Detecting the Linkage in an *n*-Component Brunnian Link

IMUS Mini-Course Session 2

Joint work with M. Fansler, H. Molina, B. Nimershiem & P. Real

Presented by Dr. Ron Umble

Millersville U and IMUS

2 May 2018

• Cell complex X

- < ≣ ≻ - <

э

- Cell complex X
- Boundary of a cell

Image: Image:

- Cell complex X
- Boundary of a cell
- Cellular chains C(X)

- Cell complex X
- Boundary of a cell
- Cellular chains C(X)
- Cellular boundary map $\partial : C(X) \rightarrow C(X)$

- Cell complex X
- Boundary of a cell
- Cellular chains C(X)
- Cellular boundary map $\partial: C(X) \rightarrow C(X)$
- $\partial \circ \partial = 0 \Rightarrow \operatorname{Im} \partial \subseteq \ker \partial$

- Cell complex X
- Boundary of a cell
- Cellular chains C(X)
- Cellular boundary map $\partial : C(X) \rightarrow C(X)$
- $\partial \circ \partial = 0 \Rightarrow \operatorname{Im} \partial \subseteq \ker \partial$
- Cellular homology $H(X) := \ker \partial / \operatorname{Im} \partial$

- Cell complex X
- Boundary of a cell
- Cellular chains C(X)
- Cellular boundary map $\partial: C\left(X\right) \rightarrow C\left(X\right)$
- $\partial \circ \partial = 0 \Rightarrow \operatorname{Im} \partial \subseteq \ker \partial$
- Cellular homology $H(X) := \ker \partial / \operatorname{Im} \partial$
- Geometric diagonal $\Delta_X : X \to X imes X$

- Cell complex X
- Boundary of a cell
- Cellular chains C(X)
- Cellular boundary map $\partial : C(X) \rightarrow C(X)$
- $\partial \circ \partial = 0 \Rightarrow \operatorname{Im} \partial \subseteq \ker \partial$
- Cellular homology $H(X) := \ker \partial / \operatorname{Im} \partial$
- Geometric diagonal $\Delta_X : X \to X imes X$
- Diagonal (approximation) Δ : $C(X) \rightarrow C(X) \otimes C(X)$

- Cell complex X
- Boundary of a cell
- Cellular chains C(X)
- Cellular boundary map $\partial : C(X) \rightarrow C(X)$
- $\partial \circ \partial = 0 \Rightarrow \operatorname{Im} \partial \subseteq \ker \partial$
- Cellular homology $H(X) := \ker \partial / \operatorname{Im} \partial$
- Geometric diagonal $\Delta_X : X \to X imes X$
- Diagonal (approximation) Δ : $C(X) \rightarrow C(X) \otimes C(X)$
- Δ induces a diagonal $\Delta_{2}: H(X) \rightarrow H(X) \otimes H(X)$ defined by

$$\Delta_{2}\left[x
ight]=\left[\Delta\left(x
ight)
ight]$$

 BR_n denote the link complement of an *n*-component Brunnian Link in S^3

Non-primitivity of the induced Δ_2 on $H(BR_2)$ detects the Hopf link

Use a similar strategy to detect linkage in an *n*-component Brunnian link

Borromean rings (n = 3)

The Borromean Rings

A Tubular Neighborhood of the Borromean Rings

Edges and vertices (front side view)

Edges and vertices (top view)

• 11 vertices, 32 edges, 26 polygons, 5 solids

$$C_0 (BR_3) = \langle v_1, v_1, \dots, v_{11} \rangle$$

$$C_1 (BR_3) = \langle m_1, \dots, m_{14}, c_1, \dots, c_{18} \rangle$$

$$C_2 (BR_3) = \langle a_1, \dots, a_4, e_1, e_2, s_1, \dots, s_{12}, t_1, \dots, t_8 \rangle$$

$$C_3 (BR_3) = \langle p, q_1, \dots, q_4 \rangle$$

• 11 vertices, 32 edges, 26 polygons, 5 solids

$$C_0 (BR_3) = \langle v_1, v_1, \dots, v_{11} \rangle$$

$$C_1 (BR_3) = \langle m_1, \dots, m_{14}, c_1, \dots, c_{18} \rangle$$

$$C_2 (BR_3) = \langle a_1, \dots, a_4, e_1, e_2, s_1, \dots, s_{12}, t_1, \dots, t_8 \rangle$$

$$C_3 (BR_3) = \langle p, q_1, \dots, q_4 \rangle$$

• Euler characteristic 11 - 32 + 26 - 5 = 0

Cellular Boundary Map

•
$$\partial p = a_1 + a_2 + a_3 + a_4$$

 $\partial q_1 = a_1 + e_1 + s_3 + s_7 + s_9 + t_1 + t_5$
 $\partial q_2 = a_2 + e_2 + s_4 + s_8 + s_{10} + t_3 + t_7$
 $\partial q_3 = a_3 + e_1 + s_1 + s_5 + s_{11} + t_2 + t_6$
 $\partial q_4 = a_4 + e_2 + s_2 + s_6 + s_{12} + t_4 + t_8$

