Detecting Linkage in an n-Component Brunnian Link

IMUS Mini-Course Session 1

Work in progress with H. Molina-Abril \& B. Nimershiem
Presented by Dr. Ron Umble
Millersville U and IMUS
24 April 2018

Goal of the Project:

To computationally detect the linkage in an n-component Brunnian link

Review of Cellular Complexes

Let X be a connected network, surface, or solid embedded in S^{3}

Cellular Decompositions

A cellular decomposition of X is a finite collection of

- Discrete points (vertices or 0-cells)

Cellular Decompositions

A cellular decomposition of X is a finite collection of

- Discrete points (vertices or 0-cells)
- Closed intervals (edges or 1-cells)

Cellular Decompositions

A cellular decomposition of X is a finite collection of

- Discrete points (vertices or 0-cells)
- Closed intervals (edges or 1-cells)
- Closed disks (faces or 2-cells)

Cellular Decompositions

A cellular decomposition of X is a finite collection of

- Discrete points (vertices or 0-cells)
- Closed intervals (edges or 1-cells)
- Closed disks (faces or 2-cells)
- Closed balls (solids or 3-cells)

Cellular Decompositions

A cellular decomposition of X is a finite collection of

- Discrete points (vertices or 0-cells)
- Closed intervals (edges or 1-cells)
- Closed disks (faces or 2-cells)
- Closed balls (solids or 3-cells)
- Glued together in such a way that the

Cellular Decompositions

A cellular decomposition of X is a finite collection of

- Discrete points (vertices or 0-cells)
- Closed intervals (edges or 1-cells)
- Closed disks (faces or 2-cells)
- Closed balls (solids or 3-cells)
- Glued together in such a way that the
- Non-empty boundary of a k-cell is a union of $(k-1)$-cells

Cellular Decompositions

A cellular decomposition of X is a finite collection of

- Discrete points (vertices or 0-cells)
- Closed intervals (edges or 1-cells)
- Closed disks (faces or 2-cells)
- Closed balls (solids or 3-cells)
- Glued together in such a way that the
- Non-empty boundary of a k-cell is a union of $(k-1)$-cells
- Non-empty intersection of cells is a cell

Cellular Decompositions

A cellular decomposition of X is a finite collection of

- Discrete points (vertices or 0-cells)
- Closed intervals (edges or 1-cells)
- Closed disks (faces or 2-cells)
- Closed balls (solids or 3-cells)
- Glued together in such a way that the
- Non-empty boundary of a k-cell is a union of $(k-1)$-cells
- Non-empty intersection of cells is a cell
- Union of all cells is X

Example: 2-dim'I Sphere

$S^{2}=D^{2} / \partial D^{2}$ (Grandma's draw string bag)

- Vertex: $\{v\}$
- Edges: \varnothing
- Face: $\left\{S^{2}\right\}$

Example: Torus

$T=S^{1} \times S^{1}$
Product cells: $\{v, a\} \times\{v, b\}$

- Vertex: $\{v:=v \times v\}$
- Edges: $\{a:=a \times v, b:=v \times b\}$
- Face: $\{T:=a \times b\}$

Example: Pinched Sphere

$P=T / b$

- Vertex: $\{v\}$
- Edge: $\{a\}$
- Face: $\{S\}$

Example: Link Complement of Two Unknots

Let $U N$ be the complement of disjoint tubular neighborhoods U_{1} and U_{2} of two unlinked unknots in S^{3}

- $\partial\left(U_{1} \cup U_{2}\right)$ is the wedge of two pinched spheres t_{1} and t_{2} with respective edges a and b and shared vertex v

Cellular Structure of UN

- $\partial(U N)$ is wedged with the equatorial 2-sphere $s \subset S^{3}$
- $p=$ upper hemispherical 3-ball
- $q=$ lower hemispherical 3-ball $\backslash\left(U_{1} \cup U_{2}\right)$
- p and q are attached along s
- $U N=p \cup q$

- Vertices: $\{v\}$
- Edges: $\{a, b\}$
- Faces: $\left\{s, t_{1}, t_{2}\right\}$
- Solids: $\{p, q\}$

Example: Link Complement of the Hopf Link

Let $L N$ be the complement of disjoint tubular neighborhoods U_{i} of the Hopf Link in S^{3}

- $\partial\left(U_{1} \cup U_{2}\right)$ is the union of two linked tori t_{1}^{\prime} and t_{2}^{\prime} sharing edges a and b and vertex v

Cellular Structure of LN

- $\partial(L N)$ is wedged with the equatorial 2-sphere $s \subset S^{3}$
- $p=$ upper hemispherical 3-ball
- $q^{\prime}=$ lower hemispherical 3-ball $\backslash\left(U_{1} \cup U_{2}\right)$
- p and q^{\prime} are attached along s
- $L N=p \cup q^{\prime}$

- Vertex: $\{v\}$
- Edges: $\{a, b\}$
- Faces: $\left\{s, t_{1}^{\prime}, t_{2}^{\prime}\right\}$
- Solids: $\left\{p, q^{\prime}\right\}$

