras with HIPs

- **Goal**: Define tensor product of *general* A_{∞}-algebras with HIPs

- An A_{∞}-*algebra with homotopy inner products* consists of
A-infinity Algebras with HIPs

- **Goal:** Define tensor product of *general* A_∞-algebras with HIPs

- An A_∞-algebra with homotopy inner products consists of

 1. an A_∞-algebra $(A, \{\mu_n\})$
A-infinity Algebras with HIPs

- **Goal:** Define tensor product of *general* A_∞-algebras with HIPs

- An A_∞-algebra with homotopy inner products consists of

 1. an A_∞-algebra $(A, \{\mu_n\})$

 2. a compatible family of higher inner products

$$\left\{ q_{j,k} : A \otimes A^{\otimes j} \otimes A \otimes A^{\otimes k} \to R \right\}$$
A-infinity Algebras with HIPs

- **Goal:** Define tensor product of *general* A_∞-algebras with HIPs

- An A_∞-algebra with homotopy inner products consists of

1. an A_∞-algebra $(A, \{\mu_n\})$

2. a compatible family of higher inner products

\[\left\{ \varrho_{j,k} : A \otimes A^{\otimes j} \otimes A \otimes A^{\otimes k} \to R \right\} \]

3. a compatible family of module maps

\[\left\{ \lambda_{j,k} : A^{\otimes j} \otimes A \otimes A^{\otimes k} \to A \right\} \]
A-infinity Algebras with HIPs

- **Goal:** Define tensor product of general A_∞-algebras with HIPs

- An A_∞-algebra with homotopy inner products consists of

 1. an A_∞-algebra $(A, \{\mu_n\})$

 2. a compatible family of higher inner products

 \[\{ \varrho_{j,k} : A \otimes A^\otimes_j \otimes A \otimes A^\otimes_k \to R \} \]

 3. a compatible family of module maps

 \[\{ \lambda_{j,k} : A^\otimes_j \otimes A \otimes A^\otimes_k \to A \} \]

- Structure relations encoded by a 3-colored operad $C_\ast A$
A-infinity Algebras with HIPs

- **Goal:** Define tensor product of general A_∞-algebras with HIPs

- An A_∞-algebra with homotopy inner products consists of

 1. an A_∞-algebra $(A, \{\mu_n\})$

 2. a compatible family of higher inner products

 $$\left\{ \varrho_{j,k} : A \otimes A^{\otimes j} \otimes A \otimes A^{\otimes k} \to R \right\}$$

 3. a compatible family of module maps

 $$\left\{ \lambda_{j,k} : A^{\otimes j} \otimes A \otimes A^{\otimes k} \to A \right\}$$

- Structure relations encoded by a 3-colored operad $C_\ast A$

- Identified with cellular chains of contractible pairahedra
The 3-colored operad CA

$C_* \mathcal{A}$ is generated by three types of planar diagrams

Colors of leaves and root: Empty, thin, thick

1. **Planar trees:** Control A_∞-algebra structure
 - *Thin leaves and root*
The 3-colored operad CA

2. **Module trees**: Control homotopy bimodule structure
 - *Thick vertical root and leaf*
 - *j thin leaves in left half-plane*
 - *k thin leaves in right half-plane*
The 3-colored operad CA

3. **Inner product diagrams**: Control HIP structure
 - *Empty root and two thick horizontal leaves*
 - *j thin leaves in upper half-plane*
 - *k thin leaves in lower half-plane*
Operadic Structure of CA

- Compose planar trees in the usual way

- Compose a module diagram M with a planar tree T by attaching the root of T to a thin leaf of M.

- Compose module trees by attaching thick root of 2nd to thick leaf of 1st.

- Compose an IP diagram with a module tree M by attaching thick root of M to a thick leaf of I.

