Detecting the Linkage in an n-Component Brunnian Link

IMUS Mini-Course Session 2

Joint work with M. Fansler, H. Molina, B. Nimershiem \& P. Real
Presented by Dr. Ron Umble
Millersville U and IMUS
2 May 2018

Recap of Lecture 1

- Cell complex X

Recap of Lecture 1

- Cell complex X
- Boundary of a cell

Recap of Lecture 1

- Cell complex X
- Boundary of a cell
- Cellular chains $C(X)$

Recap of Lecture 1

- Cell complex X
- Boundary of a cell
- Cellular chains $C(X)$
- Cellular boundary map $\partial: C(X) \rightarrow C(X)$

Recap of Lecture 1

- Cell complex X
- Boundary of a cell
- Cellular chains $C(X)$
- Cellular boundary map $\partial: C(X) \rightarrow C(X)$
- $\partial \circ \partial=0 \Rightarrow \operatorname{Im} \partial \subseteq \operatorname{ker} \partial$

Recap of Lecture 1

- Cell complex X
- Boundary of a cell
- Cellular chains $C(X)$
- Cellular boundary map $\partial: C(X) \rightarrow C(X)$
- $\partial \circ \partial=0 \Rightarrow \operatorname{Im} \partial \subseteq \operatorname{ker} \partial$
- Cellular homology $H(X):=\operatorname{ker} \partial / \operatorname{Im} \partial$

Recap of Lecture 1

- Cell complex X
- Boundary of a cell
- Cellular chains $C(X)$
- Cellular boundary map $\partial: C(X) \rightarrow C(X)$
- $\partial \circ \partial=0 \Rightarrow \operatorname{Im} \partial \subseteq \operatorname{ker} \partial$
- Cellular homology $H(X):=\operatorname{ker} \partial / \operatorname{Im} \partial$
- Geometric diagonal $\Delta_{X}: X \rightarrow X \times X$

Recap of Lecture 1

- Cell complex X
- Boundary of a cell
- Cellular chains $C(X)$
- Cellular boundary map $\partial: C(X) \rightarrow C(X)$
- $\partial \circ \partial=0 \Rightarrow \operatorname{Im} \partial \subseteq \operatorname{ker} \partial$
- Cellular homology $H(X):=\operatorname{ker} \partial / \operatorname{Im} \partial$
- Geometric diagonal $\Delta_{X}: X \rightarrow X \times X$
- Diagonal (approximation) $\Delta: C(X) \rightarrow C(X) \otimes C(X)$

Recap of Lecture 1

- Cell complex X
- Boundary of a cell
- Cellular chains $C(X)$
- Cellular boundary map $\partial: C(X) \rightarrow C(X)$
- $\partial \circ \partial=0 \Rightarrow \operatorname{Im} \partial \subseteq \operatorname{ker} \partial$
- Cellular homology $H(X):=\operatorname{ker} \partial / \operatorname{Im} \partial$
- Geometric diagonal $\Delta_{X}: X \rightarrow X \times X$
- Diagonal (approximation) $\Delta: C(X) \rightarrow C(X) \otimes C(X)$
- Δ induces a diagonal $\Delta_{2}: H(X) \rightarrow H(X) \otimes H(X)$ defined by

$$
\Delta_{2}[x]=[\Delta(x)]
$$

Main result

$B R_{n}$ denote the link complement of an n-component Brunnian Link in S^{3}
Non-primitivity of the induced Δ_{2} on $H\left(B R_{2}\right)$ detects the Hopf link

Goal of the Project

Use a similar strategy to detect linkage in an n-component Brunnian link

Borromean rings ($n=3$)

The Borromean Rings

A Tubular Neighborhood of the Borromean Rings

A Cellular Decomposition of BR(3)

2-cells (front side view)

A Cellular Decomposition of BR(3)

A Cellular Decomposition of BR(3)

2-cells (top view)

A Cellular Decomposition of BR(3)

Edges and vertices (front side view)

A Cellular Decomposition of BR(3)

Edges and vertices (top view)

Cellular Chains of BR(3)

- 11 vertices, 32 edges, 26 polygons, 5 solids

$$
\begin{aligned}
& C_{0}\left(B R_{3}\right)=\left\langle v_{1}, v_{1}, \ldots, v_{11}\right\rangle \\
& C_{1}\left(B R_{3}\right)=\left\langle m_{1}, \ldots, m_{14}, c_{1}, \ldots, c_{18}\right\rangle \\
& C_{2}\left(B R_{3}\right)=\left\langle a_{1}, \ldots, a_{4}, e_{1}, e_{2}, s_{1}, \ldots, s_{12}, t_{1}, \ldots, t_{8}\right\rangle \\
& C_{3}\left(B R_{3}\right)=\left\langle p, q_{1}, \ldots, q_{4}\right\rangle
\end{aligned}
$$

Cellular Chains of BR(3)

- 11 vertices, 32 edges, 26 polygons, 5 solids

$$
\begin{aligned}
& C_{0}\left(B R_{3}\right)=\left\langle v_{1}, v_{1}, \ldots, v_{11}\right\rangle \\
& C_{1}\left(B R_{3}\right)=\left\langle m_{1}, \ldots, m_{14}, c_{1}, \ldots, c_{18}\right\rangle \\
& C_{2}\left(B R_{3}\right)=\left\langle a_{1}, \ldots, a_{4}, e_{1}, e_{2}, s_{1}, \ldots, s_{12}, t_{1}, \ldots, t_{8}\right\rangle \\
& C_{3}\left(B R_{3}\right)=\left\langle p, q_{1}, \ldots, q_{4}\right\rangle
\end{aligned}
$$