Homeomorphisms

X and Y are homeomorphic if

- X can be continuously deformed into Y

Homeomorphisms

X and Y are homeomorphic if

- X can be continuously deformed into Y
- \exists a bijective bicontinuous $h: X \rightarrow Y$, called a homeomorphism

Homeomorphisms

X and Y are homeomorphic if

- X can be continuously deformed into Y
- \exists a bijective bicontinuous $h: X \rightarrow Y$, called a homeomorphism
- A square and a circle are homeomorphic

Homeomorphisms

X and Y are homeomorphic if

- X can be continuously deformed into Y
- \exists a bijective bicontinuous $h: X \rightarrow Y$, called a homeomorphism
- A square and a circle are homeomorphic

- The boundaries of a doughnut and coffee mug are homeomorphic

Homeomorphisms

X and Y are homeomorphic if

- X can be continuously deformed into Y
- \exists a bijective bicontinuous $h: X \rightarrow Y$, called a homeomorphism
- A square and a circle are homeomorphic

- The boundaries of a doughnut and coffee mug are homeomorphic
- An animated deformation of a doughnut to a coffee mug

Homeomorphisms

X and Y are homeomorphic if

- X can be continuously deformed into Y
- \exists a bijective bicontinuous $h: X \rightarrow Y$, called a homeomorphism
- A square and a circle are homeomorphic

- The boundaries of a doughnut and coffee mug are homeomorphic
- An animated deformation of a doughnut to a coffee mug
- UN and $L N$ are not homeomorphic because...

Homeomorphisms

- Shrinking the tubular neighborhood of the red component to point

Homeomorphisms

- Shrinking the tubular neighborhood of the red component to point
- Shrinks $\partial(U N)$ to a pinched sphere

Homeomorphisms

- Shrinking the tubular neighborhood of the red component to point
- Shrinks $\partial(U N)$ to a pinched sphere

- Shrinks $\partial(L N)$ to a 2 -sphere

Homeomorphisms

- Shrinking the tubular neighborhood of the red component to point
- Shrinks $\partial(U N)$ to a pinched sphere

- Shrinks $\partial(L N)$ to a 2 -sphere

- How do we can detect this computationally?

The Geometric Diagonal

- Geometric diagonal $\Delta_{X}: X \rightarrow X \times X$ is defined $x \mapsto(x, x)$

The Geometric Diagonal

- Geometric diagonal $\Delta_{X}: X \rightarrow X \times X$ is defined $x \mapsto(x, x)$
- A homeomorphism $h: X \rightarrow Y$ respects diagonals

$$
\Delta_{Y} h=(h \times h) \Delta_{X}
$$

The Geometric Diagonal

- Geometric diagonal $\Delta_{X}: X \rightarrow X \times X$ is defined $x \mapsto(x, x)$
- A homeomorphism $h: X \rightarrow Y$ respects diagonals

$$
\Delta_{Y} h=(h \times h) \Delta_{X}
$$

- Objective: Compute the obstruction to a homeomorphism

$$
h: U N \rightarrow L N
$$

The Geometric Diagonal

- Geometric diagonal $\Delta_{x}: X \rightarrow X \times X$ is defined $x \mapsto(x, x)$
- A homeomorphism $h: X \rightarrow Y$ respects diagonals

$$
\Delta_{Y} h=(h \times h) \Delta_{X}
$$

- Objective: Compute the obstruction to a homeomorphism

$$
h: U N \rightarrow L N
$$

- Strategy:

The Geometric Diagonal

- Geometric diagonal $\Delta_{x}: X \rightarrow X \times X$ is defined $x \mapsto(x, x)$
- A homeomorphism $h: X \rightarrow Y$ respects diagonals

$$
\Delta_{Y} h=(h \times h) \Delta_{X}
$$

- Objective: Compute the obstruction to a homeomorphism

$$
h: U N \rightarrow L N
$$

- Strategy:
- Assume a homeomorphism h exists

The Geometric Diagonal

- Geometric diagonal $\Delta_{x}: X \rightarrow X \times X$ is defined $x \mapsto(x, x)$
- A homeomorphism $h: X \rightarrow Y$ respects diagonals

$$
\Delta_{Y} h=(h \times h) \Delta_{X}
$$

- Objective: Compute the obstruction to a homeomorphism

$$
h: U N \rightarrow L N
$$

- Strategy:
- Assume a homeomorphism h exists
- Show that h fails to respect diagonals

The Geometric Diagonal

- Problem: $\operatorname{Im} \Delta_{X}$ is typically not a subcomplex of $X \times X$

The Geometric Diagonal

- Problem: $\operatorname{Im} \Delta_{X}$ is typically not a subcomplex of $X \times X$
- Example: $\operatorname{Im} \Delta_{\mathrm{I}}$ is not a subcomplex of $\mathrm{I} \times \mathrm{I}$:

Diagonal Approximations

- A map $\Delta: X \rightarrow X \times X$ is a diagonal approximation if

Diagonal Approximations

- A map $\Delta: X \rightarrow X \times X$ is a diagonal approximation if
- Δ is homotopic to Δ_{X}