< 口 > < 同

Cellular Boundary Map

•
$$\partial p = a_1 + a_2 + a_3 + a_4$$

 $\partial q_1 = a_1 + e_1 + s_3 + s_7 + s_9 + t_1 + t_5$
 $\partial q_2 = a_2 + e_2 + s_4 + s_8 + s_{10} + t_3 + t_7$
 $\partial q_3 = a_3 + e_1 + s_1 + s_5 + s_{11} + t_2 + t_6$
 $\partial q_4 = a_4 + e_2 + s_2 + s_6 + s_{12} + t_4 + t_8$

• Boundaries of lower dim'l cells are evident from the pictures

•
$$H_0(BR_3) = \langle [v_1] \rangle$$

 $H_1(BR_3) = \langle [m_4 + m_{11}], [m_7 + m_8], [c_{13} + c_{14}] \rangle$
 $H_2(BR_3) = \langle [t_1 + t_2 + t_3 + t_4], [t_5 + t_6 + t_7 + t_8] \rangle$
 $H_k(BR_3) = 0, k \ge 3$

Image: A matrix and a matrix

•
$$H_0(BR_3) = \langle [v_1] \rangle$$

 $H_1(BR_3) = \langle [m_4 + m_{11}], [m_7 + m_8], [c_{13} + c_{14}] \rangle$
 $H_2(BR_3) = \langle [t_1 + t_2 + t_3 + t_4], [t_5 + t_6 + t_7 + t_8] \rangle$
 $H_k(BR_3) = 0, k \ge 3$

• Euler characteristic 1 - 3 + 2 = 0

• Order vertices $v_1 < v_2 < \cdots < v_{11}$ and define

- Order vertices $v_1 < v_2 < \cdots < v_{11}$ and define
- $\Delta \mathbf{v}_i = \mathbf{v}_i \otimes \mathbf{v}_i$

- Order vertices $v_1 < v_2 < \cdots < v_{11}$ and define
- $\Delta v_i = v_i \otimes v_i$
- $\Delta c_i = (minimal vertex of c_i) \otimes c_i + c_i \otimes (maximal vertex of c_i)$

- Order vertices $v_1 < v_2 < \cdots < v_{11}$ and define
- $\Delta v_i = v_i \otimes v_i$
- $\Delta c_i = (minimal vertex of c_i) \otimes c_i + c_i \otimes (maximal vertex of c_i)$
- $\Delta m_i = (minimal \ vertex \ of \ m_i) \otimes m_i + m_i \otimes (maximal \ vertex \ of \ m_i)$

Kravatz's Diagonal on a Polygon

Theorem (Kravatz, 2006) Let G be an n-gon with initial vertex v_1 , terminal vertex v_t , and edges e_1, e_1, \ldots, e_n directed from v_1 to v_t . Then

$$\Delta\left(G\right) = \mathsf{v}_1 \otimes G + G \otimes \mathsf{v}_t + \sum_{0 < i < j < t} \mathsf{e}_i \otimes \mathsf{e}_j + \sum_{n \ge j > i \ge t} \mathsf{e}_j \otimes \mathsf{e}_i$$

defines a diagonal on C(G).

• Define Kravatz's diagonal on each 2-cell of BR₃, e.g.,

- Define Kravatz's diagonal on each 2-cell of BR₃, e.g.,
- $\Delta a_i = v_1 \otimes a_i + a_i \otimes v_{11}$

- Define Kravatz's diagonal on each 2-cell of BR₃, e.g.,
- $\Delta a_i = v_1 \otimes a_i + a_i \otimes v_{11}$

•
$$\Delta t_1 = v_1 \otimes t_1 + t_1 \otimes v_5 + m_{11} \otimes (c_3 + c_4 + m_{10}) + c_3 \otimes (c_4 + m_{10}) + c_4 \otimes m_{10}$$

