The Coherent Framed Join and Biassociahedra Joint work with Samson Saneblidze

Ron Umble Millersville University

TGTS

2 March 2018

▶ In our 2011 paper entitled, "Matrads, Biassociahedra, and A_{∞} -bialgebras", we constructed a basis for the free matrad \mathcal{H}_{∞} and the polytopes $KK_{n,m}$ in the ranges $1 \leq m \leq 3$ and 1 < n < 3

- In our 2011 paper entitled, "Matrads, Biassociahedra, and A_{∞} -bialgebras", we constructed a basis for the free matrad \mathcal{H}_{∞} and the polytopes $KK_{n,m}$ in the ranges $1 \leq m \leq 3$ and $1 \leq n \leq 3$
- ▶ In these ranges, the reduced coherent framed join provides an efficient way to construct a basis, to define the differential, and to determine $KK_{n,m}$

- In our 2011 paper entitled, "Matrads, Biassociahedra, and A_{∞} -bialgebras", we constructed a basis for the free matrad \mathcal{H}_{∞} and the polytopes $KK_{n,m}$ in the ranges $1 \leq m \leq 3$ and $1 \leq n \leq 3$
- In these ranges, the reduced coherent framed join provides an efficient way to construct a basis, to define the differential, and to determine $KK_{n,m}$
- ▶ However, outside these ranges we are unable to define an operator that simultaneously preserves coherency and satisfies $d^2 = 0$. In fact...

- In our 2011 paper entitled, "Matrads, Biassociahedra, and A_{∞} -bialgebras", we constructed a basis for the free matrad \mathcal{H}_{∞} and the polytopes $KK_{n,m}$ in the ranges $1 \leq m \leq 3$ and $1 \leq n \leq 3$
- In these ranges, the reduced coherent framed join provides an efficient way to construct a basis, to define the differential, and to determine $KK_{n,m}$
- ▶ However, outside these ranges we are unable to define an operator that simultaneously preserves coherency and satisfies $d^2 = 0$. In fact...
- ▶ When m=n=4, Saneblidze constructed an example with the following property: If we use all available components of the face operator to extend the differential, coherency is lost; if we use only those available components that preserve coherency, $d^2 \neq 0$

▶ Let *S* be a topological space with base point *

- ▶ Let S be a topological space with base point *
- ▶ A base pointed loop on S is a continuous map $\alpha: I \to S$ such that $\alpha(0) = \alpha(1) = *$

- ▶ Let S be a topological space with base point *
- ▶ A base pointed loop on S is a continuous map $\alpha: I \to S$ such that $\alpha(0) = \alpha(1) = *$
- Let ΩS denote the space of all base pointed loops on S

- Let S be a topological space with base point *
- ▶ A base pointed loop on S is a continuous map $\alpha: I \to S$ such that $\alpha(0) = \alpha(1) = *$
- Let ΩS denote the space of all base pointed loops on S
- ▶ Given α , $\beta \in \Omega S$, define the *product* $\alpha \cdot \beta \in \Omega S$ by

$$(\alpha \cdot \beta)(t) = \left\{ egin{array}{ll} lpha\left(2t
ight), & t \in [0, rac{1}{2}] \\ eta\left(2t-1
ight), & t \in [rac{1}{2}, 1] \end{array}
ight.$$

Homotopy Associativity

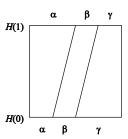
▶ A homotopy from α to β is a continuous map $H:I \to \Omega S$ such that $H(0) = \alpha$ and $H(1) = \beta$

Homotopy Associativity

- ▶ A homotopy from α to β is a continuous map $H:I \to \Omega S$ such that $H(0) = \alpha$ and $H(1) = \beta$
- ▶ Thus $\{H(s): s \in I\}$ is a 1-parameter family of loops that continuously deforms α to β

Homotopy Associativity

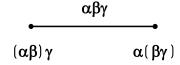
- ▶ A homotopy from α to β is a continuous map $H:I \to \Omega S$ such that $H(0) = \alpha$ and $H(1) = \beta$
- ▶ Thus $\{H(s): s \in I\}$ is a 1-parameter family of loops that continuously deforms α to β
- ▶ The loops $(\alpha\beta)\gamma$ and $\alpha(\beta\gamma)$ are homotopic via linear change of parameter



lacktriangledown $lphaeta\gamma$ labels parameter space $\emph{I}=[0,1]$

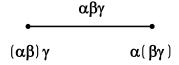
- lacktriangledown $lphaeta\gamma$ labels parameter space $\emph{I}=[0,1]$
- $(\alpha\beta)\gamma$ labels the endpoint 0

