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Recap of Lecture 1

Cell complex X

Boundary of a cell

Cellular chains C (X )

Cellular boundary map ∂ : C (X )→ C (X )

∂ ◦ ∂ = 0⇒ Im ∂ ⊆ ker ∂

Cellular homology H (X ) := ker ∂/ Im ∂

Geometric diagonal ∆X : X → X × X

Diagonal (approximation) ∆ : C (X )→ C (X )⊗ C (X )

∆ induces a diagonal ∆2 : H (X )→ H (X )⊗H (X ) defined by

∆2 [x ] = [∆ (x)]
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Main result

BRn denote the link complement of an n-component Brunnian Link in S3

Non-primitivity of the induced ∆2 on H (BR2) detects the Hopf link

Dr. Ron Umble ( Millersville U and IMUS) Brunnian Links 2 May 2018 3 / 33



Goal of the Project

Use a similar strategy to detect linkage in an n-component Brunnian link

Borromean rings (n = 3)
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The Borromean Rings

(U. Penn Deformation Theory Seminar ) On the A∞-bialgebra structure of H� (ΩX ;F ) March 10, 2010 49 / 62



A Tubular Neighborhood of the Borromean Rings

(U. Penn Deformation Theory Seminar ) On the A∞-bialgebra structure of H� (ΩX ;F ) March 10, 2010 50 / 62



A Cellular Decomposition of BR(3)

Dr. Ron Umble ( Millersville U and IMUS) Brunnian Links 2 May 2018 5 / 33



A Cellular Decomposition of BR(3)

Dr. Ron Umble ( Millersville U and IMUS) Brunnian Links 2 May 2018 6 / 33



A Cellular Decomposition of BR(3)

Dr. Ron Umble ( Millersville U and IMUS) Brunnian Links 2 May 2018 7 / 33



A Cellular Decomposition of BR(3)

Dr. Ron Umble ( Millersville U and IMUS) Brunnian Links 2 May 2018 8 / 33



A Cellular Decomposition of BR(3)

Dr. Ron Umble ( Millersville U and IMUS) Brunnian Links 2 May 2018 9 / 33



Cellular Chains of BR(3)

11 vertices, 32 edges, 26 polygons, 5 solids

C0 (BR3) = 〈v1, v1, . . . , v11〉

C1 (BR3) = 〈m1, . . . ,m14, c1, . . . , c18〉

C2 (BR3) = 〈a1, . . . , a4, e1, e2, s1, . . . , s12, t1, . . . , t8〉

C3 (BR3) = 〈p, q1, . . . , q4〉

Euler characteristic 11− 32+ 26− 5 = 0
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Cellular Boundary Map

∂p = a1 + a2 + a3 + a4

∂q1 = a1 + e1 + s3 + s7 + s9 + t1 + t5

∂q2 = a2 + e2 + s4 + s8 + s10 + t3 + t7

∂q3 = a3 + e1 + s1 + s5 + s11 + t2 + t6

∂q4 = a4 + e2 + s2 + s6 + s12 + t4 + t8

Boundaries of lower dim’l cells are evident from the pictures
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Cellular Homology of BR(3)

H0 (BR3) = 〈[v1]〉
H1 (BR3) = 〈[m4 +m11] , [m7 +m8] , [c13 + c14]〉
H2 (BR3) = 〈[t1 + t2 + t3 + t4] , [t5 + t6 + t7 + t8]〉
Hk (BR3) = 0, k ≥ 3

Euler characteristic 1− 3+ 2 = 0
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The Diagonal on 0 and 1-cells

Order vertices v1 < v2 < · · · < v11 and define

∆vi = vi ⊗ vi

∆ci =(minimal vertex of ci )⊗ci + ci⊗(maximal vertex of ci )

∆mi =(minimal vertex of mi )⊗mi +mi⊗(maximal vertex of mi )
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Kravatz’s Diagonal on a Polygon

Theorem (Kravatz, 2006) Let G be an n-gon with initial vertex v1,
terminal vertex vt , and edges e1, e1, . . . , en directed from v1 to vt . Then

∆ (G ) = v1 ⊗ G + G ⊗ vt + ∑
0<i<j<t

ei ⊗ ej + ∑
n≥j>i≥t

ej ⊗ ei

defines a diagonal on C (G ) .
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A Diagonal on 2-cells