Diagonal Approximations

- A map $\Delta: X \rightarrow X \times X$ is a diagonal approximation if
- Δ is homotopic to Δ_{X}
- $\Delta\left(e^{n}\right)$ is a subcomplex of $e^{n} \times e^{n}$ for every n-cell $e^{n} \subseteq X$

Diagonal Approximations

- A map $\Delta: X \rightarrow X \times X$ is a diagonal approximation if
- Δ is homotopic to Δ_{X}
- $\Delta\left(e^{n}\right)$ is a subcomplex of $e^{n} \times e^{n}$ for every n-cell $e^{n} \subseteq X$
- Geometric boundary $\partial: X \rightarrow X$ is a coderivation of Δ

$$
\Delta \partial=(\partial \times \operatorname{Id}+\operatorname{Id} \times \partial) \Delta
$$

Diagonal Approximations

- A map $\Delta: X \rightarrow X \times X$ is a diagonal approximation if
- Δ is homotopic to Δ_{X}
- $\Delta\left(e^{n}\right)$ is a subcomplex of $e^{n} \times e^{n}$ for every n-cell $e^{n} \subseteq X$
- Geometric boundary $\partial: X \rightarrow X$ is a coderivation of Δ

$$
\Delta \partial=(\partial \times \operatorname{Id}+\operatorname{Id} \times \partial) \Delta
$$

- Cellular Approximation Theorem

There is a diagonal approximation $\Delta: X \rightarrow X \times X$

Properties of Diagonal Approximations

Diagonal approximations preserve

- Cellular structure: $\Delta\left(e^{n}\right) \subseteq e^{n} \times e^{n}$

Properties of Diagonal Approximations

Diagonal approximations preserve

- Cellular structure: $\Delta\left(e^{n}\right) \subseteq e^{n} \times e^{n}$
- Dimension: $\operatorname{dim} \Delta\left(e^{n}\right)=\operatorname{dim} e^{n}$

Properties of Diagonal Approximations

Diagonal approximations preserve

- Cellular structure: $\Delta\left(e^{n}\right) \subseteq e^{n} \times e^{n}$
- Dimension: $\operatorname{dim} \Delta\left(e^{n}\right)=\operatorname{dim} e^{n}$
- Cartesian products: $\Delta(X \times Y)=\Delta(X) \times \Delta(Y)$

Properties of Diagonal Approximations

Diagonal approximations preserve

- Cellular structure: $\Delta\left(e^{n}\right) \subseteq e^{n} \times e^{n}$
- Dimension: $\operatorname{dim} \Delta\left(e^{n}\right)=\operatorname{dim} e^{n}$
- Cartesian products: $\Delta(X \times Y)=\Delta(X) \times \Delta(Y)$
- Wedge products: $\Delta(X \vee Y)=\Delta(X) \vee \Delta(Y)$

Dan Kravatz's Diagonal Approximation on a Polygon

- Given n-gon G, arbitrarily choose vertices v and v^{\prime} (possibly equal)

Dan Kravatz's Diagonal Approximation on a Polygon

- Given n-gon G, arbitrarily choose vertices v and v^{\prime} (possibly equal)
- Edges $\left\{e_{1}, \ldots, e_{k}\right\}$ and $\left\{e_{k+1}, \ldots, e_{n}\right\}$ form edge-paths from v to v^{\prime} (one path $\left\{e_{1}, \ldots, e_{n}\right\}$ if $v=v^{\prime}$)

Dan Kravatz's Diagonal Approximation on a Polygon

- Given n-gon G, arbitrarily choose vertices v and v^{\prime} (possibly equal)
- Edges $\left\{e_{1}, \ldots, e_{k}\right\}$ and $\left\{e_{k+1}, \ldots, e_{n}\right\}$ form edge-paths from v to v^{\prime} (one path $\left\{e_{1}, \ldots, e_{n}\right\}$ if $v=v^{\prime}$)

- Theorem (Kravatz 2008): There is a diagonal approximation

$$
\Delta G=v \times G+G \times v^{\prime}+\sum_{1 \leq i<j \leq k} e_{i} \times e_{j}+\sum_{n \geq j>i \geq k+1} e_{j} \times e_{i}
$$

Example: The Heptagon G

$$
\begin{aligned}
\Delta G= & v \times G+G \times v^{\prime} \\
& +e_{1} \times\left(e_{2}+e_{3}+e_{4}\right)+e_{2} \times\left(e_{3}+e_{4}\right)+e_{3} \times e_{4} \\
& +e_{7} \times\left(e_{6}+e_{5}\right)+e_{6} \times e_{5}
\end{aligned}
$$

Example: The Pinched Sphere

Think of the pinched sphere $t_{1} \subset \partial(U N)$ as a 2-gon with vertices identified first, then edges identified

$$
\Delta t_{1}=v \times t_{1}+t_{1} \times v
$$

- Δ descends to quotients when edge-paths are consistent with identifications

Example: The Torus

Think of the torus $t_{1}^{\prime} \subset \partial(L N)$ as a square with horizontal edges a identified and vertical edges b identified

$$
\Delta t_{1}^{\prime}=v \times t_{1}^{\prime}+t_{1}^{\prime} \times v+a \times b+b \times a
$$