- $lphaeta\gamma$ labels parameter space I=[0,1]
- $(\alpha\beta)\gamma$ labels the endpoint 0
- ightharpoonup lpha $(eta\gamma)$ labels the endpoint 1



The associahedron K_3

- $lphaeta\gamma$ labels parameter space I=[0,1]
- $(\alpha\beta)\gamma$ labels the endpoint 0
- ightharpoonup lpha $(eta\gamma)$ labels the endpoint 1

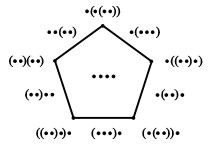


The associahedron K_3

 \blacktriangleright K_3 controls homotopy associativity in three variables

The Associahedron K(4)

K₄ controls homotopy associativity in four variables



The associahedron K_4

Quinn Minnich's Model of K(5)

 $ightharpoonup K_n$ is an (n-2)-dim'l polytope controlling homotopy associativity in n variables

- ▶ K_n is an (n-2)-dim'l polytope controlling homotopy associativity in n variables
- Associahedra organize the structural data in an A_{∞} -(co)algebra

- ▶ K_n is an (n-2)-dim'l polytope controlling homotopy associativity in n variables
- Associahedra organize the structural data in an A_{∞} -(co)algebra
- lacktriangle Singular chains on ΩS is a homotopy associative bialgebra

- $ightharpoonup K_n$ is an (n-2)-dim'l polytope controlling homotopy associativity in n variables
- Associahedra organize the structural data in an A_{∞} -(co)algebra
- lacktriangle Singular chains on ΩS is a homotopy associative bialgebra
- ▶ Transfer of bialgebra structure from chains to homology induces an A_{∞} -bialgebra structure on homology

- $ightharpoonup K_n$ is an (n-2)-dim'l polytope controlling homotopy associativity in n variables
- Associahedra organize the structural data in an A_{∞} -(co)algebra
- lacktriangle Singular chains on ΩS is a homotopy associative bialgebra
- ▶ Transfer of bialgebra structure from chains to homology induces an A_{∞} -bialgebra structure on homology
- lacktriangle Biassociahedra organize the structural data in an A_{∞} -bialgebra

ightharpoonup Let V be a vector space and let X be a cell complex

- ▶ Let V be a vector space and let X be a cell complex
- ▶ The **cellular chains of** X, denoted $C_*(X)$, is the graded vector space generated by cells of X

- ▶ Let V be a vector space and let X be a cell complex
- ▶ The **cellular chains of** X, denoted $C_*(X)$, is the graded vector space generated by cells of X
- ▶ The geometric boundary induces a **differential operator** $\partial: C_*(X) \to C_{*-1}(X)$ such that $\partial \circ \partial = 0$

- lacktriangle Let V be a vector space and let X be a cell complex
- ► The cellular chains of X, denoted C_{*} (X), is the graded vector space generated by cells of X
- ▶ The geometric boundary induces a **differential operator** $\partial: C_*(X) \to C_{*-1}(X)$ such that $\partial \circ \partial = 0$
- ► The pair (C_{*} (X), ∂) is a differential graded vector space (d.g.v.s.)

- lacktriangle Let V be a vector space and let X be a cell complex
- ▶ The **cellular chains of** X, denoted $C_*(X)$, is the graded vector space generated by cells of X
- ▶ The geometric boundary induces a **differential operator** $\partial: C_*(X) \to C_{*-1}(X)$ such that $\partial \circ \partial = 0$
- ► The pair (C_{*} (X), ∂) is a differential graded vector space (d.g.v.s.)
- ▶ Let (V, ∂_V) and (W, ∂_W) be d.g.v.s. A linear map $f: V \to W$ has **degree** p if $f: V_i \to W_{i+p}$

ightharpoonup |f| denotes the degree of f

- \blacktriangleright | f | denotes the degree of f
- ▶ A linear map $f: V \rightarrow W$ is a **chain map** if

$$f \circ \partial_V = (-1)^{|f|} \partial_W \circ f$$

- ightharpoonup |f| denotes the degree of f
- ▶ A linear map $f: V \rightarrow W$ is a **chain map** if

