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Goal of the Project:

To computationally detect the linkage in an
n-component Brunnian link
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Review of Cellular Complexes

Let X be a connected network, surface, or solid embedded in S3
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Cellular Decompositions

A cellular decomposition of X is a finite collection of

Discrete points (vertices or 0-cells)

Closed intervals (edges or 1-cells)

Closed disks (faces or 2-cells)

Closed balls (solids or 3-cells)

Glued together in such a way that the

Non-empty boundary of a k-cell is a union of (k − 1)-cells
Non-empty intersection of cells is a cell
Union of all cells is X
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Example: 2-dim’l Sphere

S2 = D2/∂D2 (Grandma’s draw string bag)

Vertex: {v}
Edges: ∅
Face: {S2}
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Example: Torus

T = S1 × S1

Product cells: {v ,a} × {v ,b}

Vertex: {v : = v × v}
Edges: {a := a× v , b := v × b}
Face: {T := a× b}
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Example: Pinched Sphere

P = T/b

Vertex: {v}
Edge: {a}
Face: {S}
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Example: Link Complement of Two Unknots

Let UN be the complement of disjoint tubular neighborhoods U1 and U2
of two unlinked unknots in S3

∂ (U1 ∪ U2) is the wedge of two pinched spheres t1 and t2 with
respective edges a and b and shared vertex v

∂ (U1 ∪ U2) = ∂ (UN)
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Cellular Structure of UN

∂ (UN) is wedged with the equatorial 2-sphere s ⊂ S3

p = upper hemispherical 3-ball

q = lower hemispherical 3-ball r (U1 ∪ U2)
p and q are attached along s

UN = p ∪ q

Vertices: {v}
Edges: {a, b}
Faces: {s, t1, t2}
Solids: {p, q}
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Example: Link Complement of the Hopf Link

Let LN be the complement of disjoint tubular neighborhoods Ui of the
Hopf Link in S3

∂ (U1 ∪ U2) is the union of two linked tori t ′1 and t ′2 sharing edges a
and b and vertex v

∂ (U1 ∪ U2) = ∂ (LN)
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Cellular Structure of LN

∂ (LN) is wedged with the equatorial 2-sphere s ⊂ S3
p = upper hemispherical 3-ball
q′ = lower hemispherical 3-ball r (U1 ∪ U2)
p and q′ are attached along s
LN = p ∪ q′

Vertex: {v}
Edges: {a, b}
Faces: {s, t ′1, t ′2}
Solids: {p, q′}
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Homeomorphisms

X and Y are homeomorphic if

X can be continuously deformed into Y

∃ a bijective bicontinuous h : X → Y , called a homeomorphism

A square and a circle are homeomorphic

h−→

The boundaries of a doughnut and coffee mug are homeomorphic

An animated deformation of a doughnut to a coffee mug

UN and LN are not homeomorphic because...
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Homeomorphisms

Shrinking the tubular neighborhood of the red component to point

Shrinks ∂ (UN) to a pinched sphere

⇒

Shrinks ∂ (LN) to a 2-sphere

⇒

How do we can detect this computationally?
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The Geometric Diagonal

Geometric diagonal ∆X : X → X × X is defined x 7→ (x , x)

A homeomorphism h : X → Y respects diagonals

∆Y h = (h× h)∆X

Objective: Compute the obstruction to a homeomorphism

h : UN → LN

Strategy:

Assume a homeomorphism h exists
Show that h fails to respect diagonals
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The Geometric Diagonal

Problem: Im ∆X is typically not a subcomplex of X × X

Example: Im ∆I is not a subcomplex of I× I :
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Diagonal Approximations

A map ∆ : X → X × X is a diagonal approximation if

∆ is homotopic to ∆X

∆ (en) is a subcomplex of en × en for every n-cell en ⊆ X
Geometric boundary ∂ : X → X is a coderivation of ∆

