Detecting Linkage in an *n*-Component Brunnian Link

IMUS Mini-Course Session 1

Work in progress with H. Molina-Abril & B. Nimershiem

Presented by Dr. Ron Umble

Millersville U and IMUS

24 April 2018

To computationally detect the linkage in an n-component Brunnian link

Let X be a connected network, surface, or solid embedded in S^3

• Discrete points (vertices or 0-cells)

- Discrete points (vertices or 0-cells)
- Closed intervals (edges or 1-cells)

- Discrete points (vertices or 0-cells)
- Closed intervals (edges or 1-cells)
- Closed disks (faces or 2-cells)

- Discrete points (vertices or 0-cells)
- Closed intervals (edges or 1-cells)
- Closed disks (faces or 2-cells)
- Closed balls (solids or 3-cells)

- Discrete points (vertices or 0-cells)
- Closed intervals (edges or 1-cells)
- Closed disks (faces or 2-cells)
- Closed balls (solids or 3-cells)
- Glued together in such a way that the

- Discrete points (vertices or 0-cells)
- Closed intervals (edges or 1-cells)
- Closed disks (faces or 2-cells)
- Closed balls (solids or 3-cells)
- Glued together in such a way that the
 - Non-empty boundary of a k-cell is a union of (k-1)-cells

- Discrete points (vertices or 0-cells)
- Closed intervals (edges or 1-cells)
- Closed disks (faces or 2-cells)
- Closed balls (solids or 3-cells)
- Glued together in such a way that the
 - Non-empty boundary of a k-cell is a union of (k-1)-cells
 - Non-empty intersection of cells is a cell

- Discrete points (vertices or 0-cells)
- Closed intervals (edges or 1-cells)
- Closed disks (faces or 2-cells)
- Closed balls (solids or 3-cells)
- Glued together in such a way that the
 - Non-empty boundary of a k-cell is a union of (k-1)-cells
 - Non-empty intersection of cells is a cell
 - Union of all cells is X

Example: 2-dim'l Sphere

 $S^2=D^2/\partial D^2$ (Grandma's draw string bag)

- Vertex: $\{v\}$
- Edges: \varnothing
- Face: $\{S^2\}$

Example: Torus

 $T = S^1 \times S^1$

Product cells: $\{v,a\} \times \{v,b\}$

• Vertex:
$$\{v := v \times v\}$$

• Edges:
$$\{ {m{a}} := {m{a}} imes {m{v}}, \ {m{b}} := {m{v}} imes {m{b}} \}$$

• Face:
$$\{T:=a imes b\}$$

P = T/b

- Vertex: $\{v\}$
- Edge: {*a*}
- Face: $\{S\}$

Let UN be the complement of disjoint tubular neighborhoods U_1 and U_2 of **two unlinked unknots in** S^3

• $\partial (U_1 \cup U_2)$ is the wedge of two pinched spheres t_1 and t_2 with respective edges *a* and *b* and shared vertex *v*

Cellular Structure of UN

- $\partial \left(\textit{UN} \right)$ is wedged with the equatorial 2-sphere $s \subset S^3$
- p = upper hemispherical 3-ball
- q = lower hemispherical 3-ball $\smallsetminus (U_1 \cup U_2)$
- p and q are attached along s
- $UN = p \cup q$

- Vertices: $\{v\}$
- Edges: $\{a, b\}$
- Faces: $\{s, t_1, t_2\}$
- Solids: {*p*, *q*}

Example: Link Complement of the Hopf Link

Let LN be the complement of disjoint tubular neighborhoods U_i of the **Hopf Link** in S^3

• $\partial (U_1 \cup U_2)$ is the union of two linked tori t'_1 and t'_2 sharing edges a and b and vertex v

Cellular Structure of LN

- $\partial \left(LN
 ight)$ is wedged with the equatorial 2-sphere $s \subset S^3$
- p = upper hemispherical 3-ball
- q' = lower hemispherical 3-ball $\smallsetminus (U_1 \cup U_2)$
- p and q' are attached along s
- $LN = p \cup q'$