$$f \circ \partial_V = (-1)^{|f|} \partial_W \circ f$$

▶ $Hom_p(V, W)$ is the vector space of degree p linear maps

- \blacktriangleright | f | denotes the degree of f
- ▶ A linear map $f: V \rightarrow W$ is a **chain map** if

$$f \circ \partial_V = (-1)^{|f|} \partial_W \circ f$$

- $ightharpoonup Hom_p(V,W)$ is the vector space of degree p linear maps
- ▶ $Hom_*(V, W)$ is a d.g.v.s. with differential

$$\delta(f) = f \circ \partial_{V} - (-1)^{|f|} \partial_{W} \circ f$$

- \blacktriangleright | f | denotes the degree of f
- ▶ A linear map $f: V \rightarrow W$ is a **chain map** if

$$f \circ \partial_V = (-1)^{|f|} \partial_W \circ f$$

- $ightharpoonup Hom_p(V,W)$ is the vector space of degree p linear maps
- ▶ $Hom_*(V, W)$ is a d.g.v.s. with differential

$$\delta(f) = f \circ \partial_{V} - (-1)^{|f|} \partial_{W} \circ f$$

 $ightharpoonup \delta(f) = 0$ iff f is a chain map

Definition of an A-infinity Coalgebra

▶ Let (V, ∂) be a d.g.v.s.

Definition of an A-infinity Coalgebra

- ▶ Let (V, ∂) be a d.g.v.s.
- ▶ For each $n \ge 2$,

Definition of an A-infinity Coalgebra

- ▶ Let (V, ∂) be a d.g.v.s.
- ▶ For each $n \ge 2$,
 - Let θ^n denote the top dimensional cell of K_n

- ▶ Let (V, ∂) be a d.g.v.s.
- ▶ For each $n \ge 2$,
 - Let θ^n denote the top dimensional cell of K_n
 - ▶ Choose a deg 0 chain map $\alpha_n : C_*(K_n) \to Hom(V, V^{\otimes n})$

- ▶ Let (V, ∂) be a d.g.v.s.
- ▶ For each $n \ge 2$,
 - Let θ^n denote the top dimensional cell of K_n
 - ▶ Choose a deg 0 chain map α_n : C_* (K_n) \rightarrow Hom (V, $V^{\otimes n}$)
 - $\blacktriangleright \ \mathsf{Let} \ \Delta_n = \alpha_n \left(\theta^n \right)$

- ▶ Let (V, ∂) be a d.g.v.s.
- ▶ For each $n \ge 2$,
 - Let θ^n denote the top dimensional cell of K_n
 - ▶ Choose a deg 0 chain map $\alpha_n : C_*(K_n) \to Hom(V, V^{\otimes n})$
 - ▶ Let $\Delta_n = \alpha_n (\theta^n)$
- ▶ $(V, \partial, \Delta_2, \Delta_3, ...)$ is an A_{∞} -coalgebra if for each $n \geq 2$,

$$\delta\left(\Delta_{n}\right)=\alpha_{n}\partial\left(\theta^{n}\right)$$

Structure Relations

Expanding $\alpha_n \partial (\theta^n)$ expresses structure relations in more familiar form:

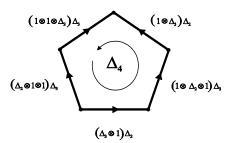
$$\delta\left(\Delta_{n}\right) = \sum_{i=1}^{n-2} \sum_{i=0}^{n-i-1} \left(-1\right)^{i(n+j+1)} \left(\mathbf{1}^{\otimes j} \otimes \Delta_{i+1} \otimes \mathbf{1}^{\otimes n-i-j-1}\right) \Delta_{n-i}$$

Structure Relations

Expanding $\alpha_n \partial (\theta^n)$ expresses structure relations in more familiar form:

$$\delta\left(\Delta_{n}\right) = \sum_{i=1}^{n-2} \sum_{i=0}^{n-i-1} \left(-1\right)^{i(n+j+1)} \left(\mathbf{1}^{\otimes j} \otimes \Delta_{i+1} \otimes \mathbf{1}^{\otimes n-i-j-1}\right) \Delta_{n-i}$$

 $ightharpoonup \Delta_n$ is a chain homotopy among the quadratic compositions encoded by the codim 1 cells of K_n