- Euler characteristic $11-32+26-5=0$

Cellular Boundary Map

- $\partial p=a_{1}+a_{2}+a_{3}+a_{4}$

$$
\begin{aligned}
& \partial q_{1}=a_{1}+e_{1}+s_{3}+s_{7}+s_{9}+t_{1}+t_{5} \\
& \partial q_{2}=a_{2}+e_{2}+s_{4}+s_{8}+s_{10}+t_{3}+t_{7} \\
& \partial q_{3}=a_{3}+e_{1}+s_{1}+s_{5}+s_{11}+t_{2}+t_{6} \\
& \partial q_{4}=a_{4}+e_{2}+s_{2}+s_{6}+s_{12}+t_{4}+t_{8}
\end{aligned}
$$

Cellular Boundary Map

- $\partial p=a_{1}+a_{2}+a_{3}+a_{4}$

$$
\begin{aligned}
& \partial q_{1}=a_{1}+e_{1}+s_{3}+s_{7}+s_{9}+t_{1}+t_{5} \\
& \partial q_{2}=a_{2}+e_{2}+s_{4}+s_{8}+s_{10}+t_{3}+t_{7} \\
& \partial q_{3}=a_{3}+e_{1}+s_{1}+s_{5}+s_{11}+t_{2}+t_{6} \\
& \partial q_{4}=a_{4}+e_{2}+s_{2}+s_{6}+s_{12}+t_{4}+t_{8}
\end{aligned}
$$

- Boundaries of lower dim'l cells are evident from the pictures

Cellular Homology of BR(3)

- $H_{0}\left(B R_{3}\right)=\left\langle\left[v_{1}\right]\right\rangle$
$H_{1}\left(B R_{3}\right)=\left\langle\left[m_{4}+m_{11}\right],\left[m_{7}+m_{8}\right],\left[c_{13}+c_{14}\right]\right\rangle$
$H_{2}\left(B R_{3}\right)=\left\langle\left[t_{1}+t_{2}+t_{3}+t_{4}\right],\left[t_{5}+t_{6}+t_{7}+t_{8}\right]\right\rangle$
$H_{k}\left(B R_{3}\right)=0, k \geq 3$

Cellular Homology of BR(3)

- $H_{0}\left(B R_{3}\right)=\left\langle\left[v_{1}\right]\right\rangle$
$H_{1}\left(B R_{3}\right)=\left\langle\left[m_{4}+m_{11}\right],\left[m_{7}+m_{8}\right],\left[c_{13}+c_{14}\right]\right\rangle$
$H_{2}\left(B R_{3}\right)=\left\langle\left[t_{1}+t_{2}+t_{3}+t_{4}\right],\left[t_{5}+t_{6}+t_{7}+t_{8}\right]\right\rangle$
$H_{k}\left(B R_{3}\right)=0, k \geq 3$
- Euler characteristic $1-3+2=0$

The Diagonal on 0 and 1-cells

- Order vertices $v_{1}<v_{2}<\cdots<v_{11}$ and define

The Diagonal on 0 and 1-cells

- Order vertices $v_{1}<v_{2}<\cdots<v_{11}$ and define
- $\Delta v_{i}=v_{i} \otimes v_{i}$

The Diagonal on 0 and 1 -cells

- Order vertices $v_{1}<v_{2}<\cdots<v_{11}$ and define
- $\Delta v_{i}=v_{i} \otimes v_{i}$
- $\Delta c_{i}=\left(\right.$ minimal vertex of $\left.c_{i}\right) \otimes c_{i}+c_{i} \otimes\left(\right.$ maximal vertex of $\left.c_{i}\right)$

The Diagonal on 0 and 1 -cells

- Order vertices $v_{1}<v_{2}<\cdots<v_{11}$ and define
- $\Delta v_{i}=v_{i} \otimes v_{i}$
- $\Delta c_{i}=\left(\right.$ minimal vertex of $\left.c_{i}\right) \otimes c_{i}+c_{i} \otimes$ (maximal vertex of $\left.c_{i}\right)$
- $\Delta m_{i}=\left(\right.$ minimal vertex of $\left.m_{i}\right) \otimes m_{i}+m_{i} \otimes\left(\right.$ maximal vertex of $\left.m_{i}\right)$

Kravatz's Diagonal on a Polygon

Theorem (Kravatz, 2006) Let G be an n-gon with initial vertex v_{1}, terminal vertex v_{t}, and edges $e_{1}, e_{1}, \ldots, e_{n}$ directed from v_{1} to v_{t}. Then

$$
\Delta(G)=v_{1} \otimes G+G \otimes v_{t}+\sum_{0<i<j<t} e_{i} \otimes e_{j}+\sum_{n \geq j>i \geq t} e_{j} \otimes e_{i}
$$

defines a diagonal on $C(G)$.