• Use ad hoc techniques to define Δ on each 3-cell, e.g.,

- Use ad hoc techniques to define Δ on each 3-cell, e.g.,
- $\Delta p = v_1 \otimes p + p \otimes v_1$

• Use ad hoc techniques to define Δ on each 3-cell, e.g.,

•
$$\Delta p = v_1 \otimes p + p \otimes v_1$$

•
$$\Delta q_1 = v_1 \otimes q_1 + q_1 \otimes v_{11} + t_1 \otimes (m_{12} + c_6 + m_8 + c_{13})$$

+ $(c_1 + c_{15}) \otimes t_5 + t_5 \otimes c_{13}$
+ $c_1 \otimes s_3 + s_3 \otimes (c_6 + m_8 + c_{13})$
+ $(m_{11} + c_3) \otimes s_7 + s_7 \otimes (m_8 + c_{13})$
An extension of Δ to an A_{∞} -coalgebra structure on $C(BR_n)$ induces an A_{∞} -coalgebra structure on $H(BR_n)$ with

• A primitive diagonal

$$\Delta_2: H(BR_n) \to H(BR_n) \otimes H(BR_n)$$

An extension of Δ to an A_{∞} -coalgebra structure on $C(BR_n)$ induces an A_{∞} -coalgebra structure on $H(BR_n)$ with

• A primitive diagonal

$$\Delta_2: H(BR_n) \to H(BR_n) \otimes H(BR_n)$$

• A non-trivial n-ary operation

$$\Delta_n: H(BR_n) \to H(BR_n)^{\otimes n}$$

An extension of Δ to an A_{∞} -coalgebra structure on $C(BR_n)$ induces an A_{∞} -coalgebra structure on $H(BR_n)$ with

• A primitive diagonal

$$\Delta_2: H(BR_n) \to H(BR_n) \otimes H(BR_n)$$

• A non-trivial n-ary operation

$$\Delta_n: H(BR_n) \to H(BR_n)^{\otimes n}$$

• Trivial k-ary operations for all $k \neq 2$, n

$$\Delta_k: H(BR_n) \to H(BR_n)^{\otimes k}$$

An extension of Δ to an A_{∞} -coalgebra structure on $C(BR_n)$ induces an A_{∞} -coalgebra structure on $H(BR_n)$ with

• A primitive diagonal

$$\Delta_2: H(BR_n) \to H(BR_n) \otimes H(BR_n)$$

• A non-trivial n-ary operation

$$\Delta_n: H(BR_n) \to H(BR_n)^{\otimes n}$$

• Trivial k-ary operations for all $k \neq 2$, n

$$\Delta_k: H(BR_n) \to H(BR_n)^{\otimes k}$$

• Detects the linkage in a n-component Brunnian link

Minnich's A-infinity Coalgebra Structure on a Polygon

Theorem (Minnich, 2017) Let G be an n-gon with initial vertex v_1 , terminal vertex v_t , and edges e_1, e_1, \ldots, e_n directed from v_1 to v_t . Let Δ_2 denote the Kravatz diagonal. For k > 2 define

$$\Delta_k(G) = \sum_{0 < i_1 < \cdots < i_k < t} e_{i_1} \otimes \cdots \otimes e_{i_k} + \sum_{n \ge i_1 > \cdots > i_k \ge t} e_{i_1} \otimes \cdots \otimes e_{i_k}.$$

Then $(C(G), \partial, \Delta'_2, \Delta'_3, \ldots)$ is an A_{∞} -coalgebra.

• Let V, W be a graded \mathbb{Z}_2 -vector spaces

- Let V, W be a graded \mathbb{Z}_2 -vector spaces
- A linear map $f: V \to W$ has **degree** p if $f: V_i \to W_{i+p}$

- Let V, W be a graded \mathbb{Z}_2 -vector spaces
- A linear map $f: V \to W$ has **degree** p if $f: V_i \to W_{i+p}$
- A differential on V is a linear map ∂ : V → V of degree −1 such that ∂ ∘ ∂ = 0

- Let V, W be a graded \mathbb{Z}_2 -vector spaces
- A linear map $f: V \to W$ has **degree** p if $f: V_i \to W_{i+p}$
- A differential on V is a linear map ∂ : V → V of degree −1 such that ∂ ∘ ∂ = 0
- (V, ∂) is a differential graded vector space (d.g.v.s.)