▶ Assume \exists (m+n-3)-dim'l polytopes $KK_{n,m}$ of which $KK_{1,n} \cong KK_{n,1} \cong K_n$

- ▶ Assume \exists (m+n-3)-dim'l polytopes $KK_{n,m}$ of which $KK_{1,n} \cong KK_{n,1} \cong K_n$
- ▶ For each $m, n \in \mathbb{N}$, $m + n \ge 3$,

- ▶ Assume \exists (m+n-3)-dim'l polytopes $KK_{n,m}$ of which $KK_{1,n} \cong KK_{n,1} \cong K_n$
- ▶ For each $m, n \in \mathbb{N}$, $m + n \ge 3$,
 - Let θ_m^n denote the top dimensional cell of $KK_{n,m}$

- ▶ Assume \exists (m+n-3)-dim'l polytopes $KK_{n,m}$ of which $KK_{1,n} \cong KK_{n,1} \cong K_n$
- ▶ For each $m, n \in \mathbb{N}$, $m + n \ge 3$,
 - Let θ_m^n denote the top dimensional cell of $KK_{n,m}$
 - lacktriangle Choose a chain map $lpha_m^n: C_*\left(\mathit{KK}_{n,m}
 ight) o \mathit{Hom}\left(V^{\otimes m},V^{\otimes n}
 ight)$

- ▶ Assume \exists (m+n-3)-dim'l polytopes $KK_{n,m}$ of which $KK_{1,n} \cong KK_{n,1} \cong K_n$
- ▶ For each $m, n \in \mathbb{N}$, $m + n \ge 3$,
 - Let θ_m^n denote the top dimensional cell of $KK_{n,m}$
 - lacktriangle Choose a chain map $lpha_m^n: C_*\left(\mathit{KK}_{n,m}
 ight) o \mathit{Hom}\left(V^{\otimes m},V^{\otimes n}
 ight)$
 - $\blacktriangleright \text{ Let } \omega_m^n = \alpha_m^n \left(\theta_m^n \right)$

- ▶ Assume \exists (m+n-3)-dim'l polytopes $KK_{n,m}$ of which $KK_{1,n} \cong KK_{n,1} \cong K_n$
- ▶ For each $m, n \in \mathbb{N}$, $m + n \ge 3$,
 - Let θ_m^n denote the top dimensional cell of $KK_{n,m}$
 - ▶ Choose a chain map $\alpha_m^n : C_*(KK_{n,m}) \to Hom(V^{\otimes m}, V^{\otimes n})$
 - $\blacktriangleright \text{ Let } \omega_m^n = \alpha_m^n \left(\theta_m^n \right)$
- ▶ $(V, \partial, \omega_m^n)_{m+n>3}$ is an A_{∞} -bialgebra if for each m and n

$$\delta\left(\omega_{m}^{n}\right)=\alpha_{m}^{n}\partial\left(\theta_{m}^{n}\right)$$

- ▶ Assume \exists (m+n-3)-dim'l polytopes $KK_{n,m}$ of which $KK_{1,n} \cong KK_{n,1} \cong K_n$
- ▶ For each $m, n \in \mathbb{N}$, $m + n \ge 3$,
 - Let θ_m^n denote the top dimensional cell of $KK_{n,m}$
 - lacktriangle Choose a chain map $lpha_m^n: C_*\left(\mathit{KK}_{n,m}\right) o \mathit{Hom}\left(V^{\otimes m},V^{\otimes n}\right)$
 - $\blacktriangleright \text{ Let } \omega_m^n = \alpha_m^n \left(\theta_m^n \right)$
- ▶ $(V, \partial, \omega_m^n)_{m+n\geq 3}$ is an A_{∞} -bialgebra if for each m and n

$$\delta\left(\omega_{m}^{n}\right)=\alpha_{m}^{n}\partial\left(\theta_{m}^{n}\right)$$

▶ Let us construct $KK_{m,n}$ when $1 \le m \le 3$ or $1 \le n \le 3$

lacktriangle An **ordered set** is arnothing or a finite strictly increasing subset of ${\mathbb N}$

- lacktriangle An **ordered set** is \varnothing or a finite strictly increasing subset of $I\!N$
- ▶ Let A be an ordered set; let r > 0