Cellular Chains of a Space

- $C(X)$ denotes the \mathbb{Z}_{2}-vector space with basis $\{$ cells of $X\}$

Cellular Chains of a Space

- $C(X)$ denotes the \mathbb{Z}_{2}-vector space with basis $\{$ cells of $X\}$
- Elements are formal sums called cellular chains of X

Cellular Chains of a Space

- $C(X)$ denotes the \mathbb{Z}_{2}-vector space with basis $\{$ cells of $X\}$
- Elements are formal sums called cellular chains of X
- Examples:

Cellular Chains of a Space

- $C(X)$ denotes the \mathbb{Z}_{2}-vector space with basis $\{$ cells of $X\}$
- Elements are formal sums called cellular chains of X
- Examples:
- $C(U N)$ has basis $\left\{v, a, b, s, t_{1}, t_{2}, p, q\right\}$

Cellular Chains of a Space

- $C(X)$ denotes the \mathbb{Z}_{2}-vector space with basis $\{$ cells of $X\}$
- Elements are formal sums called cellular chains of X
- Examples:
- $C(U N)$ has basis $\left\{v, a, b, s, t_{1}, t_{2}, p, q\right\}$
- $C(L N)$ has basis $\left\{v, a, b, s, t_{1}^{\prime}, t_{2}^{\prime}, p, q^{\prime}\right\}$

Cellular Chains of a Space

- $C(X)$ denotes the \mathbb{Z}_{2}-vector space with basis $\{$ cells of $X\}$
- Elements are formal sums called cellular chains of X
- Examples:
- $C(U N)$ has basis $\left\{v, a, b, s, t_{1}, t_{2}, p, q\right\}$
- $C(L N)$ has basis $\left\{v, a, b, s, t_{1}^{\prime}, t_{2}^{\prime}, p, q^{\prime}\right\}$
- Note that $C(U N) \approx C(L N)$

The Boundary Operator

- Geometric boundary of an n-cell D^{n} is S^{n-1}

The Boundary Operator

- Geometric boundary of an n-cell D^{n} is S^{n-1}

$$
\text { - } \partial \mathbf{v}=\varnothing ; \partial \mathbf{e}=S^{0} ; \partial \mathbf{f}=S^{1} ; \partial \mathbf{s}=S^{2}
$$

The Boundary Operator

- Geometric boundary of an n-cell D^{n} is S^{n-1}
- $\partial \mathbf{v}=\varnothing ; \partial \mathbf{e}=S^{0} ; \partial \mathbf{f}=S^{1} ; \partial \mathbf{s}=S^{2}$
- $\partial\left(\partial D^{n}\right)=\partial S^{n-1}=\varnothing$

The Boundary Operator

- Geometric boundary of an n-cell D^{n} is S^{n-1}

$$
\begin{aligned}
& \text { - } \partial \mathbf{v}=\varnothing ; \partial \mathbf{e}=S^{0} ; \partial \mathbf{f}=S^{1} ; \partial \mathbf{s}=S^{2} \\
& \text { - } \partial\left(\partial D^{n}\right)=\partial S^{n-1}=\varnothing
\end{aligned}
$$

- The boundary operator $\partial: C(X) \rightarrow C(X)$ is

The Boundary Operator

- Geometric boundary of an n-cell D^{n} is S^{n-1}
- $\partial \mathbf{v}=\varnothing ; \partial \mathbf{e}=S^{0} ; \partial \mathbf{f}=S^{1} ; \partial \mathbf{s}=S^{2}$
- $\partial\left(\partial D^{n}\right)=\partial S^{n-1}=\varnothing$
- The boundary operator $\partial: C(X) \rightarrow C(X)$ is
- Induced by the geometric boundary

The Boundary Operator

- Geometric boundary of an n-cell D^{n} is S^{n-1}
- $\partial \mathbf{v}=\varnothing ; \partial \mathbf{e}=S^{0} ; \partial \mathbf{f}=S^{1} ; \partial \mathbf{s}=S^{2}$
- $\partial\left(\partial D^{n}\right)=\partial S^{n-1}=\varnothing$
- The boundary operator $\partial: C(X) \rightarrow C(X)$ is
- Induced by the geometric boundary
- Zero on vertices

The Boundary Operator

- Geometric boundary of an n-cell D^{n} is S^{n-1}
- $\partial \mathbf{v}=\varnothing ; \partial \mathbf{e}=S^{0} ; \partial \mathbf{f}=S^{1} ; \partial \mathbf{s}=S^{2}$
- $\partial\left(\partial D^{n}\right)=\partial S^{n-1}=\varnothing$
- The boundary operator $\partial: C(X) \rightarrow C(X)$ is
- Induced by the geometric boundary
- Zero on vertices
- Linear on chains