- Vertex: $\{v\}$
- Edges: {*a*, *b*}
- Faces: $\{s, t'_1, t'_2\}$

X and Y are **homeomorphic** if

• X can be continuously deformed into Y

X and Y are **homeomorphic** if

- X can be continuously deformed into Y
- \exists a bijective bicontinuous $h: X \to Y$, called a homeomorphism

X and Y are homeomorphic if

- X can be continuously deformed into Y
- \exists a bijective bicontinuous $h: X \to Y$, called a **homeomorphism**
- A square and a circle are homeomorphic

X and Y are homeomorphic if

- X can be continuously deformed into Y
- \exists a bijective bicontinuous $h: X \to Y$, called a homeomorphism
- A square and a circle are homeomorphic

$$\stackrel{h}{\longrightarrow} \bigcirc$$

• The boundaries of a doughnut and coffee mug are homeomorphic

X and Y are homeomorphic if

- X can be continuously deformed into Y
- \exists a bijective bicontinuous $h: X \to Y$, called a homeomorphism
- A square and a circle are homeomorphic

$$\stackrel{h}{\longrightarrow} \bigcirc$$

- The boundaries of a doughnut and coffee mug are homeomorphic
- An animated deformation of a doughnut to a coffee mug

X and Y are homeomorphic if

- X can be continuously deformed into Y
- \exists a bijective bicontinuous $h: X \to Y$, called a homeomorphism
- A square and a circle are homeomorphic

$$\stackrel{h}{\longrightarrow} \bigcirc$$

- The boundaries of a doughnut and coffee mug are homeomorphic
- An animated deformation of a doughnut to a coffee mug
- UN and LN are not homeomorphic because...

• Shrinking the tubular neighborhood of the red component to point

- Shrinking the tubular neighborhood of the red component to point
 - Shrinks $\partial(UN)$ to a pinched sphere

- Shrinking the tubular neighborhood of the red component to point
 - Shrinks $\partial(UN)$ to a pinched sphere

• Shrinks $\partial(LN)$ to a 2-sphere

- Shrinking the tubular neighborhood of the red component to point
 - Shrinks $\partial(UN)$ to a pinched sphere

• Shrinks $\partial(LN)$ to a 2-sphere

• How do we can detect this computationally?

• Geometric diagonal $\Delta_X : X \to X \times X$ is defined $x \mapsto (x, x)$

- Geometric diagonal $\Delta_X : X \to X \times X$ is defined $x \mapsto (x, x)$
- A homeomorphism $h: X \to Y$ respects diagonals

 $\Delta_Y h = (h \times h) \, \Delta_X$

- Geometric diagonal $\Delta_X : X \to X \times X$ is defined $x \mapsto (x, x)$
- A homeomorphism $h: X \to Y$ respects diagonals

$$\Delta_{\mathbf{Y}} \mathbf{h} = (\mathbf{h} \times \mathbf{h}) \, \Delta_{\mathbf{X}}$$

$$h: UN \rightarrow LN$$

- Geometric diagonal $\Delta_X : X \to X \times X$ is defined $x \mapsto (x, x)$
- A homeomorphism $h: X \to Y$ respects diagonals

$$\Delta_{\mathbf{Y}} \mathbf{h} = (\mathbf{h} \times \mathbf{h}) \Delta_{\mathbf{X}}$$

$$h: UN \rightarrow LN$$

Strategy:

- Geometric diagonal $\Delta_X : X \to X \times X$ is defined $x \mapsto (x, x)$
- A homeomorphism $h: X \to Y$ respects diagonals

$$\Delta_{\mathbf{Y}} \mathbf{h} = (\mathbf{h} \times \mathbf{h}) \Delta_{\mathbf{X}}$$

$$h: UN \rightarrow LN$$

• Strategy:

• Assume a homeomorphism *h* exists

- Geometric diagonal $\Delta_X : X \to X \times X$ is defined $x \mapsto (x, x)$
- A homeomorphism $h: X \to Y$ respects diagonals

$$\Delta_{\mathbf{Y}} \mathbf{h} = (\mathbf{h} \times \mathbf{h}) \, \Delta_{\mathbf{X}}$$

$$h: UN \rightarrow LN$$

• Strategy:

- Assume a homeomorphism *h* exists
- Show that *h* fails to respect diagonals

• **Problem:** Im Δ_X is typically *not* a subcomplex of $X \times X$

- **Problem:** Im Δ_X is typically *not* a subcomplex of $X \times X$
- **Example:** Im Δ_{I} is not a subcomplex of $I \times I$:

- A map $\Delta: X \to X \times X$ is a **diagonal approximation** if
 - Δ is homotopic to Δ_X

- Δ is homotopic to Δ_X
- $\Delta(e^n)$ is a subcomplex of $e^n \times e^n$ for every *n*-cell $e^n \subseteq X$

- Δ is homotopic to Δ_X
- $\Delta(e^n)$ is a subcomplex of $e^n \times e^n$ for every *n*-cell $e^n \subseteq X$
- Geometric boundary $\partial: X \to X$ is a coderivation of Δ

$$\Delta \partial = (\partial \times \mathrm{Id} + \mathrm{Id} \times \partial) \, \Delta$$

- Δ is homotopic to Δ_X
- $\Delta(e^n)$ is a subcomplex of $e^n \times e^n$ for every *n*-cell $e^n \subseteq X$
- Geometric boundary $\partial: X \to X$ is a coderivation of Δ

$$\Delta \partial = (\partial \times \mathrm{Id} + \mathrm{Id} \times \partial) \Delta$$

• Cellular Approximation Theorem

There is a diagonal approximation $\Delta: X \to X \times X$

• Cellular structure: $\Delta(e^n) \subseteq e^n \times e^n$

- Cellular structure: $\Delta(e^n) \subseteq e^n \times e^n$
- Dimension: dim $\Delta(e^n) = \dim e^n$

- Cellular structure: $\Delta(e^n) \subseteq e^n \times e^n$
- Dimension: dim $\Delta(e^n) = \dim e^n$
- Cartesian products: $\Delta (X \times Y) = \Delta (X) \times \Delta (Y)$

- Cellular structure: $\Delta(e^n) \subseteq e^n \times e^n$
- Dimension: dim $\Delta(e^n) = \dim e^n$
- Cartesian products: $\Delta (X \times Y) = \Delta (X) \times \Delta (Y)$
- Wedge products: $\Delta(X \lor Y) = \Delta(X) \lor \Delta(Y)$

Dan Kravatz's Diagonal Approximation on a Polygon

• Given *n*-gon *G*, arbitrarily choose vertices v and v' (possibly equal)

Dan Kravatz's Diagonal Approximation on a Polygon

- Given *n*-gon *G*, arbitrarily choose vertices v and v' (possibly equal)
- Edges $\{e_1, \ldots, e_k\}$ and $\{e_{k+1}, \ldots, e_n\}$ form edge-paths from v to v' (one path $\{e_1, \ldots, e_n\}$ if v = v')

Dan Kravatz's Diagonal Approximation on a Polygon

- Given *n*-gon *G*, arbitrarily choose vertices v and v' (possibly equal)
- Edges $\{e_1, \ldots, e_k\}$ and $\{e_{k+1}, \ldots, e_n\}$ form edge-paths from v to v' (one path $\{e_1, \ldots, e_n\}$ if v = v')

• Theorem (Kravatz 2008): There is a diagonal approximation

$$\Delta G = \mathbf{v} \times G + G \times \mathbf{v}' + \sum_{1 \le i < j \le k} \mathbf{e}_i \times \mathbf{e}_j + \sum_{n \ge j > i \ge k+1} \mathbf{e}_j \times \mathbf{e}_i$$

Example: The Heptagon G

$$\Delta G = \mathbf{v} \times G + G \times \mathbf{v}' \\ + e_1 \times (e_2 + e_3 + e_4) + e_2 \times (e_3 + e_4) + e_3 \times e_4 \\ + e_7 \times (e_6 + e_5) + e_6 \times e_5$$

э

Example: The Pinched Sphere

Think of the **pinched sphere** $t_1 \subset \partial(UN)$ as a 2-gon with vertices identified first, then edges identified

 $\Delta t_1 = \mathbf{v} \times t_1 + t_1 \times \mathbf{v}$

• Δ descends to quotients when edge-paths are consistent with identifications

Dr. Ron Umble (Millersville U and IMUS)