- lacktriangle An **ordered set** is arnothing or a finite strictly increasing subset of ${\mathbb N}$
- ▶ Let A be an ordered set; let r > 0
- $ightharpoonup P'_r(A)$ denotes the **augmented length** r **partitions** of A

- lacktriangle An **ordered set** is arnothing or a finite strictly increasing subset of ${\mathbb N}$
- ▶ Let A be an ordered set; let r > 0
- \triangleright $P'_r(A)$ denotes the **augmented length** r **partitions** of A
 - ▶ $P'_r(\varnothing) = \{0|\cdots|0\}$ with r empty blocks

- lacktriangle An **ordered set** is arnothing or a finite strictly increasing subset of ${\mathbb N}$
- ▶ Let A be an ordered set; let r > 0
- \triangleright $P'_r(A)$ denotes the **augmented length** r **partitions** of A
 - $P'_r(\varnothing) = \{0|\cdots|0\}$ with r empty blocks
 - $P_r'\left(A\right) = \left\{A_1 \middle| \cdots \middle| A_r\right\}, \text{ where } A_{i_1} \cup \cdots \cup A_{i_t} = A, \ A_{i_j} \neq \varnothing$ for some $i_1 < \cdots < i_t \le r$

- lacktriangle An **ordered set** is arnothing or a finite strictly increasing subset of ${\mathbb N}$
- ▶ Let A be an ordered set; let r > 0
- \triangleright $P'_r(A)$ denotes the **augmented length** r **partitions** of A
 - ▶ $P'_r(\varnothing) = \{0|\cdots|0\}$ with r empty blocks
 - $P_r'\left(A\right) = \left\{A_1 \middle| \cdots \middle| A_r\right\}, \text{ where } A_{i_1} \cup \cdots \cup A_{i_t} = A, \ A_{i_j} \neq \varnothing$ for some $i_1 < \cdots < i_t \le r$
 - ▶ Some A_i may be empty

- lacktriangle An **ordered set** is arnothing or a finite strictly increasing subset of ${\mathbb N}$
- ▶ Let A be an ordered set; let r > 0
- \triangleright $P'_r(A)$ denotes the **augmented length** r **partitions** of A
 - ▶ $P'_r(\varnothing) = \{0|\cdots|0\}$ with r empty blocks
 - $P'_r\left(A\right) = \left\{A_1 \middle| \cdots \middle| A_r\right\}, \text{ where } A_{i_1} \cup \cdots \cup A_{i_t} = A, \ A_{i_j} \neq \varnothing$ for some $i_1 < \cdots < i_t \le r$
 - ▶ Some A_i may be empty
- ▶ Define $\pi: P'(A) \to P(A)$ by deleting empty blocks

- lacktriangle An **ordered set** is arnothing or a finite strictly increasing subset of ${\mathbb N}$
- ▶ Let A be an ordered set; let r > 0
- \triangleright $P'_r(A)$ denotes the **augmented length** r **partitions** of A
 - $P'_r(\varnothing) = \{0|\cdots|0\}$ with r empty blocks
 - $P_r'\left(A\right) = \left\{A_1 \middle| \cdots \middle| A_r\right\}, \text{ where } A_{i_1} \cup \cdots \cup A_{i_t} = A, \ A_{i_j} \neq \varnothing$ for some $i_1 < \cdots < i_t \le r$
 - ightharpoonup Some A_i may be empty
- ▶ Define $\pi:P'(A)\to P(A)$ by deleting empty blocks
- lacksquare Dimension $\left|A_1|\cdots|A_r
 ight|:=\left|\pi\left(A_1|\cdots|A_r
 ight)\right|$

▶ A **bipartition** is a pair $\frac{\beta}{\alpha} := (\alpha, \beta) \in P'_r(A) \times P'_r(B)$

- ▶ A **bipartition** is a pair $\frac{\beta}{\alpha} := (\alpha, \beta) \in P'_r(A) \times P'_r(B)$
- **Example** $\frac{7|0|6}{0|1|0} \in P_3'(\{1\}) \times P_3'(\{6,7\})$

- ▶ A **bipartition** is a pair $\frac{\beta}{\alpha} := (\alpha, \beta) \in P'_r(A) \times P'_r(B)$
- **Example** $\frac{7|0|6}{0|1|0} \in P_3'(\{1\}) \times P_3'(\{6,7\})$
- lacksquare Let $\mathbf{a}_1,\ldots,\mathbf{a}_p,\mathbf{b}_1,\ldots,\mathbf{b}_q$ be ordered sets; $R=(r_{ij})\in\mathbb{N}^{q imes p}$