∆∂ = (∂× Id+ Id×∂)∆

Cellular Approximation Theorem

There is a diagonal approximation ∆ : X → X × X
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Properties of Diagonal Approximations

Diagonal approximations preserve

Cellular structure: ∆ (en) ⊆ en × en

Dimension: dim∆ (en) = dim en

Cartesian products: ∆ (X × Y ) = ∆ (X )× ∆ (Y )

Wedge products: ∆ (X ∨ Y ) = ∆ (X ) ∨ ∆ (Y )
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Dan Kravatz’s Diagonal Approximation on a Polygon

Given n-gon G , arbitrarily choose vertices v and v ′ (possibly equal)

Edges {e1, . . . , ek} and {ek+1, . . . , en} form edge-paths from v to v ′

(one path {e1, . . . , en} if v = v ′)

Theorem (Kravatz 2008): There is a diagonal approximation

∆G = v × G + G × v ′ + ∑
1≤i<j≤k

ei × ej + ∑
n≥j>i≥k+1

ej × ei
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Example: The Heptagon G

∆G = v × G + G × v ′

+e1 × (e2 + e3 + e4) + e2 × (e3 + e4) + e3 × e4
+e7 × (e6 + e5) + e6 × e5
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Example: The Pinched Sphere

Think of the pinched sphere t1 ⊂ ∂ (UN) as a 2-gon with vertices
identified first, then edges identified

∆t1 = v × t1 + t1 × v

∆ descends to quotients when edge-paths are consistent with
identifications
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Example: The Torus

Think of the torus t ′1 ⊂ ∂ (LN) as a square with horizontal edges a
identified and vertical edges b identified

∆t ′1 = v × t ′1 + t ′1 × v + a× b+ b× a
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Cellular Chains of a Space

C (X ) denotes the Z2-vector space with basis {cells of X}

Elements are formal sums called cellular chains of X

Examples:

C (UN) has basis {v , a, b, s, t1, t2, p, q}
C (LN) has basis {v , a, b, s, t ′1, t ′2, p, q′}
Note that C (UN) ≈ C (LN)
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The Boundary Operator