The Boundary Operator

- Geometric boundary of an n-cell D^{n} is S^{n-1}
- $\partial \mathbf{v}=\varnothing ; \partial \mathbf{e}=S^{0} ; \partial \mathbf{f}=S^{1} ; \partial \mathbf{s}=S^{2}$
- $\partial\left(\partial D^{n}\right)=\partial S^{n-1}=\varnothing$
- The boundary operator $\partial: C(X) \rightarrow C(X)$ is
- Induced by the geometric boundary
- Zero on vertices
- Linear on chains
- A derivation of the Cartesian product

$$
\partial(a \times b)=\partial a \times b+a \times \partial b
$$

Examples

- $\partial: C(U N) \rightarrow C(U N)$ is defined

$$
\begin{aligned}
& \partial v=\partial a=\partial b=\partial s=\partial t_{1}=\partial t_{2}=0 \\
& \partial p=s \\
& \partial q=s+t_{1}+t_{2}
\end{aligned}
$$

Examples

- $\partial: C(U N) \rightarrow C(U N)$ is defined

$$
\begin{aligned}
& \partial v=\partial a=\partial b=\partial s=\partial t_{1}=\partial t_{2}=0 \\
& \partial p=s \\
& \partial q=s+t_{1}+t_{2}
\end{aligned}
$$

- $\partial: C(L N) \rightarrow C(L N)$ is defined

$$
\begin{aligned}
\partial v & =\partial a=\partial b=\partial s=\partial t_{1}^{\prime}=\partial t_{2}^{\prime}=0 \\
\partial p & =s \\
\partial q^{\prime} & =s+t_{1}^{\prime}+t_{2}^{\prime}
\end{aligned}
$$

Cellular Homology

- $\partial \circ \partial=0$ implies $\operatorname{Im} \partial \subseteq \operatorname{ker} \partial$

Cellular Homology

- $\partial \circ \partial=0$ implies $\operatorname{Im} \partial \subseteq \operatorname{ker} \partial$
- $H(X):=$ ker $\partial / \operatorname{Im} \partial$ is the cellular homology of X

Cellular Homology

- $\partial \circ \partial=0$ implies $\operatorname{Im} \partial \subseteq \operatorname{ker} \partial$
- $H(X):=\operatorname{ker} \partial / \operatorname{Im} \partial$ is the cellular homology of X
- Elements of $H(X)$ are cosets $[c]:=c+\operatorname{Im} \partial$

Cellular Homology

- $\partial \circ \partial=0$ implies $\operatorname{Im} \partial \subseteq \operatorname{ker} \partial$
- $H(X):=\operatorname{ker} \partial / \operatorname{Im} \partial$ is the cellular homology of X
- Elements of $H(X)$ are cosets $[c]:=c+\operatorname{Im} \partial$
- Examples

Cellular Homology

- $\partial \circ \partial=0$ implies $\operatorname{Im} \partial \subseteq \operatorname{ker} \partial$
- $H(X):=\operatorname{ker} \partial / \operatorname{Im} \partial$ is the cellular homology of X
- Elements of $H(X)$ are cosets $[c]:=c+\operatorname{Im} \partial$
- Examples

$$
\text { - } H(U N)=\left\{[v],[a],[b],\left[t_{1}\right]=\left[t_{2}\right]\right\}
$$

Cellular Homology

- $\partial \circ \partial=0$ implies $\operatorname{Im} \partial \subseteq \operatorname{ker} \partial$
- $H(X):=\operatorname{ker} \partial / \operatorname{Im} \partial$ is the cellular homology of X
- Elements of $H(X)$ are cosets $[c]:=c+\operatorname{Im} \partial$
- Examples

$$
\begin{aligned}
& \text { - } H(U N)=\left\{[v],[a],[b],\left[t_{1}\right]=\left[t_{2}\right]\right\} \\
& \text { - } H(L N)=\left\{[v],[a],[b],\left[t_{1}^{\prime}\right]=\left[t_{2}^{\prime}\right]\right\}
\end{aligned}
$$

Cellular Homology

- $\partial \circ \partial=0$ implies $\operatorname{Im} \partial \subseteq \operatorname{ker} \partial$
- $H(X):=\operatorname{ker} \partial / \operatorname{Im} \partial$ is the cellular homology of X
- Elements of $H(X)$ are cosets $[c]:=c+\operatorname{Im} \partial$
- Examples
- $H(U N)=\left\{[v],[a],[b],\left[t_{1}\right]=\left[t_{2}\right]\right\}$
- $H(L N)=\left\{[v],[a],[b],\left[t_{1}^{\prime}\right]=\left[t_{2}^{\prime}\right]\right\}$
- Note that $H(U N) \approx H(L N)$

Cellular Homology

- $\partial \circ \partial=0$ implies $\operatorname{Im} \partial \subseteq \operatorname{ker} \partial$
- $H(X):=\operatorname{ker} \partial / \operatorname{Im} \partial$ is the cellular homology of X
- Elements of $H(X)$ are cosets $[c]:=c+\operatorname{Im} \partial$
- Examples
- $H(U N)=\left\{[v],[a],[b],\left[t_{1}\right]=\left[t_{2}\right]\right\}$
- $H(L N)=\left\{[v],[a],[b],\left[t_{1}^{\prime}\right]=\left[t_{2}^{\prime}\right]\right\}$
- Note that $H(U N) \approx H(L N)$
- How do diagonal approximations on $U N$ and $L N$ descend to homology?