- ▶ A **bipartition** is a pair $\frac{\beta}{\alpha} := (\alpha, \beta) \in P'_r(A) \times P'_r(B)$
- **Example** $\frac{7|0|6}{0|1|0} \in P_3'(\{1\}) \times P_3'(\{6,7\})$
- lacksquare Let $\mathbf{a}_1,\ldots,\mathbf{a}_p,\mathbf{b}_1,\ldots,\mathbf{b}_q$ be ordered sets; $R=(\mathit{r}_{ij})\in\mathbb{N}^{q imes p}$
- ► Choose **bipartitions** $\frac{\beta_{ij}}{\alpha_{ij}} \in P'_{r_{ij}}(\mathbf{a}_j) \times P'_{r_{ij}}(\mathbf{b}_i)$

- ▶ A **bipartition** is a pair $\frac{\beta}{\alpha} := (\alpha, \beta) \in P'_r(A) \times P'_r(B)$
- **Example** $\frac{7|0|6}{0|1|0} \in P_3'(\{1\}) \times P_3'(\{6,7\})$
- lacksquare Let $\mathbf{a}_1,\ldots,\mathbf{a}_p,\mathbf{b}_1,\ldots,\mathbf{b}_q$ be ordered sets; $R=(\mathit{r}_{ij})\in\mathbb{N}^{q imes p}$
- ► Choose **bipartitions** $\frac{\beta_{ij}}{\alpha_{ij}} \in P'_{r_{ij}}\left(\mathbf{a}_{j}\right) \times P'_{r_{ij}}\left(\mathbf{b}_{i}\right)$

▶ Example
$$\begin{pmatrix} \frac{4|5}{1|0} & \frac{5|4}{3|2} \\ \frac{7|0|6}{0|1|0} & \frac{67}{23} \end{pmatrix}$$
 is a bipartition matrix over $\mathbf{a}_1 = \{1\}$, $\mathbf{a}_2 = \{2,3\}$, $\mathbf{b}_1 = \{4,5\}$, $\mathbf{b}_2 = \{6,7\}$ with respect to $\begin{pmatrix} 2 & 2 \\ 3 & 1 \end{pmatrix}$

▶ Let $A_1 | \cdots | A_{n+1} \in P'_{n+1}(A)$

▶ Let $A_1 | \cdots | A_{n+1} \in P'_{n+1}(A)$

▶ Let
$$\lambda = \left\{\lambda^1 < \dots < \lambda^k\right\} \subseteq \left\{1, 2, \dots, n\right\};$$
 define $\lambda^0 := 0$ and $\lambda^{k+1} := n+1$

 $\blacktriangleright \text{ Let } A_1|\cdots|A_{n+1} \in P'_{n+1}(A)$

Let
$$\lambda=\left\{\lambda^1<\dots<\lambda^k\right\}\subseteq\left\{1,2,\dots,n\right\}$$
; define $\lambda^0:=0$ and $\lambda^{k+1}:=n+1$

• Let
$$\bar{A}_i = A_{\lambda^{i-1}+1} \cup \cdots \cup A_{\lambda^i}$$

- ▶ Let $A_1 | \cdots | A_{n+1} \in P'_{n+1}(A)$
- ▶ Let $\lambda = \left\{\lambda^1 < \dots < \lambda^k\right\} \subseteq \left\{1, 2, \dots, n\right\};$ define $\lambda^0 := 0$ and $\lambda^{k+1} := n+1$
- Let $ar{A}_i = A_{\lambda^{i-1}+1} \cup \cdots \cup A_{\lambda^i}$
- ▶ The λ -merging map $\mu_{\lambda}:P'_{n+1}(A) \to P'_{k+1}(A)$ is defined

$$\mu_{\lambda}\left(A_{1}|\cdots|A_{n+1}\right):=\bar{A}_{1}|\cdots|\bar{A}_{k+1}$$