24 April 2018 20 / 35

Think of the **torus** $t'_1 \subset \partial(LN)$ as a square with horizontal edges *a* identified and vertical edges *b* identified

• C(X) denotes the \mathbb{Z}_2 -vector space with basis {cells of X}

- C(X) denotes the \mathbb{Z}_2 -vector space with basis {cells of X}
 - Elements are formal sums called cellular chains of X

- C(X) denotes the \mathbb{Z}_2 -vector space with basis {cells of X}
 - Elements are formal sums called cellular chains of X
- Examples:

- C(X) denotes the \mathbb{Z}_2 -vector space with basis {cells of X}
 - Elements are formal sums called cellular chains of X
- Examples:
 - C(UN) has basis {v, a, b, s, t_1 , t_2 , p, q}

- C(X) denotes the \mathbb{Z}_2 -vector space with basis {cells of X}
 - Elements are formal sums called cellular chains of X
- Examples:
 - C(UN) has basis {v, a, b, s, t_1 , t_2 , p, q}
 - C(LN) has basis $\{v, a, b, s, t'_1, t'_2, p, q'\}$

- C(X) denotes the \mathbb{Z}_2 -vector space with basis {cells of X}
 - Elements are formal sums called cellular chains of X
- Examples:
 - C(UN) has basis {v, a, b, s, t_1 , t_2 , p, q}
 - C(LN) has basis $\{v, a, b, s, t'_1, t'_2, p, q'\}$
 - Note that $C(UN) \approx C(LN)$

•
$$\partial \mathbf{v} = \emptyset$$
; $\partial \mathbf{e} = S^0$; $\partial \mathbf{f} = S^1$; $\partial \mathbf{s} = S^2$

•
$$\partial \mathbf{v} = \emptyset$$
; $\partial \mathbf{e} = S^0$; $\partial \mathbf{f} = S^1$; $\partial \mathbf{s} = S^2$

•
$$\partial (\partial D^n) = \partial S^{n-1} = \emptyset$$

• Geometric boundary of an *n*-cell D^n is S^{n-1}

•
$$\partial \mathbf{v} = \emptyset$$
; $\partial \mathbf{e} = S^0$; $\partial \mathbf{f} = S^1$; $\partial \mathbf{s} = S^2$

•
$$\partial (\partial D^n) = \partial S^{n-1} = \emptyset$$

• The boundary operator $\partial : C(X) \rightarrow C(X)$ is

•
$$\partial \mathbf{v} = \emptyset$$
; $\partial \mathbf{e} = S^0$; $\partial \mathbf{f} = S^1$; $\partial \mathbf{s} = S^2$

•
$$\partial (\partial D^n) = \partial S^{n-1} = \emptyset$$

- The boundary operator $\partial : C(X) \rightarrow C(X)$ is
 - Induced by the geometric boundary

•
$$\partial \mathbf{v} = \emptyset$$
; $\partial \mathbf{e} = S^0$; $\partial \mathbf{f} = S^1$; $\partial \mathbf{s} = S^2$

•
$$\partial (\partial D^n) = \partial S^{n-1} = \emptyset$$

- The boundary operator $\partial : C(X) \rightarrow C(X)$ is
 - Induced by the geometric boundary
 - Zero on vertices

•
$$\partial \mathbf{v} = \emptyset$$
; $\partial \mathbf{e} = S^0$; $\partial \mathbf{f} = S^1$; $\partial \mathbf{s} = S^2$

•
$$\partial (\partial D^n) = \partial S^{n-1} = \emptyset$$

- The boundary operator $\partial : C(X) \rightarrow C(X)$ is
 - Induced by the geometric boundary
 - Zero on vertices
 - Linear on chains

•
$$\partial \mathbf{v} = \emptyset$$
; $\partial \mathbf{e} = S^0$; $\partial \mathbf{f} = S^1$; $\partial \mathbf{s} = S^2$

•
$$\partial (\partial D^n) = \partial S^{n-1} = \emptyset$$

- The boundary operator $\partial : C(X) \rightarrow C(X)$ is
 - Induced by the geometric boundary
 - Zero on vertices
 - Linear on chains
 - A derivation of the Cartesian product

$$\partial \left(\mathbf{a} imes \mathbf{b}
ight) = \partial \mathbf{a} imes \mathbf{b} + \mathbf{a} imes \partial \mathbf{b}$$