Geometric boundary of an n-cell Dn is Sn−1

∂v = ∅; ∂e = S0; ∂f = S1; ∂s = S2

∂ (∂Dn) = ∂Sn−1 = ∅

The boundary operator ∂ : C (X )→ C (X ) is

Induced by the geometric boundary

Zero on vertices

Linear on chains

A derivation of the Cartesian product

∂ (a× b) = ∂a× b+ a× ∂b

Dr. Ron Umble (Millersville U and IMUS) Brunnian Links 24 April 2018 23 / 35



The Boundary Operator

Geometric boundary of an n-cell Dn is Sn−1

∂v = ∅; ∂e = S0; ∂f = S1; ∂s = S2

∂ (∂Dn) = ∂Sn−1 = ∅

The boundary operator ∂ : C (X )→ C (X ) is

Induced by the geometric boundary

Zero on vertices

Linear on chains

A derivation of the Cartesian product

∂ (a× b) = ∂a× b+ a× ∂b

Dr. Ron Umble (Millersville U and IMUS) Brunnian Links 24 April 2018 23 / 35



The Boundary Operator

Geometric boundary of an n-cell Dn is Sn−1

∂v = ∅; ∂e = S0; ∂f = S1; ∂s = S2

∂ (∂Dn) = ∂Sn−1 = ∅

The boundary operator ∂ : C (X )→ C (X ) is

Induced by the geometric boundary

Zero on vertices

Linear on chains

A derivation of the Cartesian product

∂ (a× b) = ∂a× b+ a× ∂b

Dr. Ron Umble (Millersville U and IMUS) Brunnian Links 24 April 2018 23 / 35



The Boundary Operator

Geometric boundary of an n-cell Dn is Sn−1

∂v = ∅; ∂e = S0; ∂f = S1; ∂s = S2

∂ (∂Dn) = ∂Sn−1 = ∅

The boundary operator ∂ : C (X )→ C (X ) is

Induced by the geometric boundary

Zero on vertices

Linear on chains

A derivation of the Cartesian product

∂ (a× b) = ∂a× b+ a× ∂b

Dr. Ron Umble (Millersville U and IMUS) Brunnian Links 24 April 2018 23 / 35



The Boundary Operator

Geometric boundary of an n-cell Dn is Sn−1

∂v = ∅; ∂e = S0; ∂f = S1; ∂s = S2

∂ (∂Dn) = ∂Sn−1 = ∅

The boundary operator ∂ : C (X )→ C (X ) is

Induced by the geometric boundary

Zero on vertices

Linear on chains

A derivation of the Cartesian product

∂ (a× b) = ∂a× b+ a× ∂b

Dr. Ron Umble (Millersville U and IMUS) Brunnian Links 24 April 2018 23 / 35



The Boundary Operator

Geometric boundary of an n-cell Dn is Sn−1

∂v = ∅; ∂e = S0; ∂f = S1; ∂s = S2

∂ (∂Dn) = ∂Sn−1 = ∅

The boundary operator ∂ : C (X )→ C (X ) is

Induced by the geometric boundary

Zero on vertices

Linear on chains

A derivation of the Cartesian product

∂ (a× b) = ∂a× b+ a× ∂b

Dr. Ron Umble (Millersville U and IMUS) Brunnian Links 24 April 2018 23 / 35



The Boundary Operator

Geometric boundary of an n-cell Dn is Sn−1

∂v = ∅; ∂e = S0; ∂f = S1; ∂s = S2

∂ (∂Dn) = ∂Sn−1 = ∅

The boundary operator ∂ : C (X )→ C (X ) is

Induced by the geometric boundary

Zero on vertices

Linear on chains

A derivation of the Cartesian product

∂ (a× b) = ∂a× b+ a× ∂b

Dr. Ron Umble (Millersville U and IMUS) Brunnian Links 24 April 2018 23 / 35



The Boundary Operator

Geometric boundary of an n-cell Dn is Sn−1

∂v = ∅; ∂e = S0; ∂f = S1; ∂s = S2

∂ (∂Dn) = ∂Sn−1 = ∅

The boundary operator ∂ : C (X )→ C (X ) is

Induced by the geometric boundary

Zero on vertices

Linear on chains

A derivation of the Cartesian product

∂ (a× b) = ∂a× b+ a× ∂b

Dr. Ron Umble (Millersville U and IMUS) Brunnian Links 24 April 2018 23 / 35



Examples

∂ : C (UN)→ C (UN) is defined

∂v = ∂a = ∂b = ∂s = ∂t1 = ∂t2 = 0

∂p = s

∂q = s + t1 + t2

∂ : C (LN)→ C (LN) is defined

∂v = ∂a = ∂b = ∂s = ∂t ′1 = ∂t ′2 = 0

∂p = s

∂q′ = s + t ′1 + t
′
2
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Cellular Homology

∂ ◦ ∂ = 0 implies Im ∂ ⊆ ker ∂

H (X ) := ker ∂/ Im ∂ is the cellular homology of X

Elements of H (X ) are cosets [c ] := c + Im ∂

Examples

H (UN) = {[v ] , [a] , [b] , [t1 ] = [t2 ]}
H (LN) = {[v ] , [a] , [b] , [t ′1 ] = [t ′2 ]}
Note that H (UN) ≈ H (LN)

How do diagonal approximations on UN and LN descend to
homology?
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Key Facts

Homotopic maps of spaces induce the same map on their homologies

Every diagonal approximation ∆ : X → X × X induces the same map

∆2 : H (X )→ H (X × X )

A homeomorphism h : X → Y induces maps

h∗ : H (X )→ H (Y ) and (h× h)∗ : H (X × X )→ H (Y × Y )

such that
∆2h∗ = (h× h)∗ ∆2

Assume h : UN → LN is a homeomorphism; show that
∆2h∗ 6= (h× h)∗ ∆2
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Homology of Cartesian Products