A Diagonal on 2-cells

- Define Kravatz's diagonal on each 2-cell of $B R_{3}$, e.g.,

A Diagonal on 2-cells

- Define Kravatz's diagonal on each 2-cell of $B R_{3}$, e.g.,
- $\Delta a_{i}=v_{1} \otimes a_{i}+a_{i} \otimes v_{11}$

A Diagonal on 2-cells

- Define Kravatz's diagonal on each 2-cell of $B R_{3}$, e.g.,
- $\Delta a_{i}=v_{1} \otimes a_{i}+a_{i} \otimes v_{11}$
- $\Delta t_{1}=v_{1} \otimes t_{1}+t_{1} \otimes v_{5}+m_{11} \otimes\left(c_{3}+c_{4}+m_{10}\right)$

$$
+c_{3} \otimes\left(c_{4}+m_{10}\right)+c_{4} \otimes m_{10}
$$

A Diagonal on 3-cells

- Use ad hoc techniques to define Δ on each 3-cell, e.g.,

A Diagonal on 3-cells

- Use ad hoc techniques to define Δ on each 3-cell, e.g.,
- $\Delta p=v_{1} \otimes p+p \otimes v_{1}$

A Diagonal on 3-cells

- Use ad hoc techniques to define Δ on each 3-cell, e.g.,
- $\Delta p=v_{1} \otimes p+p \otimes v_{1}$
- $\Delta q_{1}=v_{1} \otimes q_{1}+q_{1} \otimes v_{11}+t_{1} \otimes\left(m_{12}+c_{6}+m_{8}+c_{13}\right)$

$$
\begin{aligned}
& +\left(c_{1}+c_{15}\right) \otimes t_{5}+t_{5} \otimes c_{13} \\
& +c_{1} \otimes s_{3}+s_{3} \otimes\left(c_{6}+m_{8}+c_{13}\right) \\
& +\left(m_{11}+c_{3}\right) \otimes s_{7}+s_{7} \otimes\left(m_{8}+c_{13}\right)
\end{aligned}
$$

Conjecture

An extension of Δ to an A_{∞}-coalgebra structure on $C\left(B R_{n}\right)$ induces an A_{∞}-coalgebra structure on $H\left(B R_{n}\right)$ with

- A primitive diagonal

$$
\Delta_{2}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right) \otimes H\left(B R_{n}\right)
$$

Conjecture

An extension of Δ to an A_{∞}-coalgebra structure on $C\left(B R_{n}\right)$ induces an A_{∞}-coalgebra structure on $H\left(B R_{n}\right)$ with

- A primitive diagonal

$$
\Delta_{2}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right) \otimes H\left(B R_{n}\right)
$$

- A non-trivial n-ary operation

$$
\Delta_{n}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right)^{\otimes n}
$$

Conjecture

An extension of Δ to an A_{∞}-coalgebra structure on $C\left(B R_{n}\right)$ induces an A_{∞}-coalgebra structure on $H\left(B R_{n}\right)$ with

- A primitive diagonal

$$
\Delta_{2}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right) \otimes H\left(B R_{n}\right)
$$

- A non-trivial n-ary operation

$$
\Delta_{n}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right)^{\otimes n}
$$

- Trivial k-ary operations for all $k \neq 2$, n

$$
\Delta_{k}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right)^{\otimes k}
$$

Conjecture

An extension of Δ to an A_{∞}-coalgebra structure on $C\left(B R_{n}\right)$ induces an A_{∞}-coalgebra structure on $H\left(B R_{n}\right)$ with

- A primitive diagonal

$$
\Delta_{2}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right) \otimes H\left(B R_{n}\right)
$$

- A non-trivial n-ary operation

$$
\Delta_{n}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right)^{\otimes n}
$$

- Trivial k-ary operations for all $k \neq 2$, n

$$
\Delta_{k}: H\left(B R_{n}\right) \rightarrow H\left(B R_{n}\right)^{\otimes k}
$$

- Detects the linkage in a n-component Brunnian link

Minnich's A-infinity Coalgebra Structure on a Polygon

Theorem (Minnich, 2017) Let G be an n-gon with initial vertex v_{1}, terminal vertex v_{t}, and edges $e_{1}, e_{1}, \ldots, e_{n}$ directed from v_{1} to v_{t}. Let Δ_{2} denote the Kravatz diagonal. For $k>2$ define

$$
\Delta_{k}(G)=\sum_{0<i_{1}<\cdots<i_{k}<t} e_{i_{1}} \otimes \cdots \otimes e_{i_{k}}+\sum_{n \geq i_{1}>\cdots>i_{k} \geq t} e_{i_{1}} \otimes \cdots \otimes e_{i_{k}} .
$$

Then $\left(C(G), \partial, \Delta_{2}^{\prime}, \Delta_{3}^{\prime}, \ldots\right)$ is an A_{∞}-coalgebra.