- Two inner product diagrams cannot be composed.
Operadic Structure of CA

- Compose planar trees in the usual way

- Compose a module diagram M with a planar tree T by attaching the root of T to a thin leaf of M
Operadic Structure of CA

- Compose planar trees in the usual way
- Compose a module diagram M with a planar tree T by attaching the root of T to a thin leaf of M
- Compose module trees by attaching thick root of 2^{nd} to thick leaf of 1^{st}

Two inner product diagrams cannot be composed
Operadic Structure of CA

- Compose planar trees in the usual way

- Compose a module diagram M with a planar tree T by attaching the root of T to a thin leaf of M

- Compose module trees by attaching thick root of 2^{nd} to thick leaf of 1^{st}

- Compose an IP diagram I with a module tree M by attaching thick root of M to a thick leaf of I
Operadic Structure of CA

- Compose planar trees in the usual way

- Compose a module diagram M with a planar tree T by attaching the root of T to a thin leaf of M

- Compose module trees by attaching thick root of 2^{nd} to thick leaf of 1^{st}

- Compose an IP diagram I with a module tree M by attaching thick root of M to a thick leaf of I

- Two inner product diagrams cannot be composed
DG Module Structure of \(CA \)

- Let \(D \) be a diagram – a generator of \(C^*A \)
DG Module Structure of CA

- Let D be a diagram – a generator of $C_* A$
- $\mathcal{L}(D) = \{\text{Leaves of } D\}$
DG Module Structure of CA

- Let D be a diagram – a generator of $C \ast A$
- $\mathcal{L}(D) = \{\text{Leaves of } D\}$
- $\mathcal{E}(D) = \{(\text{Internal}) \text{ edges of } D\}$
DG Module Structure of CA

- Let D be a diagram – a generator of $C\star A$

- $\mathcal{L}(D) = \{\text{Leaves of } D\}$

- $\mathcal{E}(D) = \{\text{(Internal) edges of } D\}$

- **Degree:** $|D| := \#\mathcal{L}(D) - \#\mathcal{E}(D) - 2$
DG Module Structure of CA

- Let D be a diagram – a generator of C_*A

- $\mathcal{L}(D) = \{\text{Leaves of } D\}$

- $\mathcal{E}(D) = \{\text{(Internal) edges of } D\}$

- **Degree:** $|D| := \#\mathcal{L}(D) - \#\mathcal{E}(D) - 2$

- **Boundary:** $\partial_C(D) := \sum_{D'/e=D} D'$, where e is an edge of D'
DG Module Structure of CA

- Let D be a diagram – a generator of $\mathcal{C}_*\mathcal{A}$

- $\mathcal{L}(D) = \{\text{Leaves of } D\}$

- $\mathcal{E}(D) = \{\text{(Internal) edges of } D\}$

- **Degree:** $|D| := \#\mathcal{L}(D) - \#\mathcal{E}(D) - 2$

- **Boundary:** $\partial_C(D) := \sum_{D'/e=D} D'$, where e is an edge of D'

- $\partial_C(D)$ is the sum of all diagrams obtained from D by inserting a single edge
Coloring in CA

- $0 = \text{empty}; \ 1 = \text{thin}; \ 2 = \text{thick}$
0 = empty; 1 = thin; 2 = thick

The **coloring** of a diagram D with n leaves is a pair

$$x \times y = (x_1, \ldots, x_n) \times y \in \mathbb{Z}_3^{n+1}$$

- x_i is the color of leaf i
- y is the color of the root
Coloring in \(CA \)

- \(0 = \) empty; \(1 = \) thin; \(2 = \) thick

- The **coloring** of a diagram \(D \) with \(n \) leaves is a pair

\[
x \times y = (x_1, \ldots, x_n) \times y \in \mathbb{Z}_3^{n+1}
\]

 - \(x_i \) is the color of leaf \(i \)
 - \(y \) is the color of the root

- \(C_x A_y \) is generated by diagrams of coloring \(x \times y \)
Coloring in CA

- 0 = empty; 1 = thin; 2 = thick

- The **coloring** of a diagram D with n leaves is a pair

 $$x \times y = (x_1, \ldots, x_n) \times y \in \mathbb{Z}_{3}^{n+1}$$

 - x_i is the color of leaf i
 - y is the color of the root

- $C_\star A_x^y$ is generated by diagrams of coloring $x \times y$

- **Example**: $C_\star A_1^{11\ldots1}$ is generated by planar trees
Example

\(C_* \mathbb{A}_0^{2112} \) generated by IP diagrams \(\leftrightarrow \) faces of pairahedron \(l_{2,0} \):
Following the W-construction of Boardman and Vogt, there is a cubical subdivision $Q\mathcal{A}$ of $C\mathcal{A}$ s.t.
Cubical Subdivision of CA

- Following the W-construction of Boardman and Vogt, there is a cubical subdivision Q_A of C_A s.t.