Define Kravatz’s diagonal on each 2-cell of BR3, e.g.,

∆ai = v1 ⊗ ai + ai ⊗ v11

∆t1 = v1 ⊗ t1 + t1 ⊗ v5 +m11 ⊗ (c3 + c4 +m10)
+c3 ⊗ (c4 +m10) + c4 ⊗m10
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A Diagonal on 3-cells

Use ad hoc techniques to define ∆ on each 3-cell, e.g.,

∆p = v1 ⊗ p + p ⊗ v1

∆q1 = v1 ⊗ q1 + q1 ⊗ v11 + t1 ⊗ (m12 + c6 +m8 + c13)
+ (c1 + c15)⊗ t5 + t5 ⊗ c13
+c1 ⊗ s3 + s3 ⊗ (c6 +m8 + c13)
+ (m11 + c3)⊗ s7 + s7 ⊗ (m8 + c13)
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Conjecture

An extension of ∆ to an A∞-coalgebra structure on C (BRn) induces an
A∞-coalgebra structure on H (BRn) with

A primitive diagonal

∆2 : H (BRn)→ H (BRn)⊗H (BRn)

A non-trivial n-ary operation

∆n : H (BRn)→ H (BRn)
⊗n

Trivial k-ary operations for all k 6= 2, n

∆k : H (BRn)→ H (BRn)
⊗k

Detects the linkage in a n-component Brunnian link
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Minnich’s A-infinity Coalgebra Structure on a Polygon

Theorem (Minnich, 2017) Let G be an n-gon with initial vertex v1,
terminal vertex vt , and edges e1, e1, . . . , en directed from v1 to vt . Let ∆2
denote the Kravatz diagonal. For k > 2 define

∆k (G ) = ∑
0<i1<···<ik<t

ei1 ⊗ · · · ⊗ eik + ∑
n≥i1>···>ik≥t

ei1 ⊗ · · · ⊗ eik .

Then (C (G ) , ∂,∆′2,∆
′
3, . . .) is an A∞-coalgebra.
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Differential Graded Vector Spaces

Let V ,W be a graded Z2-vector spaces

A linear map f : V → W has degree p if f : Vi → Wi+p

A differential on V is a linear map ∂ : V → V of degree −1 such
that ∂ ◦ ∂ = 0

(V , ∂) is a differential graded vector space (d.g.v.s.)
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Chain Maps

Homp (V ,W ) denotes the v.s. of degree p linear maps

Hom∗ (V ,W ) is a d.g.v.s with differential

δ (f ) = ∂W ◦ f + f ◦ ∂V

f is a chain map iff δ (f ) = 0, i.e.,

∂W ◦ f = f ◦ ∂V

The chain maps in (Hom∗ (V ,W ) , δ) form the subspace of δ-cycles

H (Hom∗ (V ,W )) = ker δ/ Im δ

Dr. Ron Umble ( Millersville U and IMUS) Brunnian Links 2 May 2018 20 / 33
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Chain Homotopies

Let f , g : V → W be maps of degree p

A chain homotopy from f to g is a map T : V → W of degree
p + 1 such that

∂W T + T ∂V = f + g

When p = 0 we have

· · · ←− Vi−1
∂V←− Vi ←− · · ·
T ↘ ↓f +g ↘ T

· · · ←− Wi ←−
∂W

Wi+1 ←− · · ·

f + g is a boundary if δ (T ) = f + g for some chain homotopy T
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Stasheff’s Associahedra

The associahedron Kn is an (n− 2)-dimensional polytope that
controls homotopy (co)associativity in n variables

Associahedra organize the structural data in the definition of an
A∞-(co)algebra

For each n ≥ 2, let θn denote the (n− 2)-dimensional cell of Kn
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A-infinity Coalgebras Defined

Let (V , ∂) be a d.g.v.s. For each n ≥ 2, choose a map αn of deg 0 :

C∗ (Kn)
αn−→ Hom∗ (V ,V⊗n)

∂ ↓ ↓ δ
C∗−1 (Kn) −→

αn
Hom∗−1 (V ,V⊗n)

and define ∆n := αn (θn)