Differential Graded Vector Spaces

- Let V, W be a graded \mathbb{Z}_{2}-vector spaces

Differential Graded Vector Spaces

- Let V, W be a graded \mathbb{Z}_{2}-vector spaces
- A linear map $f: V \rightarrow W$ has degree p if $f: V_{i} \rightarrow W_{i+p}$

Differential Graded Vector Spaces

- Let V, W be a graded \mathbb{Z}_{2}-vector spaces
- A linear map $f: V \rightarrow W$ has degree p if $f: V_{i} \rightarrow W_{i+p}$
- A differential on V is a linear map $\partial: V \rightarrow V$ of degree -1 such that $\partial \circ \partial=0$

Differential Graded Vector Spaces

- Let V, W be a graded \mathbb{Z}_{2}-vector spaces
- A linear map $f: V \rightarrow W$ has degree p if $f: V_{i} \rightarrow W_{i+p}$
- A differential on V is a linear map $\partial: V \rightarrow V$ of degree -1 such that $\partial \circ \partial=0$
- (V, ∂) is a differential graded vector space (d.g.v.s.)

Chain Maps

- $\operatorname{Hom}_{p}(V, W)$ denotes the v.s. of degree p linear maps

Chain Maps

- $\operatorname{Hom}_{p}(V, W)$ denotes the v.s. of degree p linear maps
- $\operatorname{Hom}_{*}(V, W)$ is a d.g.v.s with differential

$$
\delta(f)=\partial_{W} \circ f+f \circ \partial_{V}
$$

Chain Maps

- $\operatorname{Hom}_{p}(V, W)$ denotes the v.s. of degree p linear maps
- $\operatorname{Hom}_{*}(V, W)$ is a d.g.v.s with differential

$$
\delta(f)=\partial_{W} \circ f+f \circ \partial_{V}
$$

- f is a chain map iff $\delta(f)=0$, i.e.,

$$
\partial_{W} \circ f=f \circ \partial_{V}
$$

Chain Maps

- $\operatorname{Hom}_{p}(V, W)$ denotes the v.s. of degree p linear maps
- $\operatorname{Hom}_{*}(V, W)$ is a d.g.v.s with differential

$$
\delta(f)=\partial_{W} \circ f+f \circ \partial_{V}
$$

- f is a chain map iff $\delta(f)=0$, i.e.,

$$
\partial_{W} \circ f=f \circ \partial_{V}
$$

- The chain maps in $\left(\operatorname{Hom}_{*}(V, W), \delta\right)$ form the subspace of δ-cycles

Chain Maps

- $\operatorname{Hom}_{p}(V, W)$ denotes the v.s. of degree p linear maps
- $\operatorname{Hom}_{*}(V, W)$ is a d.g.v.s with differential

$$
\delta(f)=\partial_{W} \circ f+f \circ \partial_{V}
$$

- f is a chain map iff $\delta(f)=0$, i.e.,

$$
\partial_{W} \circ f=f \circ \partial_{V}
$$

- The chain maps in $\left(\operatorname{Hom}_{*}(V, W), \delta\right)$ form the subspace of δ-cycles
- $H\left(\operatorname{Hom}_{*}(V, W)\right)=\operatorname{ker} \delta / \operatorname{Im} \delta$

Chain Homotopies

- Let $f, g: V \rightarrow W$ be maps of degree p

Chain Homotopies

- Let $f, g: V \rightarrow W$ be maps of degree p
- A chain homotopy from f to g is a map $T: V \rightarrow W$ of degree $p+1$ such that

$$
\partial_{W} T+T \partial_{V}=f+g
$$

Chain Homotopies

- Let $f, g: V \rightarrow W$ be maps of degree p
- A chain homotopy from f to g is a map $T: V \rightarrow W$ of degree $p+1$ such that

$$
\partial_{W} T+T \partial_{V}=f+g
$$

- When $p=0$ we have

$$
\begin{array}{lllll}
\cdots \longleftarrow & V_{i-1} & \longleftarrow \partial_{V} & V_{i} & \longleftarrow \\
& T \searrow & \downarrow^{f+g} & \searrow T & \\
& \cdots & \longleftarrow & W_{i} & \longleftarrow \\
& & W_{i+1}
\end{array}
$$

Chain Homotopies

- Let $f, g: V \rightarrow W$ be maps of degree p
- A chain homotopy from f to g is a map $T: V \rightarrow W$ of degree $p+1$ such that

$$
\partial_{W} T+T \partial_{V}=f+g
$$

- When $p=0$ we have

$$
\begin{array}{lllll}
\cdots \longleftarrow & V_{i-1} & \longleftarrow \partial_{V} & V_{i} & \longleftarrow \\
& T \searrow & \downarrow^{f+g} & \searrow T \\
& \cdots & \longleftarrow & W_{i} & \longleftarrow \\
& & W_{i+1}
\end{array}
$$

- $f+g$ is a boundary if $\delta(T)=f+g$ for some chain homotopy T

Stasheff's Associahedra

- The associahedron K_{n} is an ($n-2$)-dimensional polytope that controls homotopy (co)associativity in n variables

Stasheff's Associahedra

- The associahedron K_{n} is an ($n-2$)-dimensional polytope that controls homotopy (co)associativity in n variables

- Associahedra organize the structural data in the definition of an A_{∞}-(co)algebra

Stasheff's Associahedra

- The associahedron K_{n} is an ($n-2$)-dimensional polytope that controls homotopy (co)associativity in n variables

- Associahedra organize the structural data in the definition of an A_{∞}-(co)algebra
- For each $n \geq 2$, let θ_{n} denote the ($n-2$)-dimensional cell of K_{n}