- $\blacktriangleright \text{ Let } A_1|\cdots|A_{n+1} \in P'_{n+1}(A)$
- Let $\lambda = \left\{\lambda^1 < \dots < \lambda^k\right\} \subseteq \left\{1, 2, \dots, n\right\};$ define $\lambda^0 := 0$ and $\lambda^{k+1} := n+1$
- Let $ar{A}_i = A_{\lambda^{i-1}+1} \cup \cdots \cup A_{\lambda^i}$
- ► The λ -merging map $\mu_{\lambda}: P'_{n+1}(A) \to P'_{k+1}(A)$ is defined $\mu_{\lambda}(A_1|\cdots|A_{n+1}) := \bar{A}_1|\cdots|\bar{A}_{k+1}$
- **Example:** $\mu_{\{2,5\}}2|1|0|5|4|3=12|45|3$

- ▶ Let $A_1 | \cdots | A_{n+1} \in P'_{n+1}(A)$
- ▶ Let $\lambda = \left\{\lambda^1 < \dots < \lambda^k\right\} \subseteq \left\{1, 2, \dots, n\right\};$ define $\lambda^0 := 0$ and $\lambda^{k+1} := n+1$
- Let $\bar{A}_i = A_{\lambda^{i-1}+1} \cup \cdots \cup A_{\lambda^i}$
- The λ -merging map $\mu_{\lambda}:P'_{n+1}(A)\to P'_{k+1}(A)$ is defined $\mu_{\lambda}\left(A_1|\cdots|A_{n+1}\right):=\bar{A}_1|\cdots|\bar{A}_{k+1}$
- **Example:** $\mu_{\{2,5\}}2|1|0|5|4|3=12|45|3$
- ▶ Extreme cases: $\mu_{\varnothing}\left(A_1|\cdots|A_{n+1}\right)=A$ $\mu_{\{1,2,\ldots,n\}}\left(A_1|\cdots|A_{n+1}\right)=A_1|\cdots|A_{n+1}$

Given a $q \times p$ bipartition matrix $\left(\frac{\beta_{ij}}{\alpha_{ij}}\right)$ over $\{\mathbf{a}_j, \mathbf{b}_i\}$ w.r.t. (r_{ij}) , there is a unique $q \times p$ matrix of ordered sets (λ_{ij}) such that

1. $\mu_{\lambda_{1j}}(\alpha_{1j}) = \cdots = \mu_{\lambda_{qj}}(\alpha_{qj})$ for each j (denominators in j^{th} column are equal)

Given a $q \times p$ bipartition matrix $\left(\frac{\beta_{ij}}{\alpha_{ij}}\right)$ over $\{\mathbf{a}_j, \mathbf{b}_i\}$ w.r.t. (r_{ij}) , there is a unique $q \times p$ matrix of ordered sets (λ_{ij}) such that

- 1. $\mu_{\lambda_{1j}}(\alpha_{1j}) = \cdots = \mu_{\lambda_{qj}}(\alpha_{qj})$ for each j (denominators in j^{th} column are equal)
- 2. $\mu_{\lambda_{i1}}(\beta_{i1}) = \cdots = \mu_{\lambda_{ip}}(\beta_{ip})$ for each i (numerators in i^{th} row are equal)

Given a $q \times p$ bipartition matrix $\left(\frac{\beta_{ij}}{\alpha_{ij}}\right)$ over $\{\mathbf{a}_j, \mathbf{b}_i\}$ w.r.t. (r_{ij}) , there is a unique $q \times p$ matrix of ordered sets (λ_{ij}) such that

- 1. $\mu_{\lambda_{1j}}(\alpha_{1j}) = \cdots = \mu_{\lambda_{qj}}(\alpha_{qj})$ for each j (denominators in j^{th} column are equal)
- 2. $\mu_{\lambda_{i1}}(\beta_{i1}) = \cdots = \mu_{\lambda_{ip}}(\beta_{ip})$ for each i (numerators in i^{th} row are equal)
- 3. all λ_{ij} have the same maximal cardinality $r < \min{\{r_{ij}\}}$

Given a $q \times p$ bipartition matrix $\left(\frac{\beta_{ij}}{\alpha_{ij}}\right)$ over $\{\mathbf{a}_j, \mathbf{b}_i\}$ w.r.t. (r_{ij}) , there is a unique $q \times p$ matrix of ordered sets (λ_{ij}) such that