Key Facts

- Homotopic maps of spaces induce the same map on their homologies

Key Facts

- Homotopic maps of spaces induce the same map on their homologies
- Every diagonal approximation $\Delta: X \rightarrow X \times X$ induces the same map

$$
\Delta_{2}: H(X) \rightarrow H(X \times X)
$$

Key Facts

- Homotopic maps of spaces induce the same map on their homologies
- Every diagonal approximation $\Delta: X \rightarrow X \times X$ induces the same map

$$
\Delta_{2}: H(X) \rightarrow H(X \times X)
$$

- A homeomorphism $h: X \rightarrow Y$ induces maps

$$
h_{*}: H(X) \rightarrow H(Y) \text { and }(h \times h)_{*}: H(X \times X) \rightarrow H(Y \times Y)
$$

such that

$$
\Delta_{2} h_{*}=(h \times h)_{*} \Delta_{2}
$$

Key Facts

- Homotopic maps of spaces induce the same map on their homologies
- Every diagonal approximation $\Delta: X \rightarrow X \times X$ induces the same map

$$
\Delta_{2}: H(X) \rightarrow H(X \times X)
$$

- A homeomorphism $h: X \rightarrow Y$ induces maps

$$
h_{*}: H(X) \rightarrow H(Y) \text { and }(h \times h)_{*}: H(X \times X) \rightarrow H(Y \times Y)
$$

such that

$$
\Delta_{2} h_{*}=(h \times h)_{*} \Delta_{2}
$$

- Assume $h: U N \rightarrow L N$ is a homeomorphism; show that $\Delta_{2} h_{*} \neq(h \times h)_{*} \Delta_{2}$

Homology of Cartesian Products

- If vector space A has basis $\left\{a_{1}, \ldots, a_{k}\right\}$, the tensor product vector space $A \otimes A$ has basis $\left\{a_{i} \otimes a_{j}\right\}_{1 \leq i, j \leq k}$

Homology of Cartesian Products

- If vector space A has basis $\left\{a_{1}, \ldots, a_{k}\right\}$, the tensor product vector space $A \otimes A$ has basis $\left\{a_{i} \otimes a_{j}\right\}_{1 \leq i, j \leq k}$
- $C(X \times X) \approx C(X) \otimes C(X)$ via $e \times e^{\prime} \mapsto e \otimes e^{\prime}$

Homology of Cartesian Products

- If vector space A has basis $\left\{a_{1}, \ldots, a_{k}\right\}$, the tensor product vector space $A \otimes A$ has basis $\left\{a_{i} \otimes a_{j}\right\}_{1 \leq i, j \leq k}$
- $C(X \times X) \approx C(X) \otimes C(X)$ via $e \times e^{\prime} \mapsto e \otimes e^{\prime}$
- The boundary map

$$
\partial \times \operatorname{Id}+\operatorname{Id} \times \partial: X \times X \rightarrow X \times X
$$

induces the boundary operator

$$
\partial \otimes \operatorname{Id}+\operatorname{Id} \otimes \partial: C(X) \otimes C(X) \rightarrow C(X) \otimes C(X)
$$

Homology of Cartesian Products

- If vector space A has basis $\left\{a_{1}, \ldots, a_{k}\right\}$, the tensor product vector space $A \otimes A$ has basis $\left\{a_{i} \otimes a_{j}\right\}_{1 \leq i, j \leq k}$
- $C(X \times X) \approx C(X) \otimes C(X)$ via $e \times e^{\prime} \mapsto e \otimes e^{\prime}$
- The boundary map

$$
\partial \times \operatorname{Id}+\operatorname{Id} \times \partial: X \times X \rightarrow X \times X
$$

induces the boundary operator

$$
\partial \otimes \operatorname{Id}+\operatorname{Id} \otimes \partial: C(X) \otimes C(X) \rightarrow C(X) \otimes C(X)
$$

- Since \mathbb{Z}_{2} is a field, torsion vanishes and

$$
H(X \times X) \approx H(X) \otimes H(X)
$$

Induced Diagonal on $\mathrm{H}(\mathrm{X})$

- A diagonal approximation $\Delta: X \rightarrow X \times X$ induces a coproduct

$$
\Delta_{2}: H(X) \rightarrow H(X) \otimes H(X)
$$

defined by

$$
\Delta_{2}[c]:=[\Delta c]
$$

Induced Diagonal on $\mathrm{H}(\mathrm{X})$

- A diagonal approximation $\Delta: X \rightarrow X \times X$ induces a coproduct