Examples

• ∂ : $C(UN) \rightarrow C(UN)$ is defined

$$\partial v = \partial a = \partial b = \partial s = \partial t_1 = \partial t_2 = 0$$

 $\partial p = s$
 $\partial q = s + t_1 + t_2$

э

Image: A math a math

æ

Examples

• ∂ : $C(UN) \rightarrow C(UN)$ is defined

$$\partial v = \partial a = \partial b = \partial s = \partial t_1 = \partial t_2 = 0$$

 $\partial p = s$
 $\partial q = s + t_1 + t_2$

• ∂ : $C(LN) \rightarrow C(LN)$ is defined

$$\partial v = \partial a = \partial b = \partial s = \partial t'_1 = \partial t'_2 = 0$$

 $\partial p = s$
 $\partial q' = s + t'_1 + t'_2$

Dr. Ron Umble (Millersville U and IMUS)

イロト イポト イヨト イヨト

• $\partial \circ \partial = 0$ implies Im $\partial \subseteq \ker \partial$

- < A

э

- $\partial \circ \partial = 0$ implies $\operatorname{Im} \partial \subseteq \ker \partial$
- $H(X) := \ker \partial / \operatorname{Im} \partial$ is the **cellular homology of** X

- $\partial \circ \partial = 0$ implies $\operatorname{Im} \partial \subseteq \ker \partial$
- $H(X) := \ker \partial / \operatorname{Im} \partial$ is the **cellular homology of** X
- Elements of $H\left(X
 ight)$ are cosets $\left[c
 ight]:=c+\mathrm{Im}\,\partial$

- $\partial \circ \partial = 0$ implies Im $\partial \subseteq \ker \partial$
- $H(X) := \ker \partial / \operatorname{Im} \partial$ is the **cellular homology of** X
- Elements of $H\left(X
 ight)$ are cosets $\left[c
 ight]:=c+\mathrm{Im}\,\partial$
- Examples

- $\partial \circ \partial = 0$ implies Im $\partial \subseteq \ker \partial$
- $H(X) := \ker \partial / \operatorname{Im} \partial$ is the **cellular homology of** X
- Elements of H(X) are cosets $[c] := c + \operatorname{Im} \partial$
- Examples
 - $H(UN) = \{[v], [a], [b], [t_1] = [t_2]\}$
Cellular Homology

- $\partial \circ \partial = 0$ implies Im $\partial \subseteq \ker \partial$
- $H(X) := \ker \partial / \operatorname{Im} \partial$ is the **cellular homology of** X
- Elements of H(X) are cosets $[c] := c + \operatorname{Im} \partial$
- Examples
 - $H(UN) = \{[v], [a], [b], [t_1] = [t_2]\}$
 - $H(LN) = \{[v], [a], [b], [t'_1] = [t'_2]\}$

Cellular Homology

- $\partial \circ \partial = 0$ implies Im $\partial \subseteq \ker \partial$
- $H(X) := \ker \partial / \operatorname{Im} \partial$ is the **cellular homology of** X
- Elements of $H\left(X
 ight)$ are cosets $\left[c
 ight]:=c+\mathrm{Im}\,\partial$
- Examples
 - $H(UN) = \{[v], [a], [b], [t_1] = [t_2]\}$
 - $H(LN) = \{[v], [a], [b], [t'_1] = [t'_2]\}$
 - Note that $H(UN) \approx H(LN)$

Cellular Homology

- $\partial \circ \partial = 0$ implies $\operatorname{Im} \partial \subseteq \ker \partial$
- $H(X) := \ker \partial / \operatorname{Im} \partial$ is the **cellular homology of** X
- Elements of H(X) are cosets $[c] := c + \operatorname{Im} \partial$
- Examples
 - $H(UN) = \{[v], [a], [b], [t_1] = [t_2]\}$
 - $H(LN) = \{[v], [a], [b], [t_1'] = [t_2']\}$
 - Note that $H(UN) \approx H(LN)$
- How do diagonal approximations on UN and LN descend to homology?