• $Hom_{p}(V, W)$ denotes the v.s. of degree p linear maps

- $Hom_{p}(V, W)$ denotes the v.s. of degree p linear maps
- $Hom_*(V, W)$ is a d.g.v.s with differential

$$\delta(f) = \partial_W \circ f + f \circ \partial_V$$

- $Hom_{p}(V, W)$ denotes the v.s. of degree p linear maps
- $Hom_*(V, W)$ is a d.g.v.s with differential

$$\delta\left(f\right) = \partial_{W} \circ f + f \circ \partial_{V}$$

• f is a chain map iff $\delta(f) = 0$, i.e.,

$$\partial_W \circ f = f \circ \partial_V$$

- $Hom_{p}(V, W)$ denotes the v.s. of degree p linear maps
- $\mathit{Hom}_*(V, W)$ is a d.g.v.s with differential

$$\delta\left(f\right)=\partial_{W}\circ f+f\circ\partial_{V}$$

• f is a chain map iff $\delta(f) = 0$, i.e.,

$$\partial_W \circ f = f \circ \partial_V$$

• The chain maps in $(\mathit{Hom}_*\,(V,W)$, $\delta)$ form the subspace of δ -cycles

- $Hom_{p}(V, W)$ denotes the v.s. of degree p linear maps
- $\mathit{Hom}_*(V, W)$ is a d.g.v.s with differential

$$\delta\left(f\right)=\partial_{W}\circ f+f\circ\partial_{V}$$

• f is a chain map iff $\delta(f) = 0$, i.e.,

$$\partial_W \circ f = f \circ \partial_V$$

• The chain maps in $(\mathit{Hom}_*\,(V,W)\,,\delta)$ form the subspace of $\delta ext{-cycles}$

•
$$H(Hom_*(V, W)) = \ker \delta / \operatorname{Im} \delta$$

• Let $f, g: V \to W$ be maps of degree p

Image: A math a math

- Let $f, g: V \to W$ be maps of degree p
- A chain homotopy from f to g is a map $T: V \to W$ of degree p+1 such that

$$\partial_W T + T \partial_V = f + g$$

- Let $f, g: V \to W$ be maps of degree p
- A chain homotopy from f to g is a map $T: V \rightarrow W$ of degree p+1 such that

$$\partial_W T + T \partial_V = f + g$$

• When p = 0 we have

$$\cdots \longleftarrow V_{i-1} \quad \stackrel{\partial_V}{\longleftarrow} \quad V_i \quad \longleftarrow \quad \cdots \\ T \searrow \qquad \downarrow^{f+g} \quad \searrow T \\ \cdots \quad \longleftarrow \qquad W_i \quad \stackrel{\partial_W}{\longleftarrow} \quad W_{i+1} \quad \longleftarrow \cdots$$

- Let $f, g: V \to W$ be maps of degree p
- A chain homotopy from f to g is a map $T: V \rightarrow W$ of degree p+1 such that

$$\partial_W T + T \partial_V = f + g$$

• When p = 0 we have

$$\cdots \longleftarrow V_{i-1} \quad \stackrel{\partial_V}{\longleftarrow} \quad V_i \quad \longleftarrow \quad \cdots \\ T \searrow \qquad \downarrow^{f+g} \quad \searrow T \\ \cdots \quad \longleftarrow \qquad W_i \quad \stackrel{\partial_W}{\longleftarrow} \quad W_{i+1} \quad \longleftarrow \cdots$$

• f + g is a **boundary** if $\delta(T) = f + g$ for some chain homotopy T

Stasheff's Associahedra

• The associahedron K_n is an (n-2)-dimensional polytope that controls homotopy (co)associativity in n variables

Stasheff's Associahedra

 The associahedron K_n is an (n − 2)-dimensional polytope that controls homotopy (co)associativity in n variables

• Associahedra organize the structural data in the definition of an A_{∞} -(co)algebra

Stasheff's Associahedra

• The associahedron K_n is an (n-2)-dimensional polytope that controls homotopy (co)associativity in n variables

- Associahedra organize the structural data in the definition of an A_{∞} -(co)algebra
- For each $n \ge 2$, let θ_n denote the (n-2)-dimensional cell of K_n