If vector space A has basis {a1, . . . , ak} , the tensor product vector
space A⊗ A has basis {ai ⊗ aj}1≤i ,j≤k

C (X × X ) ≈ C (X )⊗ C (X ) via e × e ′ 7→ e ⊗ e ′

The boundary map

∂× Id+ Id×∂ : X × X → X × X

induces the boundary operator

∂⊗ Id+ Id⊗∂ : C (X )⊗ C (X )→ C (X )⊗ C (X )

Since Z2 is a field, torsion vanishes and

H (X × X ) ≈ H (X )⊗H (X )
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Induced Diagonal on H(X)

A diagonal approximation ∆ : X → X × X induces a coproduct

∆2 : H (X )→ H (X )⊗H (X )

defined by
∆2 [c ] := [∆c ]

A class [c ] of positive dimension is primitive if

∆2 [c ] = [v ]⊗ [c ] + [c ]⊗ [v ]

Examples

∆2 [t1] = [∆t1] = [v ]⊗ [t1] + [t1]⊗ [v ]

∆2
[
t ′1
]
=
[
∆t ′1
]
= [v ]⊗

[
t ′1
]
+
[
t ′1
]
⊗ [v ] + [a]⊗ [b] + [b]⊗ [a]
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Non-Primitivity Detects the Hopf Link

If h : UN → LN is a homeomorphism, (h∗ ⊗ h∗)∆2 = ∆2h∗

But h∗ [t1] = [t ′1] implies

(h∗ ⊗ h∗)∆2 [t1] = (h∗ ⊗ h∗) ([v ]⊗ [t1] + [t1]⊗ [v ])

= [v ]⊗
[
t ′1
]
+
[
t ′1
]
⊗ [v ]

6= [v ]⊗
[
t ′1
]
+
[
t ′1
]
⊗ [v ] + [a]⊗ [b] + [b]⊗ [a]

= ∆2
[
t ′1
]
= ∆2h∗ [t1] (⇒⇐)

The non-primitive coproduct has detected the Hopf Link!

Goal: Apply this strategy to n-component Brunnian Links
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Brunnian Links

A nontrivial link is Brunnian if removing any link produces the unlink

A non-standard example is the Hopf link

The most familiar example is the Borromean rings
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Brunnian Links

A 4-component Brunnian link
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Brunnian Links

An animated 6-component Brunnian link
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https://www.youtube.com/watch?time_continue=37&v=vshcgnSUtyI


The Hopf link: A Brunnian link with two components
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Constructing a Brunnian link with 3 components
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Constructing a Brunnian link with 4 components
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Constructing a Brunnian link with 5 components
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And so on . . .
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Current Work in Progress

Let BRn denote the complement of a tubular neighborhood of an
n-component Brunnian link in S3, n ≥ 3

Conjecture: An A∞-coalgebra structure on C∗ (BRn) induces

A primitive diagonal

∆2 : H (BRn)→ H (BRn)⊗H (BRn)

A non-trivial n-ary operation

∆n : H (BRn)→ H (BRn)
⊗n

Trivial k-ary operations for all k 6= 2, n

∆k : H (BRn)→ H (BRn)
⊗k
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Concluding Remarks

There is strong evidence to support this conjecture

The analogous statement for Massey products on cohomology holds

In my next lecture I’ll discuss the Transfer Algorithm, which
transfers an A∞-coalgebra structure on cellular chains to homology

Such A∞-coalgebra structures on homology are topologically
invariant and (presumably) detect Brunnian linkage

I’ll present a cellular decomposition of BRn and define an
A∞-coalgebra structure on C (BRn)

Hopefully our computations in the meantime will confirm the
conjecture for n = 3
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I’ll present a cellular decomposition of BRn and define an
A∞-coalgebra structure on C (BRn)
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The End

Thank you!
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