- Q_A is a 3-colored operad
Following the W-construction of Boardman and Vogt, there is a cubical subdivision $Q\mathcal{A}$ of $C\mathcal{A}$ s.t.

- $Q\mathcal{A}$ is a 3-colored operad
- $Q\mathcal{A}$ is generated by all metric diagrams (D, g), where
 - D is a generator of $C\mathcal{A}$
 - $g : \mathcal{E}(D) \to \{m, n\}$ labels the (internal) edges of D
 either “m” (metric) or “n” (non-metric)
Example

Cubical subdivision of $l_{2,0}$ (only metric labels are displayed):
The 3-Colored Operad QA

- When composing diagrams: Label the new edge "n"
The 3-Colored Operad QA

- When composing diagrams: Label the new edge “n”

- Degree: \(|(D, g)| := \# \text{ metric edges}\)
When composing diagrams: Label the new edge “n”

Degree: \(|(D, g)| := \# \text{ metric edges}\)

Boundary: \(\partial_Q(D) := \sum_{\text{metric edges } e} D/e + D_e\)

where \(D_e\) is obtained from \(D\) by relabeling \(e\) non-metric
The 3-Colored Operad QA

- **When composing diagrams:** Label the new edge “n”

- **Degree:** \(|(D, g)| := \# \text{ metric edges}\)

- **Boundary:**

 \[
 \partial_Q(D) := \sum_{\text{metric edges } e} D/e + D_e
 \]

 where \(D_e\) is obtained from \(D\) by relabeling \(e\) non-metric

- \[
 \partial_Q\left(\begin{array}{c}
 \text{\textbullet} \\
 m & m
 \end{array}\right) = \begin{array}{c}
 \text{\textbullet} \\
 m
 \end{array} + \begin{array}{c}
 \text{\textbullet} \\
 m & n
 \end{array} + \begin{array}{c}
 \text{\textbullet} \\
 m
 \end{array} + \begin{array}{c}
 \text{\textbullet} \\
 n & m
 \end{array}
 \]
Example - Boundary of a Metric Square
The Homotopy Equivalence $q : CA \rightarrow QA$

- Let m denote the constant map $m(e) = m$
The Homotopy Equivalence $q : CA \rightarrow QA$

- Let m denote the constant map $m(e) = m$

- C_0A is generated by *binary diagrams* ($\#\mathcal{L} = \#\mathcal{E} + 2$)
The Homotopy Equivalence $q : CA \rightarrow QA$

- Let m denote the constant map $m(e) = m$

- C_0A is generated by binary diagrams ($\#L = \#E + 2$)

- **Definition.** On a corolla $c \in C_*A^x_\gamma$ define

 $$q(c) = \sum_{B \in C_0A^x_\gamma} (B, m)$$
The Homotopy Equivalence $q : CA \longrightarrow QA$

- Let m denote the constant map $m(e) = m$

- $C_0\mathcal{A}$ is generated by binary diagrams ($\#\mathcal{L} = \#\mathcal{E} + 2$)

- **Definition.** On a corolla $c \in C_*\mathcal{A}_y^x$ define

 $$q(c) = \sum_{B \in C_0\mathcal{A}_y^x} (B, m)$$

- A general diagram is a \circ_i-composition of corollas
The Homotopy Equivalence $q : CA \rightarrow QA$

- Let m denote the constant map $m(e) = m$

- $C_0\mathcal{A}$ is generated by binary diagrams ($\#\mathcal{L} = \#\mathcal{E} + 2$)

- **Definition.** On a corolla $c \in C_*\mathcal{A}_x^y$ define

\[
q(c) = \sum_{B \in C_0\mathcal{A}_y^x} (B, m)
\]