(V , ∂,∆2,∆3, . . .) is an A∞-coalgebra if each αn is a chain map, i.e.,

δαn = αn∂

Evaluating at θn produces the classical structure relations

δ (∆n) =
n−2
∑
i=1

n−i−1
∑
j=0

(−1)i (n+j+1)
(
1⊗j ⊗ ∆i+1 ⊗ 1⊗n−i−j−1

)
∆n−i
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Structure Relations

∆n is a chain homotopy among the quadratic compositions encoded by the
codim 1 cells of Kn

δ (∆4) = (∂⊗ 1⊗ 1+ 1⊗ ∂⊗ 1+ 1⊗ 1⊗ ∂)∆4 + ∆4∂

= (∆2 ⊗ 1⊗ 1+ 1⊗∆2⊗1+ 1⊗ 1⊗∆2)∆3 + (∆3 ⊗ 1+ 1⊗∆3)∆2

Dr. Ron Umble ( Millersville U and IMUS) Brunnian Links 2 May 2018 24 / 33



Operations on 2-cells of BR(3)

Use Minnich’s formula to define ∆k , k ≥ 3, on each 2-cell, e.g.,

∆3 (s3) = c15 ⊗m9 ⊗ c5

∆4 (t1) = m11 ⊗ c3 ⊗ c4 ⊗m10

∆5 (s9) = m11 ⊗ c3 ⊗m13 ⊗m8 ⊗ c13

∆k = 0 on 2-cells for all k ≥ 6
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Operations on 3-cells of BR(3)

M. Fansler (2016) computed ∆3 on 3-cells, e.g.,

∆3 (q1) = t1 ⊗m12 ⊗ (c6 +m8 + c13)
+t1 ⊗ c6 ⊗ (m8 + c13) + t1 ⊗m8 ⊗ c13
+s3 ⊗ c6 ⊗ (m8 + c13) + s3 ⊗m8 ⊗ c13
+s7 ⊗m8 + c13 + (c1 + c15)⊗ t5 ⊗ c13
+c1 ⊗ s3 ⊗ (c6 +m8 + c13) + c3 ⊗ s7 ⊗ (m8 + c13)
+m11 ⊗ s7 ⊗ (m8 + c13) + c1 ⊗ c15 ⊗ t5 +m11 ⊗ c3 ⊗ s7

∆4 and ∆5 remains to be computed on 3-cells

∆k = 0 for all k ≥ 6
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Introduction
Transfer Algorithm

Implementation
Examples

Conclusions

Transferring Coproducts

Goal:

A∞-coalgebra on chains
(C , ∂,∆2,∆3, ...)

↓
(H, 0,∆2,∆3, ...)

A∞-coalgebra in homology
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Transfer Algorithm

Implementation
Examples

Conclusions

Transferring Coproducts

Required input:

Coalgebra on chains (C , ∂,∆2,∆3, ...) and

a cycle-selecting map g : H → Z (C ), where Z (C ) denotes the
subspace of cycles in C .

Note: In practice we only required ∆2 at the outset and computed
the rest as needed.
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Implementation
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Conclusions

How Does It Work?

Strategy: Construct a chain map from the top dimension and
codim-1 cells of the (n − 1)-dimensional multiplihedron, denoted
Jn, to maps between H and C⊗n.
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Transfer Algorithm

Implementation
Examples

Conclusions

Beginning Steps

Jn is a polytope that captures the combinatiorial structure of
mapping between two A∞-coalgebras.

Consider J1 and J2.
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Extending to J3

7→

g⊗3
(
∆2 ⊗ 1

)
∆2 g⊗3

(
1⊗∆2

)
∆2

(
g2 ⊗ g

)
∆2

(
g ⊗ g2

)
∆2

(∆2g ⊗ g) ∆2 (g ⊗∆2g) ∆2

(∆2 ⊗ 1) g2 (1⊗∆2) g2

(∆2 ⊗ 1) ∆2g ∆3g (1⊗∆2) ∆2g
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Linear Algebraic Methods

Good News

Linear algebra provides robust
and theoretically correct methods
for solving the various induction
steps of the transfer algorithm.
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Implementation
Examples

Conclusions

Linear Algebraic Methods

Good News

Linear algebra provides robust
and theoretically correct methods
for solving the various induction
steps of the transfer algorithm.