A-infinity Coalgebras Defined

• Let (V, ∂) be a d.g.v.s. For each $n \ge 2$, choose a map α_n of deg 0 :

$$\begin{array}{ccc} C_*(K_n) & \stackrel{\alpha_n}{\longrightarrow} & Hom_*(V, V^{\otimes n}) \\ \partial \downarrow & & \downarrow \delta \\ C_{*-1}(K_n) & \stackrel{\alpha_n}{\longrightarrow} & Hom_{*-1}(V, V^{\otimes n}) \end{array}$$

and define $\Delta_n := \alpha_n (\theta_n)$

A-infinity Coalgebras Defined

• Let (V, ∂) be a d.g.v.s. For each $n \ge 2$, choose a map α_n of deg 0 :

$$\begin{array}{ccc} C_*(K_n) & \stackrel{\alpha_n}{\longrightarrow} & Hom_*(V, V^{\otimes n}) \\ \partial \downarrow & & \downarrow \delta \\ C_{*-1}(K_n) & \stackrel{\alpha_n}{\longrightarrow} & Hom_{*-1}(V, V^{\otimes n}) \end{array}$$

and define $\Delta_n := \alpha_n \left(\theta_n \right)$

• $(V, \partial, \Delta_2, \Delta_3, ...)$ is an A_{∞} -coalgebra if each α_n is a chain map, i.e.,

$$\delta \alpha_n = \alpha_n \partial$$

A-infinity Coalgebras Defined

• Let (V, ∂) be a d.g.v.s. For each $n \ge 2$, choose a map α_n of deg 0 :

$$\begin{array}{ccc} C_*(K_n) & \stackrel{\alpha_n}{\longrightarrow} & Hom_*(V, V^{\otimes n}) \\ \partial \downarrow & & \downarrow \delta \\ C_{*-1}(K_n) & \stackrel{\alpha_n}{\longrightarrow} & Hom_{*-1}(V, V^{\otimes n}) \end{array}$$

and define $\Delta_n := lpha_n \left(heta_n
ight)$

• $(V, \partial, \Delta_2, \Delta_3, ...)$ is an A_{∞} -coalgebra if each α_n is a chain map, i.e.,

$$\delta \alpha_n = \alpha_n \partial$$

• Evaluating at θ_n produces the classical structure relations

$$\delta\left(\Delta_{n}\right)=\sum_{i=1}^{n-2}\sum_{j=0}^{n-i-1}\left(-1\right)^{i\left(n+j+1\right)}\left(\mathbf{1}^{\otimes j}\otimes\Delta_{i+1}\otimes\mathbf{1}^{\otimes n-i-j-1}\right)\Delta_{n-i}$$

 Δ_n is a chain homotopy among the quadratic compositions encoded by the codim 1 cells of K_n

$$\begin{split} \delta\left(\Delta_{4}\right) &= \left(\partial \otimes \mathbf{1} \otimes \mathbf{1} + \mathbf{1} \otimes \partial \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1} \otimes \partial\right) \Delta_{4} + \Delta_{4} \partial \\ &= \left(\Delta_{2} \otimes \mathbf{1} \otimes \mathbf{1} + \mathbf{1} \otimes \Delta_{2} \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{1} \otimes \Delta_{2}\right) \Delta_{3} + \left(\Delta_{3} \otimes \mathbf{1} + \mathbf{1} \otimes \Delta_{3}\right) \Delta_{2} \end{split}$$

• Use Minnich's formula to define Δ_k , $k \ge 3$, on each 2-cell, e.g.,

- Use Minnich's formula to define Δ_k , $k \ge 3$, on each 2-cell, e.g.,
- $\Delta_3(s_3) = c_{15} \otimes m_9 \otimes c_5$

- Use Minnich's formula to define Δ_k , $k \ge 3$, on each 2-cell, e.g.,
- $\Delta_3(s_3) = c_{15} \otimes m_9 \otimes c_5$
- $\Delta_4(t_1) = m_{11} \otimes c_3 \otimes c_4 \otimes m_{10}$

- Use Minnich's formula to define Δ_k , $k \ge 3$, on each 2-cell, e.g.,
- $\Delta_3(s_3) = c_{15} \otimes m_9 \otimes c_5$
- $\Delta_4(t_1) = m_{11} \otimes c_3 \otimes c_4 \otimes m_{10}$
- $\Delta_5(s_9) = m_{11} \otimes c_3 \otimes m_{13} \otimes m_8 \otimes c_{13}$

- Use Minnich's formula to define Δ_k , $k \ge 3$, on each 2-cell, e.g.,
- $\Delta_3\left(s_3
 ight)=c_{15}\otimes m_9\otimes c_5$
- $\Delta_4(t_1) = m_{11} \otimes c_3 \otimes c_4 \otimes m_{10}$
- $\Delta_5(s_9) = m_{11} \otimes c_3 \otimes m_{13} \otimes m_8 \otimes c_{13}$
- $\Delta_k = 0$ on 2-cells for all $k \ge 6$