- A general diagram is a \circ_i-composition of corollas

- Extend q to \circ_i-compositions multiplicatively:

\[
q(c \circ_i c') = q(c) \circ_i q(c')
\]
The Poset of Binary Diagrams in CA

- Extend Tamari ordering on binary trees to binary diagrams
The Poset of Binary Diagrams

- \mathcal{B} denotes the poset of all binary diagrams
The Poset of Binary Diagrams

- \mathcal{B} denotes the poset of all binary diagrams

- $\mathcal{B}_D \subseteq \mathcal{B}$ is the vertex poset of a diagram D
The Poset of Binary Diagrams

- \(\mathcal{B} \) denotes the poset of all binary diagrams
- \(\mathcal{B}_D \subset \mathcal{B} \) is the vertex poset of a diagram \(D \)
- \(\mathcal{B}_D \) has minimal element \(D_{\text{min}} \) and maximal element \(D_{\text{max}} \)
The Poset of Binary Diagrams

- \mathcal{B} denotes the poset of all binary diagrams
- $\mathcal{B}_D \subset \mathcal{B}$ is the vertex poset of a diagram D
- \mathcal{B}_D has minimal element D_{min} and maximal element D_{max}
- Example: $\mathcal{B}_{I_{2,0}}$
The 2-Sided Homotopy Inverse $p : QA \rightarrow CA$

- **Definition.** On a *fully metric* $(D, m) \in Q_k \mathbb{A}_y^x$ define

\[p(D, m) = \sum_{S \in C_k \mathbb{A}_y^x, S_{\text{max}} \leq D_{\text{min}}} S \]
The 2-Sided Homotopy Inverse $p : QA \rightarrow CA$

- **Definition.** On a fully metric $(D, m) \in Q_k \mathcal{A}_y^x$ define

\[
p(D, m) = \sum_{S \in C_k \mathcal{A}_y^x} S \quad \text{if} \quad S_{\text{max}} \leq D_{\text{min}}
\]

- **Proposition**
The 2-Sided Homotopy Inverse $p : QA \rightarrow CA$

- **Definition.** On a fully metric $(D, m) \in Q_kA^x_y$ define
 \[
 p(D, m) = \sum_{S \in C_kA^x_y} S \\
 S_{\text{max}} \leq D_{\text{min}}
 \]

- **Proposition**
 1. On a corolla $c \in Q_\ast A$
 \[
 p(c) = c_{\text{min}} \in B_c
 \]
The 2-Sided Homotopy Inverse $p : QA \rightarrow CA$

- **Definition.** On a fully metric $(D, m) \in Q_k A^x_y$ define

$$p(D, m) = \sum_{S \in C_k A^x_y, S_{\text{max}} \leq D_{\text{min}}} S$$

- **Proposition**

1. On a corolla $c \in Q_* A$

$$p(c) = c_{\text{min}} \in B_c$$

2. On a fully metric binary diagram (B, m)

$$p(B, m) = \begin{cases}
 c, & \text{if } B = c_{\text{max}} \text{ for some corolla } c \\
 0, & \text{otherwise}
\end{cases}$$
The 2-Sided Homotopy Inverse $p : QA \rightarrow CA$

- A metric diagram is a o_i-composition of fully metric diagrams.
The 2-Sided Homotopy Inverse $p : QA \rightarrow CA$

- A metric diagram is a \circ_i-composition of fully metric diagrams
- Extend p to \circ_i-compositions multiplicatively

\[p [(D, m) \circ_i (D', m)] = p (D, m) \circ_i p (D', m) \]
The 2-Sided Homotopy Inverse $p : QA \rightarrow CA$

- A metric diagram is a \circ_i-composition of fully metric diagrams
- Extend p to \circ_i-compositions multiplicatively
 \[p \left[(D, m) \circ_i (D', m) \right] = p(D, m) \circ_i p(D', m) \]
- Theorem
The 2-Sided Homotopy Inverse $p : QA \longrightarrow CA$

- A metric diagram is a \circ_i-composition of fully metric diagrams.