• Homotopic maps of spaces induce the same map on their homologies

Key Facts

- Homotopic maps of spaces induce the same map on their homologies
- Every diagonal approximation $\Delta: X \rightarrow X \times X$ induces the same map

 $\Delta_{2}:H\left(X\right)\to H\left(X\times X\right)$

Key Facts

- Homotopic maps of spaces induce the same map on their homologies
- Every diagonal approximation $\Delta: X \rightarrow X \times X$ induces the same map

$$\Delta_2: H(X) \to H(X \times X)$$

• A homeomorphism $h: X \to Y$ induces maps

$$h_{*}:H\left(X
ight)
ightarrow H\left(Y
ight)$$
 and $\left(h imes h
ight)_{*}:H\left(X imes X
ight)
ightarrow H\left(Y imes Y
ight)$

such that

$$\Delta_2 h_* = (h \times h)_* \Delta_2$$

Key Facts

- Homotopic maps of spaces induce the same map on their homologies
- Every diagonal approximation $\Delta: X \to X imes X$ induces the same map

$$\Delta_2: H(X) \to H(X \times X)$$

• A homeomorphism $h: X \to Y$ induces maps

$$h_{*}:H\left(X
ight)
ightarrow H\left(Y
ight)$$
 and $\left(h imes h
ight)_{*}:H\left(X imes X
ight)
ightarrow H\left(Y imes Y
ight)$

such that

$$\Delta_2 h_* = (h \times h)_* \Delta_2$$

• Assume $h: UN \to LN$ is a homeomorphism; show that $\Delta_2 h_* \neq (h \times h)_* \Delta_2$

If vector space A has basis {a₁,..., a_k}, the tensor product vector space A ⊗ A has basis {a_i ⊗ a_j}_{1 ≤ i, j ≤ k}

If vector space A has basis {a₁,..., a_k}, the tensor product vector space A ⊗ A has basis {a_i ⊗ a_j}_{1 ≤ i,j ≤ k}

•
$$C(X \times X) \approx C(X) \otimes C(X)$$
 via $e \times e' \mapsto e \otimes e'$

If vector space A has basis {a₁,..., a_k}, the tensor product vector space A ⊗ A has basis {a_i ⊗ a_j}_{1≤i,j≤k}

•
$$C(X \times X) \approx C(X) \otimes C(X)$$
 via $e \times e' \mapsto e \otimes e'$

• The boundary map

$$\partial \times \mathrm{Id} + \mathrm{Id} \times \partial : X \times X \to X \times X$$

induces the boundary operator

$$\partial \otimes \mathrm{Id} + \mathrm{Id} \otimes \partial : C(X) \otimes C(X) \to C(X) \otimes C(X)$$

If vector space A has basis {a₁,..., a_k}, the tensor product vector space A ⊗ A has basis {a_i ⊗ a_j}_{1≤i,j≤k}

•
$$C(X \times X) \approx C(X) \otimes C(X)$$
 via $e \times e' \mapsto e \otimes e'$

• The boundary map

$$\partial \times \mathrm{Id} + \mathrm{Id} \times \partial : X \times X \to X \times X$$

induces the boundary operator

$$\partial \otimes \mathrm{Id} + \mathrm{Id} \otimes \partial : C(X) \otimes C(X) \to C(X) \otimes C(X)$$

• Since \mathbb{Z}_2 is a field, torsion vanishes and

$$H(X \times X) \approx H(X) \otimes H(X)$$

Induced Diagonal on H(X)

• A diagonal approximation $\Delta: X \to X \times X$ induces a **coproduct**

$$\Delta_{2}:H\left(X\right)\rightarrow H\left(X\right)\otimes H\left(X\right)$$

defined by

$$\Delta_2\left[oldsymbol{c}
ight] := \left[\Delta oldsymbol{c}
ight]$$

Induced Diagonal on H(X)

• A diagonal approximation $\Delta: X \to X \times X$ induces a **coproduct**

$$\Delta_{2}:H\left(X\right)\rightarrow H\left(X\right)\otimes H\left(X\right)$$

defined by

$$\Delta_2\left[c
ight] := \left[\Delta c
ight]$$

• A class [c] of positive dimension is **primitive** if

$$\Delta_2\left[m{c}
ight] = \left[m{v}
ight] \otimes \left[m{c}
ight] + \left[m{c}
ight] \otimes \left[m{v}
ight]$$