• M. Fansler (2016) computed Δ_3 on 3-cells, e.g.,

• M. Fansler (2016) computed Δ_3 on 3-cells, e.g.,

•
$$\Delta_3 (q_1) = t_1 \otimes m_{12} \otimes (c_6 + m_8 + c_{13})$$

+ $t_1 \otimes c_6 \otimes (m_8 + c_{13}) + t_1 \otimes m_8 \otimes c_{13}$
+ $s_3 \otimes c_6 \otimes (m_8 + c_{13}) + s_3 \otimes m_8 \otimes c_{13}$
+ $s_7 \otimes m_8 + c_{13} + (c_1 + c_{15}) \otimes t_5 \otimes c_{13}$
+ $c_1 \otimes s_3 \otimes (c_6 + m_8 + c_{13}) + c_3 \otimes s_7 \otimes (m_8 + c_{13})$
+ $m_{11} \otimes s_7 \otimes (m_8 + c_{13}) + c_1 \otimes c_{15} \otimes t_5 + m_{11} \otimes c_3 \otimes s_7$

• M. Fansler (2016) computed Δ_3 on 3-cells, e.g.,

•
$$\Delta_3 (q_1) = t_1 \otimes m_{12} \otimes (c_6 + m_8 + c_{13})$$

+ $t_1 \otimes c_6 \otimes (m_8 + c_{13}) + t_1 \otimes m_8 \otimes c_{13}$
+ $s_3 \otimes c_6 \otimes (m_8 + c_{13}) + s_3 \otimes m_8 \otimes c_{13}$
+ $s_7 \otimes m_8 + c_{13} + (c_1 + c_{15}) \otimes t_5 \otimes c_{13}$
+ $c_1 \otimes s_3 \otimes (c_6 + m_8 + c_{13}) + c_3 \otimes s_7 \otimes (m_8 + c_{13})$
+ $m_{11} \otimes s_7 \otimes (m_8 + c_{13}) + c_1 \otimes c_{15} \otimes t_5 + m_{11} \otimes c_3 \otimes s_7$

• Δ_4 and Δ_5 remains to be computed on 3-cells

• M. Fansler (2016) computed Δ_3 on 3-cells, e.g.,

•
$$\Delta_3 (q_1) = t_1 \otimes m_{12} \otimes (c_6 + m_8 + c_{13})$$

+ $t_1 \otimes c_6 \otimes (m_8 + c_{13}) + t_1 \otimes m_8 \otimes c_{13}$
+ $s_3 \otimes c_6 \otimes (m_8 + c_{13}) + s_3 \otimes m_8 \otimes c_{13}$
+ $s_7 \otimes m_8 + c_{13} + (c_1 + c_{15}) \otimes t_5 \otimes c_{13}$
+ $c_1 \otimes s_3 \otimes (c_6 + m_8 + c_{13}) + c_3 \otimes s_7 \otimes (m_8 + c_{13})$
+ $m_{11} \otimes s_7 \otimes (m_8 + c_{13}) + c_1 \otimes c_{15} \otimes t_5 + m_{11} \otimes c_3 \otimes s_7$

- Δ_4 and Δ_5 remains to be computed on 3-cells
- $\Delta_k = 0$ for all $k \ge 6$

Introduction Transfer Algorithm Implementation Examples Conclusions

Transferring Coproducts

Goal:

 $\begin{array}{c} A_{\infty}\text{-coalgebra on chains} \\ (C, \partial, \Delta_2, \Delta_3, ...) \\ \downarrow \\ (H, 0, \Delta^2, \Delta^3, ...) \\ A_{\infty}\text{-coalgebra in homology} \end{array}$

< 17 >

- ₹ 🖬 🕨

Introduction Transfer Algorithm Implementation Examples Conclusions

Transferring Coproducts

Required input:

- Coalgebra on chains (${\it C}, \partial, \Delta_2, \Delta_3, ...)$ and
- a cycle-selecting map g : H → Z(C), where Z(C) denotes the subspace of cycles in C.

Note: In practice we only required Δ_2 at the outset and computed the rest as needed.
How Does It Work?

Strategy: Construct a chain map from the top dimension and codim-1 cells of the (n-1)-dimensional multiplihedron, denoted J_n , to maps between H and $C^{\otimes n}$.