- Extend p to \circ_i-compositions multiplicatively.

\[p \left[(D, m) \circ_i (D', m) \right] = p(D, m) \circ_i p(D', m) \]

- **Theorem**

1. p and q are chain maps
The 2-Sided Homotopy Inverse $p : QA \rightarrow CA$

- A metric diagram is a \circ_i-composition of fully metric diagrams
- Extend p to \circ_i-compositions multiplicatively
 \[p \left[(D, m) \circ_i (D', m) \right] = p (D, m) \circ_i p (D', m) \]
- **Theorem**
 1. p and q are chain maps
 2. $pq = \text{Id}$ and $qp \simeq \text{Id}$
The Diagonal on $\mathcal{Q}A$

- Given $(D, g) \in Q_* \mathcal{A}$, let $X \subseteq \{\text{metric edges of } D\}$
The Diagonal on QA

- Given $(D, g) \in Q_*A$, let $X \subseteq \{\text{metric edges of } D\}$

- Let $\overline{X} = \{\text{metric edges of } D\} - X$
The Diagonal on QA

- Given \((D, g) \in Q_\ast A\), let \(X \subseteq \{\text{metric edges of } D\}\)
- Let \(\overline{X} = \{\text{metric edges of } D\} - X\)
- Obtain \(D/X\) from \(D\) by *contracting the edges of \(X\)*
The Diagonal on Q_A

- Given $(D, g) \in Q_A$, let $X \subseteq \{\text{metric edges of } D\}$
- Let $\overline{X} = \{\text{metric edges of } D\} - X$
- Obtain D/X from D by *contracting the edges of X*
- Obtain $D_{\overline{X}}$ from D by *relabeling the edges in \overline{X} non-metric*
The Diagonal on QA

- Given \((D, g) \in Q_*A\), let \(X \subseteq \{\text{metric edges of } D\}\)
- Let \(\overline{X} = \{\text{metric edges of } D\} - X\)
- Obtain \(D/X\) from \(D\) by \textit{contracting the edges of } \(X\)
- Obtain \(D_{\overline{X}}\) from \(D\) by \textit{relabeling the edges in } \(\overline{X}\) \textit{non-metric}
- Serre’s diagonal on \(I^n\) induces a coassociative diagonal

\[\Delta_Q : Q_*A \rightarrow Q_*A \otimes Q_*A\]
The Diagonal on QA

- Given $(D, g) \in Q_*A$, let $X \subseteq \{\text{metric edges of } D\}$
- Let $\overline{X} = \{\text{metric edges of } D\} - X$
- Obtain D/X from D by contracting the edges of X
- Obtain $D_{\overline{X}}$ from D by relabeling the edges in \overline{X} non-metric
- Serre’s diagonal on I^n induces a coassociative diagonal
 \[\Delta_Q : Q_*A \to Q_*A \otimes Q_*A\]
- Given by
 \[\Delta_Q(D) = \sum_X D/X \otimes D_{\overline{X}}\]
The Induced Diagonal on CA

- Δ_Q induces a non-coassociative diagonal on $C_\ast A$

$$
\Delta_C : C_\ast A \xrightarrow{q} Q_\ast A \xrightarrow{\Delta_Q} Q_\ast A \otimes Q_\ast A \xrightarrow{p \otimes p} C_\ast A \otimes C_\ast A
$$
The Induced Diagonal on CA

- Δ_Q induces a non-coassociative diagonal on $C_\ast A$

\[
\Delta_C : C_\ast A \xrightarrow{q} Q_\ast A \xrightarrow{\Delta_Q} Q_\ast A \otimes Q_\ast A \xrightarrow{p \otimes p} C_\ast A \otimes C_\ast A
\]