Bad News

The matrices are too large to be
solved within a reasonable
amount of storage space and
time.
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Two Problems

Problem (Preboundary)

Given a cycle x ∈ C⊗n of degree k , find a chain y ∈ C⊗n of degree
k + 1, such that ∂(y) = x .

Problem (Factorization)

Given a cycle c ∈ Z (C⊗n), find all subcycles of c of the form
Z (C )⊗n.
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Implementation
Examples

Conclusions

Preboundary Problem: ∆3

First problem arose in computing ∆3

It is the preboundary of (∆2 ⊗ 1 + 1⊗∆2)∆2

Brute force linear algebra approach entails 1.8 mil row × 4 mil
column matrix

Instead, solved with a best-first search algorithm
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Examples

Conclusions

Factorization Problem

Second problem comes from deriving ∆n

Transfer Algorithm specifies computing [φn], i.e.,
H∗(Hom(H,Z (C⊗(n+2))))

However, Künneth Theorem tells us that H∗(C
⊗n) ∼= H∗(C )⊗n

Hence, non-boundary cycles in φn in should be of the form
Z (C )⊗(n+2)

Again, an algorithmic approach appears to be a feasible
alternative

Merv Fansler Transfer Algorithm on BR3



Introduction
Transfer Algorithm

Implementation
Examples

Conclusions

Factorization Problem

Second problem comes from deriving ∆n

Transfer Algorithm specifies computing [φn], i.e.,
H∗(Hom(H,Z (C⊗(n+2))))
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Induced Operations Computed by M. Fansler

H0 = {00} , H1 = {10, 11, 12} , H2 = {20, 21}

∆2 (00) = 00 ⊗ 00

∆2 (10) = 00 ⊗ 10 + 10 ⊗ 00
∆2 (11) = 00 ⊗ 11 + 11 ⊗ 00
∆2 (11) = 00 ⊗ 11 + 11 ⊗ 00

∆3 (20) = 10 ⊗ 11 ⊗ 12 + 10 ⊗ 12 ⊗ 11 + 11 ⊗ 12 ⊗ 10 + 12 ⊗ 11 ⊗ 10
∆3 (21) = 10 ⊗ 11 ⊗ 12 + 11 ⊗ 10 ⊗ 12 + 12 ⊗ 10 ⊗ 11 + 12 ⊗ 11 ⊗ 10

Linkage detected but ∆4 remains to be computed
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The Case of BR(n)

B. Nimershiem found an inductive way to construct a cellular
decomposition of BRn

Her construction adjusts the decomposition of BR3 so that all 2-cells
have 5 edges

Numbers of vertices, edges, faces, and solids in her decomposition are
the same
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B. Nimershiem found an inductive way to construct a cellular
decomposition of BRn

Her construction adjusts the decomposition of BR3 so that all 2-cells
have 5 edges

Numbers of vertices, edges, faces, and solids in her decomposition are
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Nimershiem’s Decomposition of BR(3)
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The Case of BR(n)

Redo the BR3 calculations using Nimershiem’s decomposition

Use Nimershiem’s decomposition to calculate BR4

Hopefully gain the insight to find an inductive proof of the conjecture

Stay tuned!!

Dr. Ron Umble ( Millersville U and IMUS) Brunnian Links 2 May 2018 32 / 33



The Case of BR(n)

Redo the BR3 calculations using Nimershiem’s decomposition

Use Nimershiem’s decomposition to calculate BR4

Hopefully gain the insight to find an inductive proof of the conjecture

Stay tuned!!

Dr. Ron Umble ( Millersville U and IMUS) Brunnian Links 2 May 2018 32 / 33



The Case of BR(n)

Redo the BR3 calculations using Nimershiem’s decomposition

Use Nimershiem’s decomposition to calculate BR4

Hopefully gain the insight to find an inductive proof of the conjecture

Stay tuned!!

Dr. Ron Umble ( Millersville U and IMUS) Brunnian Links 2 May 2018 32 / 33



The Case of BR(n)

Redo the BR3 calculations using Nimershiem’s decomposition

Use Nimershiem’s decomposition to calculate BR4

Hopefully gain the insight to find an inductive proof of the conjecture

Stay tuned!!

Dr. Ron Umble ( Millersville U and IMUS) Brunnian Links 2 May 2018 32 / 33



The End

Thank you!
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