A-infinity Coalgebras Defined

- Let (V, ∂) be a d.g.v.s. For each $n \geq 2$, choose a map α_{n} of deg 0 :

$$
\begin{array}{ccc}
C_{*}\left(K_{n}\right) & \xrightarrow[\alpha_{n}]{ } & \operatorname{Hom}_{*}\left(V, V^{\otimes n}\right) \\
\partial \downarrow & & \downarrow \delta \\
C_{*-1}\left(K_{n}\right) & \xrightarrow[\alpha_{n}]{\longrightarrow} & \operatorname{Hom}_{*-1}\left(V, V^{\otimes n}\right)
\end{array}
$$

and define $\Delta_{n}:=\alpha_{n}\left(\theta_{n}\right)$

A-infinity Coalgebras Defined

- Let (V, ∂) be a d.g.v.s. For each $n \geq 2$, choose a map α_{n} of $\operatorname{deg} 0$:

$$
\begin{array}{ccc}
C_{*}\left(K_{n}\right) & \xrightarrow{\alpha_{n}} & \operatorname{Hom}_{*}\left(V, V^{\otimes n}\right) \\
\partial \downarrow & & \downarrow \delta \\
C_{*-1}\left(K_{n}\right) & \xrightarrow[\alpha_{n}]{\longrightarrow} & \operatorname{Hom}_{*-1}\left(V, V^{\otimes n}\right)
\end{array}
$$

and define $\Delta_{n}:=\alpha_{n}\left(\theta_{n}\right)$

- $\left(V, \partial, \Delta_{2}, \Delta_{3}, \ldots\right)$ is an A_{∞}-coalgebra if each α_{n} is a chain map, i.e.,

$$
\delta \alpha_{n}=\alpha_{n} \partial
$$

A-infinity Coalgebras Defined

- Let (V, ∂) be a d.g.v.s. For each $n \geq 2$, choose a map α_{n} of $\operatorname{deg} 0$:

$$
\begin{array}{ccc}
C_{*}\left(K_{n}\right) & \xrightarrow[\alpha_{n}]{ } & \operatorname{Hom}_{*}\left(V, V^{\otimes n}\right) \\
\partial \downarrow & & \downarrow \delta \\
C_{*-1}\left(K_{n}\right) & \xrightarrow[\alpha_{n}]{\longrightarrow} & \operatorname{Hom}_{*-1}\left(V, V^{\otimes n}\right)
\end{array}
$$

and define $\Delta_{n}:=\alpha_{n}\left(\theta_{n}\right)$

- $\left(V, \partial, \Delta_{2}, \Delta_{3}, \ldots\right)$ is an A_{∞}-coalgebra if each α_{n} is a chain map, i.e.,

$$
\delta \alpha_{n}=\alpha_{n} \partial
$$

- Evaluating at θ_{n} produces the classical structure relations

$$
\delta\left(\Delta_{n}\right)=\sum_{i=1}^{n-2} \sum_{j=0}^{n-i-1}(-1)^{i(n+j+1)}\left(\mathbf{1}^{\otimes j} \otimes \Delta_{i+1} \otimes \mathbf{1}^{\otimes n-i-j-1}\right) \Delta_{n-i}
$$

Structure Relations

Δ_{n} is a chain homotopy among the quadratic compositions encoded by the codim 1 cells of K_{n}

$$
\left(\Delta_{3} \otimes 1\right) \Delta_{2}
$$

$$
\begin{aligned}
& \delta\left(\Delta_{4}\right)=(\partial \otimes \mathbf{1} \otimes \mathbf{1}+\mathbf{1} \otimes \partial \otimes \mathbf{1}+\mathbf{1} \otimes \mathbf{1} \otimes \partial) \Delta_{4}+\Delta_{4} \partial \\
& \quad=\left(\Delta_{2} \otimes \mathbf{1} \otimes \mathbf{1}+\mathbf{1} \otimes \Delta_{2} \otimes \mathbf{1}+\mathbf{1} \otimes \mathbf{1} \otimes \Delta_{2}\right) \Delta_{3}+\left(\Delta_{3} \otimes \mathbf{1}+\mathbf{1} \otimes \Delta_{3}\right) \Delta_{2}
\end{aligned}
$$

Operations on 2-cells of $\operatorname{BR}(3)$

- Use Minnich's formula to define $\Delta_{k}, k \geq 3$, on each 2-cell, e.g.,

Operations on 2-cells of BR(3)

- Use Minnich's formula to define $\Delta_{k}, k \geq 3$, on each 2-cell, e.g.,
- $\Delta_{3}\left(s_{3}\right)=c_{15} \otimes m_{9} \otimes c_{5}$

Operations on 2-cells of $\operatorname{BR}(3)$

- Use Minnich's formula to define $\Delta_{k}, k \geq 3$, on each 2-cell, e.g.,
- $\Delta_{3}\left(s_{3}\right)=c_{15} \otimes m_{9} \otimes c_{5}$
- $\Delta_{4}\left(t_{1}\right)=m_{11} \otimes c_{3} \otimes c_{4} \otimes m_{10}$

Operations on 2-cells of $\operatorname{BR}(3)$

- Use Minnich's formula to define $\Delta_{k}, k \geq 3$, on each 2-cell, e.g.,
- $\Delta_{3}\left(s_{3}\right)=c_{15} \otimes m_{9} \otimes c_{5}$
- $\Delta_{4}\left(t_{1}\right)=m_{11} \otimes c_{3} \otimes c_{4} \otimes m_{10}$
- $\Delta_{5}\left(s_{9}\right)=m_{11} \otimes c_{3} \otimes m_{13} \otimes m_{8} \otimes c_{13}$