$$
\Delta_{2}: H(X) \rightarrow H(X) \otimes H(X)
$$

defined by

$$
\Delta_{2}[c]:=[\Delta c]
$$

- A class [c] of positive dimension is primitive if

$$
\Delta_{2}[c]=[v] \otimes[c]+[c] \otimes[v]
$$

Induced Diagonal on $\mathrm{H}(\mathrm{X})$

- A diagonal approximation $\Delta: X \rightarrow X \times X$ induces a coproduct

$$
\Delta_{2}: H(X) \rightarrow H(X) \otimes H(X)
$$

defined by

$$
\Delta_{2}[c]:=[\Delta c]
$$

- A class [c] of positive dimension is primitive if

$$
\Delta_{2}[c]=[v] \otimes[c]+[c] \otimes[v]
$$

- Examples

$$
\begin{aligned}
& \Delta_{2}\left[t_{1}\right]=\left[\Delta t_{1}\right]=[v] \otimes\left[t_{1}\right]+\left[t_{1}\right] \otimes[v] \\
& \Delta_{2}\left[t_{1}^{\prime}\right]=\left[\Delta t_{1}^{\prime}\right]=[v] \otimes\left[t_{1}^{\prime}\right]+\left[t_{1}^{\prime}\right] \otimes[v]+[a] \otimes[b]+[b] \otimes[a]
\end{aligned}
$$

Non-Primitivity Detects the Hopf Link

- If $h: U N \rightarrow L N$ is a homeomorphism, $\left(h_{*} \otimes h_{*}\right) \Delta_{2}=\Delta_{2} h_{*}$

Non-Primitivity Detects the Hopf Link

- If $h: U N \rightarrow L N$ is a homeomorphism, $\left(h_{*} \otimes h_{*}\right) \Delta_{2}=\Delta_{2} h_{*}$
- But $h_{*}\left[t_{1}\right]=\left[t_{1}^{\prime}\right]$ implies

$$
\begin{aligned}
\left(h_{*} \otimes h_{*}\right) \Delta_{2}\left[t_{1}\right] & =\left(h_{*} \otimes h_{*}\right)\left([v] \otimes\left[t_{1}\right]+\left[t_{1}\right] \otimes[v]\right) \\
& =[v] \otimes\left[t_{1}^{\prime}\right]+\left[t_{1}^{\prime}\right] \otimes[v] \\
& \neq[v] \otimes\left[t_{1}^{\prime}\right]+\left[t_{1}^{\prime}\right] \otimes[v]+[a] \otimes[b]+[b] \otimes[a] \\
& =\Delta_{2}\left[t_{1}^{\prime}\right]=\Delta_{2} h_{*}\left[t_{1}\right] \quad(\Rightarrow \Leftarrow)
\end{aligned}
$$

Non-Primitivity Detects the Hopf Link

- If $h: U N \rightarrow L N$ is a homeomorphism, $\left(h_{*} \otimes h_{*}\right) \Delta_{2}=\Delta_{2} h_{*}$
- But $h_{*}\left[t_{1}\right]=\left[t_{1}^{\prime}\right]$ implies

$$
\begin{aligned}
\left(h_{*} \otimes h_{*}\right) \Delta_{2}\left[t_{1}\right] & =\left(h_{*} \otimes h_{*}\right)\left([v] \otimes\left[t_{1}\right]+\left[t_{1}\right] \otimes[v]\right) \\
& =[v] \otimes\left[t_{1}^{\prime}\right]+\left[t_{1}^{\prime}\right] \otimes[v] \\
& \neq[v] \otimes\left[t_{1}^{\prime}\right]+\left[t_{1}^{\prime}\right] \otimes[v]+[a] \otimes[b]+[b] \otimes[a] \\
& =\Delta_{2}\left[t_{1}^{\prime}\right]=\Delta_{2} h_{*}\left[t_{1}\right] \quad(\Rightarrow \Leftarrow)
\end{aligned}
$$

- The non-primitive coproduct has detected the Hopf Link!

Non-Primitivity Detects the Hopf Link

- If $h: U N \rightarrow L N$ is a homeomorphism, $\left(h_{*} \otimes h_{*}\right) \Delta_{2}=\Delta_{2} h_{*}$
- But $h_{*}\left[t_{1}\right]=\left[t_{1}^{\prime}\right]$ implies

$$
\begin{aligned}
\left(h_{*} \otimes h_{*}\right) \Delta_{2}\left[t_{1}\right] & =\left(h_{*} \otimes h_{*}\right)\left([v] \otimes\left[t_{1}\right]+\left[t_{1}\right] \otimes[v]\right) \\
& =[v] \otimes\left[t_{1}^{\prime}\right]+\left[t_{1}^{\prime}\right] \otimes[v] \\
& \neq[v] \otimes\left[t_{1}^{\prime}\right]+\left[t_{1}^{\prime}\right] \otimes[v]+[a] \otimes[b]+[b] \otimes[a] \\
& =\Delta_{2}\left[t_{1}^{\prime}\right]=\Delta_{2} h_{*}\left[t_{1}\right] \quad(\Rightarrow \Leftarrow)
\end{aligned}
$$