- On a corolla $c \in C_k A^x_y$:

\[
\Delta_C(c) = \sum_{S \otimes T \in C_i A^x_y \otimes C_{k-i} A^x_y} S \otimes T
\]

\[
S_{\text{max}} \leq T_{\text{min}}
\]
Examples

\[\Delta_C \left(\begin{array}{c} \longrightarrow \\ \end{array} \right) = \begin{array}{c} \longrightarrow \\ \end{array} \otimes \begin{array}{c} \longrightarrow \\ \end{array} \]

\[\Delta_C \left(\begin{array}{c} \downarrow \\ \end{array} \right) = \begin{array}{c} \downarrow \\ \end{array} \otimes \begin{array}{c} \downarrow \\ \end{array} + \begin{array}{c} \downarrow \end{array} \otimes \begin{array}{c} \downarrow \end{array} \]

\[\Delta_C \left(\begin{array}{c} \triangledown \\ \end{array} \right) = \begin{array}{c} \triangledown \otimes \begin{array}{c} \triangledown \\ \end{array} + \begin{array}{c} \triangledown \otimes \begin{array}{c} \triangledown \\ \end{array} \end{array} + \begin{array}{c} \triangledown \end{array} \otimes \begin{array}{c} \triangledown \\ \end{array} \]

\[+ \begin{array}{c} \triangledown \otimes \begin{array}{c} \triangledown \\ \end{array} \end{array} + \begin{array}{c} \triangledown \end{array} \otimes \begin{array}{c} \triangledown \\ \end{array} + \left(\begin{array}{c} \triangledown \\ \end{array} + \begin{array}{c} \triangledown \end{array} \right) \otimes \begin{array}{c} \triangledown \\ \end{array} \]
Given representations of A_∞-algebras with HIPs

$$\{ \phi_n : C_\ast \mathcal{A} \to \text{Hom} (A \otimes^n, A) \}_{n \geq 2}$$

$$\{ \psi_n : C_\ast \mathcal{A} \to \text{Hom} (B \otimes^n, B) \}_{n \geq 2}$$
Tensor Products of A-infinity Algebras with HIPs

- Given representations of A_∞-algebras with HIPs

\[
\{ \phi_n : C_* A \to \text{Hom} \left(A \otimes^n, A \right) \}_{n \geq 2}
\]

\[
\{ \psi_n : C_* A \to \text{Hom} \left(B \otimes^n, B \right) \}_{n \geq 2}
\]

- Define the representation ϵ_n to be the composition

\[
\begin{array}{ccc}
C_* A & \xrightarrow{\epsilon_n} & \text{Hom} \left((A \otimes B) \otimes^n, A \otimes B \right) \\
\Delta_C & \downarrow & \uparrow \cong \\
C_* A \otimes C_* A & \xrightarrow{\phi_n \otimes \psi_n} & \text{Hom} \left(A \otimes^n, A \right) \otimes \text{Hom} \left(B \otimes^n, B \right)
\end{array}
\]
Tensor Products of A-infinity Algebras with HIPs

- Given representations of A_∞-algebras with HIPs

\[\{ \phi_n : C_*A \to \text{Hom} (A^\otimes n, A) \}_{n \geq 2} \]

\[\{ \psi_n : C_*A \to \text{Hom} (B^\otimes n, B) \}_{n \geq 2} \]

- Define the representation ε_n to be the composition

\[
\begin{array}{ccc}
C_*A & \xrightarrow{\varepsilon_n} & \text{Hom} \left(\left(A \otimes B \right)^\otimes n, A \otimes B \right) \\
\Delta_C & \downarrow & \\
C_*A \otimes C_*A & \xrightarrow{\phi_n \otimes \psi_n} & \text{Hom} (A^\otimes n, A) \otimes \text{Hom} (B^\otimes n, B)
\end{array}
\]

- $(A \otimes B, \varphi_1, \varepsilon (C_*A))$ is an A_∞-algebra with HIPs
Given representations of A_∞-algebras with HIPs

$$\left\{ \phi_n : C_* A \to \text{Hom} \left(A^\otimes n, A \right) \right\}_{n \geq 2}$$

$$\left\{ \psi_n : C_* A \to \text{Hom} \left(B^\otimes n, B \right) \right\}_{n \geq 2}$$

Define the representation ε_n to be the composition

$$C_* A \xrightarrow{\varepsilon_n} \text{Hom} \left((A \otimes B)^\otimes n, A \otimes B \right)$$

$$(A \otimes B, \varphi_1, \varepsilon(C_* A)) \text{ is an } A_\infty\text{-algebra with HIPs}$$

Paper to appear in TAMS
Thank you!