Operations on 2-cells of $\operatorname{BR}(3)$

- Use Minnich's formula to define $\Delta_{k}, k \geq 3$, on each 2-cell, e.g.,
- $\Delta_{3}\left(s_{3}\right)=c_{15} \otimes m_{9} \otimes c_{5}$
- $\Delta_{4}\left(t_{1}\right)=m_{11} \otimes c_{3} \otimes c_{4} \otimes m_{10}$
- $\Delta_{5}\left(s_{9}\right)=m_{11} \otimes c_{3} \otimes m_{13} \otimes m_{8} \otimes c_{13}$
- $\Delta_{k}=0$ on 2-cells for all $k \geq 6$

Operations on 3-cells of BR(3)

- M. Fansler (2016) computed Δ_{3} on 3-cells, e.g.,

Operations on 3-cells of $\operatorname{BR}(3)$

- M. Fansler (2016) computed Δ_{3} on 3-cells, e.g.,
- $\Delta_{3}\left(q_{1}\right)=t_{1} \otimes m_{12} \otimes\left(c_{6}+m_{8}+c_{13}\right)$

$$
\begin{aligned}
& +t_{1} \otimes c_{6} \otimes\left(m_{8}+c_{13}\right)+t_{1} \otimes m_{8} \otimes c_{13} \\
& +s_{3} \otimes c_{6} \otimes\left(m_{8}+c_{13}\right)+s_{3} \otimes m_{8} \otimes c_{13} \\
& +s_{7} \otimes m_{8}+c_{13}+\left(c_{1}+c_{15}\right) \otimes t_{5} \otimes c_{13} \\
& +c_{1} \otimes s_{3} \otimes\left(c_{6}+m_{8}+c_{13}\right)+c_{3} \otimes s_{7} \otimes\left(m_{8}+c_{13}\right) \\
& +m_{11} \otimes s_{7} \otimes\left(m_{8}+c_{13}\right)+c_{1} \otimes c_{15} \otimes t_{5}+m_{11} \otimes c_{3} \otimes s_{7}
\end{aligned}
$$

Operations on 3-cells of $\operatorname{BR}(3)$

- M. Fansler (2016) computed Δ_{3} on 3-cells, e.g.,
- $\Delta_{3}\left(q_{1}\right)=t_{1} \otimes m_{12} \otimes\left(c_{6}+m_{8}+c_{13}\right)$

$$
\begin{aligned}
& +t_{1} \otimes c_{6} \otimes\left(m_{8}+c_{13}\right)+t_{1} \otimes m_{8} \otimes c_{13} \\
& +s_{3} \otimes c_{6} \otimes\left(m_{8}+c_{13}\right)+s_{3} \otimes m_{8} \otimes c_{13} \\
& +s_{7} \otimes m_{8}+c_{13}+\left(c_{1}+c_{15}\right) \otimes t_{5} \otimes c_{13} \\
& +c_{1} \otimes s_{3} \otimes\left(c_{6}+m_{8}+c_{13}\right)+c_{3} \otimes s_{7} \otimes\left(m_{8}+c_{13}\right) \\
& +m_{11} \otimes s_{7} \otimes\left(m_{8}+c_{13}\right)+c_{1} \otimes c_{15} \otimes t_{5}+m_{11} \otimes c_{3} \otimes s_{7}
\end{aligned}
$$

- Δ_{4} and Δ_{5} remains to be computed on 3-cells

Operations on 3-cells of $\operatorname{BR}(3)$

- M. Fansler (2016) computed Δ_{3} on 3-cells, e.g.,
- $\Delta_{3}\left(q_{1}\right)=t_{1} \otimes m_{12} \otimes\left(c_{6}+m_{8}+c_{13}\right)$

$$
\begin{aligned}
& +t_{1} \otimes c_{6} \otimes\left(m_{8}+c_{13}\right)+t_{1} \otimes m_{8} \otimes c_{13} \\
& +s_{3} \otimes c_{6} \otimes\left(m_{8}+c_{13}\right)+s_{3} \otimes m_{8} \otimes c_{13} \\
& +s_{7} \otimes m_{8}+c_{13}+\left(c_{1}+c_{15}\right) \otimes t_{5} \otimes c_{13} \\
& +c_{1} \otimes s_{3} \otimes\left(c_{6}+m_{8}+c_{13}\right)+c_{3} \otimes s_{7} \otimes\left(m_{8}+c_{13}\right) \\
& +m_{11} \otimes s_{7} \otimes\left(m_{8}+c_{13}\right)+c_{1} \otimes c_{15} \otimes t_{5}+m_{11} \otimes c_{3} \otimes s_{7}
\end{aligned}
$$

- Δ_{4} and Δ_{5} remains to be computed on 3-cells
- $\Delta_{k}=0$ for all $k \geq 6$

Transferring Coproducts

Goal:

A_{∞}-coalgebra on chains
$\left(C, \partial, \Delta_{2}, \Delta_{3}, \ldots\right)$
\downarrow
$\left(H, 0, \Delta^{2}, \Delta^{3}, \ldots\right)$
A_{∞}-coalgebra in homology

Transferring Coproducts

Required input:

- Coalgebra on chains ($C, \partial, \Delta_{2}, \Delta_{3}, \ldots$) and
- a cycle-selecting map $g: H \rightarrow Z(C)$, where $Z(C)$ denotes the subspace of cycles in C.
Note: In practice we only required Δ_{2} at the outset and computed the rest as needed.