- The non-primitive coproduct has detected the Hopf Link!
- Goal: Apply this strategy to n-component Brunnian Links

Brunnian Links

- A nontrivial link is Brunnian if removing any link produces the unlink

Brunnian Links

- A nontrivial link is Brunnian if removing any link produces the unlink
- A non-standard example is the Hopf link

Brunnian Links

- A nontrivial link is Brunnian if removing any link produces the unlink
- A non-standard example is the Hopf link

- The most familiar example is the Borromean rings

Brunnian Links

- A 4-component Brunnian link

Brunnian Links

An animated 6-component Brunnian link

The Hopf link: A Brunnian link with two components

Constructing a Brunnian link with 3 components

Constructing a Brunnian link with 3 components

Constructing a Brunnian link with 3 components

Constructing a Brunnian link with 3 components

Constructing a Brunnian link with 3 components

Constructing a Brunnian link with 3 components

Constructing a Brunnian link with 3 components

Constructing a Brunnian link with 3 components

Constructing a Brunnian link with 3 components

Constructing a Brunnian link with 4 components

Constructing a Brunnian link with 4 components

Constructing a Brunnian link with 4 components

Constructing a Brunnian link with 4 components

Constructing a Brunnian link with 4 components

Constructing a Brunnian link with 5 components

And so on ...

Current Work in Progress

- Let $B R_{n}$ denote the complement of a tubular neighborhood of an n-component Brunnian link in $S^{3}, n \geq 3$

Current Work in Progress

- Let $B R_{n}$ denote the complement of a tubular neighborhood of an n-component Brunnian link in $S^{3}, n \geq 3$
- Conjecture: An A_{∞}-coalgebra structure on $C_{*}\left(B R_{n}\right)$ induces

Current Work in Progress

- Let $B R_{n}$ denote the complement of a tubular neighborhood of an n-component Brunnian link in $S^{3}, n \geq 3$
- Conjecture: An A_{∞}-coalgebra structure on $C_{*}\left(B R_{n}\right)$ induces
- A primitive diagonal

$$
\Delta_{2}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right) \otimes H\left(B R_{n}\right)
$$

Current Work in Progress

- Let $B R_{n}$ denote the complement of a tubular neighborhood of an n-component Brunnian link in $S^{3}, n \geq 3$
- Conjecture: An A_{∞}-coalgebra structure on $C_{*}\left(B R_{n}\right)$ induces
- A primitive diagonal

$$
\Delta_{2}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right) \otimes H\left(B R_{n}\right)
$$

- A non-trivial n-ary operation

$$
\Delta_{n}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right)^{\otimes n}
$$

Current Work in Progress

- Let $B R_{n}$ denote the complement of a tubular neighborhood of an n-component Brunnian link in $S^{3}, n \geq 3$
- Conjecture: An A_{∞}-coalgebra structure on $C_{*}\left(B R_{n}\right)$ induces
- A primitive diagonal

$$
\Delta_{2}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right) \otimes H\left(B R_{n}\right)
$$

- A non-trivial n-ary operation

$$
\Delta_{n}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right)^{\otimes n}
$$

- Trivial k-ary operations for all $k \neq 2, n$

$$
\Delta_{k}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right)^{\otimes k}
$$

Concluding Remarks

- There is strong evidence to support this conjecture

Concluding Remarks

- There is strong evidence to support this conjecture
- The analogous statement for Massey products on cohomology holds

Concluding Remarks

- There is strong evidence to support this conjecture
- The analogous statement for Massey products on cohomology holds
- In my next lecture I'll discuss the Transfer Algorithm, which transfers an A_{∞}-coalgebra structure on cellular chains to homology

Concluding Remarks

- There is strong evidence to support this conjecture
- The analogous statement for Massey products on cohomology holds
- In my next lecture I'll discuss the Transfer Algorithm, which transfers an A_{∞}-coalgebra structure on cellular chains to homology
- Such A_{∞}-coalgebra structures on homology are topologically invariant and (presumably) detect Brunnian linkage

Concluding Remarks

- There is strong evidence to support this conjecture
- The analogous statement for Massey products on cohomology holds
- In my next lecture I'll discuss the Transfer Algorithm, which transfers an A_{∞}-coalgebra structure on cellular chains to homology
- Such A_{∞}-coalgebra structures on homology are topologically invariant and (presumably) detect Brunnian linkage
- I'll present a cellular decomposition of $B R_{n}$ and define an A_{∞}-coalgebra structure on $C\left(B R_{n}\right)$

Concluding Remarks

- There is strong evidence to support this conjecture
- The analogous statement for Massey products on cohomology holds
- In my next lecture I'll discuss the Transfer Algorithm, which transfers an A_{∞}-coalgebra structure on cellular chains to homology
- Such A_{∞}-coalgebra structures on homology are topologically invariant and (presumably) detect Brunnian linkage
- I'll present a cellular decomposition of $B R_{n}$ and define an A_{∞}-coalgebra structure on $C\left(B R_{n}\right)$
- Hopefully our computations in the meantime will confirm the conjecture for $n=3$

The End

Thank you!