Induced Diagonal on H(X)

• A diagonal approximation $\Delta: X \to X \times X$ induces a **coproduct**

$$\Delta_{2}:H\left(X\right)\rightarrow H\left(X\right)\otimes H\left(X\right)$$

defined by

$$\Delta_2\left[oldsymbol{c}
ight] := \left[\Delta oldsymbol{c}
ight]$$

• A class [c] of positive dimension is **primitive** if

$$\Delta_2\left[m{c}
ight]=\left[m{v}
ight]\otimes\left[m{c}
ight]+\left[m{c}
ight]\otimes\left[m{v}
ight]$$

• Examples

 $\Delta_2 \left[t_1
ight] = \left[\Delta t_1
ight] = \left[oldsymbol{v}
ight] \otimes \left[t_1
ight] + \left[t_1
ight] \otimes \left[oldsymbol{v}
ight]$

 $\Delta_{2}\left[t_{1}'\right] = \left[\Delta t_{1}'\right] = \left[\nu\right] \otimes \left[t_{1}'\right] + \left[t_{1}'\right] \otimes \left[\nu\right] + \left[a\right] \otimes \left[b\right] + \left[b\right] \otimes \left[a\right]$

• If $h: UN \to LN$ is a homeomorphism, $(h_* \otimes h_*) \Delta_2 = \Delta_2 h_*$

- If $h: UN \to LN$ is a homeomorphism, $(h_* \otimes h_*) \Delta_2 = \Delta_2 h_*$
- But $h_*[t_1] = [t'_1]$ implies

$$egin{aligned} &(h_*\otimes h_*)\,\Delta_2\,[t_1]=(h_*\otimes h_*)\,([v]\otimes [t_1]+[t_1]\otimes [v])\ &=[v]\otimes ig[t_1'ig]+ig[t_1'ig]\otimes [v]\ &
onumber\
onumber\$$

$$=\Delta_2\left[t_1'\right]=\Delta_2h_*\left[t_1\right] \quad (\Rightarrow\Leftarrow)$$

- If $h: UN \to LN$ is a homeomorphism, $(h_* \otimes h_*) \Delta_2 = \Delta_2 h_*$
- But $h_*[t_1] = [t'_1]$ implies

 $(h_* \otimes h_*) \Delta_2 [t_1] = (h_* \otimes h_*) ([v] \otimes [t_1] + [t_1] \otimes [v])$

 $= [\mathbf{v}] \otimes \left[t_1' \right] + \left[t_1' \right] \otimes \left[\mathbf{v} \right]$

 $\neq [v] \otimes \begin{bmatrix} t_1' \end{bmatrix} + \begin{bmatrix} t_1' \end{bmatrix} \otimes [v] + [a] \otimes [b] + [b] \otimes [a]$

$$=\Delta_2\left[t_1'
ight]=\Delta_2h_*\left[t_1
ight]~(\Rightarrow\Leftarrow)$$

• The non-primitive coproduct has detected the Hopf Link!

- If $h: UN \to LN$ is a homeomorphism, $(h_* \otimes h_*) \Delta_2 = \Delta_2 h_*$
- But $h_*[t_1] = [t'_1]$ implies

 $(h_* \otimes h_*) \Delta_2 [t_1] = (h_* \otimes h_*) ([v] \otimes [t_1] + [t_1] \otimes [v])$

 $= [v] \otimes [t'_1] + [t'_1] \otimes [v]$

 $\neq [v] \otimes \left[t_1'\right] + \left[t_1'\right] \otimes [v] + [a] \otimes [b] + [b] \otimes [a]$

$$=\Delta_2\left[t_1'
ight]=\Delta_2h_*\left[t_1
ight]~(\Rightarrow\Leftarrow)$$

- The non-primitive coproduct has detected the Hopf Link!
- Goal: Apply this strategy to *n*-component Brunnian Links

Brunnian Links

• A nontrivial link is **Brunnian** if removing any link produces the unlink

Image: Image:

э

Brunnian Links

- A nontrivial link is **Brunnian** if removing any link produces the unlink
- A non-standard example is the Hopf link

Brunnian Links

- A nontrivial link is **Brunnian** if removing any link produces the unlink
- A non-standard example is the Hopf link

• The most familiar example is the Borromean rings

• A 4-component Brunnian link

► < ∃ ►</p>

An animated 6-component Brunnian link

Image: Image:

The Hopf link: A Brunnian link with two components

April 23, 2018 1 / 8

April 23, 2018 2 / 8

April 23, 2018 2 / 8

April 23, 2018 2 / 8

April 23, 2018 2 / 8

April 23, 2018 3 / 8

▲ロト ▲圖ト ▲温ト ▲温ト 三温

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• Let BR_n denote the complement of a tubular neighborhood of an *n*-component Brunnian link in S^3 , $n \ge 3$

- Let BR_n denote the complement of a tubular neighborhood of an *n*-component Brunnian link in S^3 , $n \ge 3$
- **Conjecture:** An A_{∞} -coalgebra structure on $C_*(BR_n)$ induces

- Let BR_n denote the complement of a tubular neighborhood of an *n*-component Brunnian link in S^3 , $n \ge 3$
- **Conjecture:** An A_{∞} -coalgebra structure on $C_*(BR_n)$ induces
 - A primitive diagonal

$$\Delta_2: H(BR_n) \to H(BR_n) \otimes H(BR_n)$$

- Let BR_n denote the complement of a tubular neighborhood of an n-component Brunnian link in S³, n ≥ 3
- **Conjecture:** An A_{∞} -coalgebra structure on $C_*(BR_n)$ induces
 - A primitive diagonal

$$\Delta_2: H(BR_n) \to H(BR_n) \otimes H(BR_n)$$

$$\Delta_n: H(BR_n) \to H(BR_n)^{\otimes n}$$

- Let BR_n denote the complement of a tubular neighborhood of an *n*-component Brunnian link in S^3 , $n \ge 3$
- **Conjecture:** An A_{∞} -coalgebra structure on $C_*(BR_n)$ induces
 - A primitive diagonal

$$\Delta_2: H(BR_n) \to H(BR_n) \otimes H(BR_n)$$

A non-trivial n-ary operation

$$\Delta_n: H(BR_n) \to H(BR_n)^{\otimes n}$$

• Trivial k-ary operations for all $k \neq 2$, n

$$\Delta_k: H(BR_n) \to H(BR_n)^{\otimes k}$$

• There is strong evidence to support this conjecture

Concluding Remarks

- There is strong evidence to support this conjecture
- The analogous statement for Massey products on cohomology holds

- There is strong evidence to support this conjecture
- The analogous statement for Massey products on cohomology holds
- In my next lecture I'll discuss the Transfer Algorithm, which transfers an A_∞-coalgebra structure on cellular chains to homology

- There is strong evidence to support this conjecture
- The analogous statement for Massey products on cohomology holds
- In my next lecture I'll discuss the Transfer Algorithm, which transfers an A_∞-coalgebra structure on cellular chains to homology
- Such A_∞-coalgebra structures on homology are topologically invariant and (presumably) detect Brunnian linkage

- There is strong evidence to support this conjecture
- The analogous statement for Massey products on cohomology holds
- In my next lecture I'll discuss the Transfer Algorithm, which transfers an A_∞-coalgebra structure on cellular chains to homology
- Such A_∞-coalgebra structures on homology are topologically invariant and (presumably) detect Brunnian linkage
- I'll present a cellular decomposition of BR_n and define an A_{∞} -coalgebra structure on $C(BR_n)$

- There is strong evidence to support this conjecture
- The analogous statement for Massey products on cohomology holds
- In my next lecture I'll discuss the Transfer Algorithm, which transfers an A_∞-coalgebra structure on cellular chains to homology
- Such A_∞-coalgebra structures on homology are topologically invariant and (presumably) detect Brunnian linkage
- I'll present a cellular decomposition of BR_n and define an A_{∞} -coalgebra structure on $C(BR_n)$
- Hopefully our computations in the meantime will confirm the conjecture for n = 3

Thank you!

Image: A matrix and a matrix