How Does It Work?

Strategy: Construct a chain map from the top dimension and codim-1 cells of the ($n-1$)-dimensional multiplihedron, denoted J_{n}, to maps between H and $C^{\otimes n}$.

Beginning Steps

- J_{n} is a polytope that captures the combinatiorial structure of mapping between two A_{∞}-coalgebras.

Beginning Steps

- J_{n} is a polytope that captures the combinatiorial structure of mapping between two A_{∞}-coalgebras.
- Consider J_{1} and J_{2}.

Extending to J_{3}

Table of Contents

(1) Introduction
(2) Transfer Algorithm
(3) Implementation

4 Examples
(5) Conclusions

Linear Algebraic Methods

Good News

Linear algebra provides robust and theoretically correct methods for solving the various induction steps of the transfer algorithm.

Linear Algebraic Methods

Good News

Linear algebra provides robust and theoretically correct methods for solving the various induction steps of the transfer algorithm.

Bad News

The matrices are too large to be solved within a reasonable amount of storage space and time.

Two Problems

Problem (Preboundary)

Given a cycle $x \in C^{\otimes n}$ of degree k, find a chain $y \in C^{\otimes n}$ of degree $k+1$, such that $\partial(y)=x$.

Problem (Factorization)

Given a cycle $c \in Z\left(C^{\otimes n}\right)$, find all subcycles of c of the form $Z(C)^{\otimes n}$.

Preboundary Problem: Δ_{3}

- First problem arose in computing Δ_{3}

Preboundary Problem: Δ_{3}

- First problem arose in computing Δ_{3}
- It is the preboundary of $\left(\Delta_{2} \otimes 1+1 \otimes \Delta_{2}\right) \Delta_{2}$

Preboundary Problem: Δ_{3}

- First problem arose in computing Δ_{3}
- It is the preboundary of $\left(\Delta_{2} \otimes 1+1 \otimes \Delta_{2}\right) \Delta_{2}$
- Brute force linear algebra approach entails 1.8 mil row $\times 4$ mil column matrix

Preboundary Problem: Δ_{3}

- First problem arose in computing Δ_{3}
- It is the preboundary of $\left(\Delta_{2} \otimes 1+1 \otimes \Delta_{2}\right) \Delta_{2}$
- Brute force linear algebra approach entails 1.8 mil row $\times 4$ mil column matrix
- Instead, solved with a best-first search algorithm

Factorization Problem

- Second problem comes from deriving Δ^{n}

Factorization Problem

- Second problem comes from deriving Δ^{n}
- Transfer Algorithm specifies computing [ϕ_{n}], i.e., $H_{*}\left(\operatorname{Hom}\left(H, Z\left(C^{\otimes(n+2)}\right)\right)\right)$

Factorization Problem

- Second problem comes from deriving Δ^{n}
- Transfer Algorithm specifies computing [ϕ_{n}], i.e., $H_{*}\left(\operatorname{Hom}\left(H, Z\left(C^{\otimes(n+2)}\right)\right)\right)$
- However, Künneth Theorem tells us that $H_{*}\left(C^{\otimes n}\right) \cong H_{*}(C)^{\otimes n}$

Factorization Problem

- Second problem comes from deriving Δ^{n}
- Transfer Algorithm specifies computing [ϕ_{n}], i.e., $H_{*}\left(\operatorname{Hom}\left(H, Z\left(C^{\otimes(n+2)}\right)\right)\right)$
- However, Künneth Theorem tells us that $H_{*}\left(C^{\otimes n}\right) \cong H_{*}(C)^{\otimes n}$
- Hence, non-boundary cycles in ϕ_{n} in should be of the form $Z(C)^{\otimes(n+2)}$

Factorization Problem

- Second problem comes from deriving Δ^{n}
- Transfer Algorithm specifies computing [ϕ_{n}], i.e., $H_{*}\left(\operatorname{Hom}\left(H, Z\left(C^{\otimes(n+2)}\right)\right)\right)$
- However, Künneth Theorem tells us that $H_{*}\left(C^{\otimes n}\right) \cong H_{*}(C)^{\otimes n}$
- Hence, non-boundary cycles in ϕ_{n} in should be of the form $Z(C)^{\otimes(n+2)}$
- Again, an algorithmic approach appears to be a feasible alternative

Induced Operations Computed by M. Fansler

- $H_{0}=\left\{0_{0}\right\}, H_{1}=\left\{1_{0}, 1_{1}, 1_{2}\right\}, H_{2}=\left\{2_{0}, 2_{1}\right\}$

Induced Operations Computed by M. Fansler

- $H_{0}=\left\{0_{0}\right\}, H_{1}=\left\{1_{0}, 1_{1}, 1_{2}\right\}, H_{2}=\left\{2_{0}, 2_{1}\right\}$
- $\Delta^{2}\left(0_{0}\right)=0_{0} \otimes 0_{0}$