 J_n is a polytope that captures the combinational structure of mapping between two A_∞-coalgebras.

< 17 ▶

- ∢ ≣ ▶

- J_n is a polytope that captures the combinational structure of mapping between two A_∞-coalgebras.
- Consider J_1 and J_2 .

<ロト < 同ト < 三ト

Extending to J_3

(日) (同) (三) (三)

Table of Contents

Introduction

2 Transfer Algorithm

Implementation

4 Examples

5 Conclusions

< ∃ >

э

Linear Algebraic Methods

Good News

Linear algebra provides robust and theoretically correct methods for solving the various induction steps of the transfer algorithm.

Linear Algebraic Methods

Good News

Linear algebra provides robust and theoretically correct methods for solving the various induction steps of the transfer algorithm.

Bad News

The matrices are too large to be solved within a reasonable amount of storage space and time.

Two Problems

Problem (Preboundary)

Given a cycle $x \in C^{\otimes n}$ of degree k, find a chain $y \in C^{\otimes n}$ of degree k + 1, such that $\partial(y) = x$.

Problem (Factorization)

Given a cycle $c \in Z(C^{\otimes n})$, find all subcycles of c of the form $Z(C)^{\otimes n}$.

< ロ > < 同 > < 三 > <

Preboundary Problem: Δ_3

 \bullet First problem arose in computing Δ_3

(日) (同) (三) (三)

Preboundary Problem: Δ_3

- First problem arose in computing Δ_3
- It is the preboundary of $(\Delta_2 \otimes 1 + 1 \otimes \Delta_2) \Delta_2$

< □ > < 同 >

- ∢ ≣ ▶

Preboundary Problem: Δ_3

- First problem arose in computing Δ_3
- It is the preboundary of $(\Delta_2\otimes 1+1\otimes \Delta_2)\Delta_2$
- $\bullet\,$ Brute force linear algebra approach entails 1.8 mil row $\times\,$ 4 mil column matrix

- ∢ ≣ ▶

< □ > < 向 >

Preboundary Problem: Δ_3

- First problem arose in computing Δ_3
- It is the preboundary of $(\Delta_2 \otimes 1 + 1 \otimes \Delta_2) \Delta_2$
- $\bullet\,$ Brute force linear algebra approach entails 1.8 mil row \times 4 mil column matrix
- Instead, solved with a best-first search algorithm

Factorization Problem

• Second problem comes from deriving Δ^n

(日) (同) (三) (三)

э

Factorization Problem

- Second problem comes from deriving Δ^n
- Transfer Algorithm specifies computing $[\phi_n]$, i.e., $H_*(\text{Hom}(H, Z(C^{\otimes (n+2)})))$

(日)

Factorization Problem

- Second problem comes from deriving Δ^n
- Transfer Algorithm specifies computing $[\phi_n]$, i.e., $H_*(\text{Hom}(H, Z(C^{\otimes (n+2)})))$
- However, Künneth Theorem tells us that $H_*(C^{\otimes n}) \cong H_*(C)^{\otimes n}$

< ∃ >

- ∢ 🗇 ▶

Factorization Problem

- Second problem comes from deriving Δ^n
- Transfer Algorithm specifies computing $[\phi_n]$, i.e., $H_*(\operatorname{Hom}(H, Z(C^{\otimes (n+2)})))$
- However, Künneth Theorem tells us that $H_*(C^{\otimes n}) \cong H_*(C)^{\otimes n}$
- Hence, non-boundary cycles in ϕ_n in should be of the form $Z(C)^{\otimes (n+2)}$

- ∢ f型 ▶

Factorization Problem

- Second problem comes from deriving Δ^n
- Transfer Algorithm specifies computing $[\phi_n]$, i.e., $H_*(\operatorname{Hom}(H, Z(C^{\otimes (n+2)})))$
- However, Künneth Theorem tells us that $H_*(C^{\otimes n}) \cong H_*(C)^{\otimes n}$
- Hence, non-boundary cycles in ϕ_n in should be of the form $Z(C)^{\otimes (n+2)}$
- Again, an algorithmic approach appears to be a feasible alternative

•
$$H_0 = \{0_0\}$$
, $H_1 = \{1_0, 1_1, 1_2\}$, $H_2 = \{2_0, 2_1\}$

Image: Image:

•
$$H_0 = \{0_0\}$$
, $H_1 = \{1_0, 1_1, 1_2\}$, $H_2 = \{2_0, 2_1\}$

• $\Delta^2(0_0) = 0_0 \otimes 0_0$

•
$$H_0 = \{0_0\}$$
, $H_1 = \{1_0, 1_1, 1_2\}$, $H_2 = \{2_0, 2_1\}$

•
$$\Delta^2\left(0_0
ight)=0_0\otimes 0_0$$

•
$$\Delta^2 (1_0) = 0_0 \otimes 1_0 + 1_0 \otimes 0_0$$

 $\Delta^2 (1_1) = 0_0 \otimes 1_1 + 1_1 \otimes 0_0$
 $\Delta^2 (1_1) = 0_0 \otimes 1_1 + 1_1 \otimes 0_0$

Image: Image:

•
$$H_0 = \{0_0\}$$
, $H_1 = \{1_0, 1_1, 1_2\}$, $H_2 = \{2_0, 2_1\}$

•
$$\Delta^2\left(0_0
ight)=0_0\otimes 0_0$$

•
$$\Delta^2(1_0) = 0_0 \otimes 1_0 + 1_0 \otimes 0_0$$

 $\Delta^2(1_1) = 0_0 \otimes 1_1 + 1_1 \otimes 0_0$
 $\Delta^2(1_1) = 0_0 \otimes 1_1 + 1_1 \otimes 0_0$

• $\Delta^{3}(2_{0}) = 1_{0} \otimes 1_{1} \otimes 1_{2} + 1_{0} \otimes 1_{2} \otimes 1_{1} + 1_{1} \otimes 1_{2} \otimes 1_{0} + 1_{2} \otimes 1_{1} \otimes 1_{0}$ $\Delta^{3}(2_{1}) = 1_{0} \otimes 1_{1} \otimes 1_{2} + 1_{1} \otimes 1_{0} \otimes 1_{2} + 1_{2} \otimes 1_{0} \otimes 1_{1} + 1_{2} \otimes 1_{1} \otimes 1_{0}$

•
$$H_0 = \{0_0\}$$
 , $H_1 = \{1_0, 1_1, 1_2\}$, $H_2 = \{2_0, 2_1\}$

•
$$\Delta^2\left(0_0
ight)=0_0\otimes 0_0$$

•
$$\Delta^2(1_0) = 0_0 \otimes 1_0 + 1_0 \otimes 0_0$$

 $\Delta^2(1_1) = 0_0 \otimes 1_1 + 1_1 \otimes 0_0$
 $\Delta^2(1_1) = 0_0 \otimes 1_1 + 1_1 \otimes 0_0$

• $\Delta^{3}(2_{0}) = 1_{0} \otimes 1_{1} \otimes 1_{2} + 1_{0} \otimes 1_{2} \otimes 1_{1} + 1_{1} \otimes 1_{2} \otimes 1_{0} + 1_{2} \otimes 1_{1} \otimes 1_{0}$ $\Delta^{3}(2_{1}) = 1_{0} \otimes 1_{1} \otimes 1_{2} + 1_{1} \otimes 1_{0} \otimes 1_{2} + 1_{2} \otimes 1_{0} \otimes 1_{1} + 1_{2} \otimes 1_{1} \otimes 1_{0}$

• Linkage detected but Δ^4 remains to be computed

• B. Nimershiem found an inductive way to construct a cellular decomposition of BR_n

- B. Nimershiem found an inductive way to construct a cellular decomposition of *BR_n*
- Her construction adjusts the decomposition of *BR*₃ so that all 2-cells have 5 edges

- B. Nimershiem found an inductive way to construct a cellular decomposition of *BR_n*
- Her construction adjusts the decomposition of *BR*₃ so that all 2-cells have 5 edges
- Numbers of vertices, edges, faces, and solids in her decomposition are the same as in mine

Nimershiem's Decomposition of BR(3)

Nimershiem's Decomposition of BR(3)

Nimershiem's Decomposition of BR(3)

• Redo the BR₃ calculations using Nimershiem's decomposition

- Redo the BR₃ calculations using Nimershiem's decomposition
- Use Nimershiem's decomposition to calculate BR4

- Redo the *BR*₃ calculations using Nimershiem's decomposition
- Use Nimershiem's decomposition to calculate BR4
- Hopefully gain the insight to find an inductive proof of the conjecture

- Redo the *BR*₃ calculations using Nimershiem's decomposition
- Use Nimershiem's decomposition to calculate BR4
- Hopefully gain the insight to find an inductive proof of the conjecture
- Stay tuned!!

Thank you!

Image: A image: A