Induced Operations Computed by M. Fansler

- $H_{0}=\left\{0_{0}\right\}, H_{1}=\left\{1_{0}, 1_{1}, 1_{2}\right\}, H_{2}=\left\{2_{0}, 2_{1}\right\}$
- $\Delta^{2}\left(0_{0}\right)=0_{0} \otimes 0_{0}$
- $\Delta^{2}\left(1_{0}\right)=0_{0} \otimes 1_{0}+1_{0} \otimes 0_{0}$

$$
\begin{aligned}
& \Delta^{2}\left(1_{1}\right)=0_{0} \otimes 1_{1}+1_{1} \otimes 0_{0} \\
& \Delta^{2}\left(1_{1}\right)=0_{0} \otimes 1_{1}+1_{1} \otimes 0_{0}
\end{aligned}
$$

Induced Operations Computed by M. Fansler

- $H_{0}=\left\{0_{0}\right\}, H_{1}=\left\{1_{0}, 1_{1}, 1_{2}\right\}, H_{2}=\left\{2_{0}, 2_{1}\right\}$
- $\Delta^{2}\left(0_{0}\right)=0_{0} \otimes 0_{0}$
- $\Delta^{2}\left(1_{0}\right)=0_{0} \otimes 1_{0}+1_{0} \otimes 0_{0}$
$\Delta^{2}\left(1_{1}\right)=0_{0} \otimes 1_{1}+1_{1} \otimes 0_{0}$
$\Delta^{2}\left(1_{1}\right)=0_{0} \otimes 1_{1}+1_{1} \otimes 0_{0}$
- $\Delta^{3}\left(2_{0}\right)=1_{0} \otimes 1_{1} \otimes 1_{2}+1_{0} \otimes 1_{2} \otimes 1_{1}+1_{1} \otimes 1_{2} \otimes 1_{0}+1_{2} \otimes 1_{1} \otimes 1_{0}$

$$
\Delta^{3}\left(2_{1}\right)=1_{0} \otimes 1_{1} \otimes 1_{2}+1_{1} \otimes 1_{0} \otimes 1_{2}+1_{2} \otimes 1_{0} \otimes 1_{1}+1_{2} \otimes 1_{1} \otimes 1_{0}
$$

Induced Operations Computed by M. Fansler

- $H_{0}=\left\{0_{0}\right\}, H_{1}=\left\{1_{0}, 1_{1}, 1_{2}\right\}, H_{2}=\left\{2_{0}, 2_{1}\right\}$
- $\Delta^{2}\left(0_{0}\right)=0_{0} \otimes 0_{0}$
- $\Delta^{2}\left(1_{0}\right)=0_{0} \otimes 1_{0}+1_{0} \otimes 0_{0}$
$\Delta^{2}\left(1_{1}\right)=0_{0} \otimes 1_{1}+1_{1} \otimes 0_{0}$
$\Delta^{2}\left(1_{1}\right)=0_{0} \otimes 1_{1}+1_{1} \otimes 0_{0}$
- $\Delta^{3}\left(2_{0}\right)=1_{0} \otimes 1_{1} \otimes 1_{2}+1_{0} \otimes 1_{2} \otimes 1_{1}+1_{1} \otimes 1_{2} \otimes 1_{0}+1_{2} \otimes 1_{1} \otimes 1_{0}$

$$
\Delta^{3}\left(2_{1}\right)=1_{0} \otimes 1_{1} \otimes 1_{2}+1_{1} \otimes 1_{0} \otimes 1_{2}+1_{2} \otimes 1_{0} \otimes 1_{1}+1_{2} \otimes 1_{1} \otimes 1_{0}
$$

- Linkage detected but Δ^{4} remains to be computed

The Case of BR(n)

- B. Nimershiem found an inductive way to construct a cellular decomposition of $B R_{n}$

The Case of $B R(n)$

- B. Nimershiem found an inductive way to construct a cellular decomposition of $B R_{n}$
- Her construction adjusts the decomposition of $B R_{3}$ so that all 2-cells have 5 edges

The Case of $B R(n)$

- B. Nimershiem found an inductive way to construct a cellular decomposition of $B R_{n}$
- Her construction adjusts the decomposition of $B R_{3}$ so that all 2-cells have 5 edges
- Numbers of vertices, edges, faces, and solids in her decomposition are the same as in mine

Nimershiem's Decomposition of BR(3)

Nimershiem's Decomposition of BR(3)

Nimershiem's Decomposition of BR(3)

The Case of BR(n)

- Redo the $B R_{3}$ calculations using Nimershiem's decomposition

The Case of $B R(n)$

- Redo the $B R_{3}$ calculations using Nimershiem's decomposition
- Use Nimershiem's decomposition to calculate $B R_{4}$

The Case of $B R(n)$

- Redo the $B R_{3}$ calculations using Nimershiem's decomposition
- Use Nimershiem's decomposition to calculate $B R_{4}$
- Hopefully gain the insight to find an inductive proof of the conjecture

The Case of $B R(n)$

- Redo the $B R_{3}$ calculations using Nimershiem's decomposition
- Use Nimershiem's decomposition to calculate $B R_{4}$
- Hopefully gain the insight to find an inductive proof of the conjecture
- Stay tuned!!

The End

Thank you!