- 1. $\mu_{\lambda_{1j}}\left(\alpha_{1j}\right) = \cdots = \mu_{\lambda_{qj}}\left(\alpha_{qj}\right)$ for each j (denominators in j^{th} column are equal)
- 2. $\mu_{\lambda_{i1}}(\beta_{i1}) = \cdots = \mu_{\lambda_{ip}}(\beta_{ip})$ for each i (numerators in i^{th} row are equal)
- 3. all λ_{ij} have the same maximal cardinality $r < \min{\{r_{ij}\}}$

$$\textbf{Example:} \ \left(\begin{array}{cc} \frac{45|0}{1|0} & \frac{5|4|0}{0|2|3} \\ \frac{7|0|0|6}{0|1|0|0} & \frac{0|7|6}{2|0|3} \end{array} \right) \overset{\mu_{\lambda}}{\leadsto} \left(\begin{array}{cc} \frac{45|0}{1|0} & \frac{45|0}{2|3} \\ \frac{7|6}{1|0} & \frac{7|6}{2|3} \end{array} \right),$$

where
$$\lambda = \left(\begin{array}{cc} \{1\} & \{2\} \\ \{2\} & \{2\} \end{array} \right)$$

Decomposability

Definition A bipartition matrix is **indecomposable** if its associated λ matrix is null

Decomposability

- **Definition** A bipartition matrix is **indecomposable** if its associated λ matrix is null
- ► **Theorem** A bipartition matrix has a unique indecomposable factorization

Decomposability

- ► **Definition** A bipartition matrix is **indecomposable** if its associated λ matrix is null
- ► **Theorem** A bipartition matrix has a unique indecomposable factorization
- Example

$$\begin{pmatrix} \frac{56|7|8}{1|23|4} \end{pmatrix} = \begin{pmatrix} \frac{\frac{56}{1}}{1} \\ \frac{0}{1} \\ \frac{0}{1} \end{pmatrix} \begin{pmatrix} \frac{7}{0} & \frac{7}{23} \\ \frac{0}{0} & \frac{0}{23} \end{pmatrix} \begin{pmatrix} \frac{8}{0} & \frac{8}{0} & \frac{8}{0} & \frac{8}{4} \end{pmatrix}$$

▶ Let B be an ordered set

- ▶ Let B be an ordered set
- $ightharpoonup \mathcal{ACP}_BB=B$

- ▶ Let B be an ordered set
- $\triangleright \mathcal{ACP}_BB = B$
- $\mathcal{ACP}_B\varnothing = 0|\cdots|0$ (# empty blocks = #B+1)

- ▶ Let B be an ordered set
- $\triangleright \mathcal{ACP}_BB = B$
- $\mathcal{ACP}_B\varnothing=0|\cdots|0$ (# empty blocks = #B+1)
- $\qquad \qquad \mathcal{ACP}_{\{1,2,\dots,9\}} \left\{2,5,6,8\right\} = 0|2|0|56|8|0$

► Given
$$C = \frac{B_1 | \cdots | B_r}{A_1 | \cdots | A_r}$$
, for each $k = 1, 2, \dots r$

• Given
$$C = \frac{B_1 | \cdots | B_r}{A_1 | \cdots | A_r}$$
, for each $k = 1, 2, \dots r$

Compute

$$egin{aligned} \mathbf{a}_{k,1}|\cdots|\mathbf{a}_{k,s_k} &:= \mathcal{ACP}_{A_1\cup\cdots\cup A_k}A_k \ \mathbf{b}_{k,1}|\cdots|\mathbf{b}_{k,t_k} &:= \mathcal{ACP}_{B_k\cup\cdots\cup B_r}B_k \end{aligned}$$

• Given
$$C = \frac{B_1 | \cdots | B_r}{A_1 | \cdots | A_r}$$
, for each $k = 1, 2, \dots r$

Compute

$$egin{aligned} \mathbf{a}_{k,1}|\cdots|\mathbf{a}_{k,s_k} &:= \mathcal{ACP}_{A_1\cup\cdots\cup A_k}A_k \ \mathbf{b}_{k,1}|\cdots|\mathbf{b}_{k,t_k} &:= \mathcal{ACP}_{B_k\cup\cdots\cup B_r}B_k \end{aligned}$$

Construct the bipartition matrix

$$C_k = \left(egin{array}{ccc} rac{\mathbf{b}_{k,1}}{\mathbf{a}_{k,1}} & \cdots & rac{\mathbf{b}_{k,1}}{\mathbf{a}_{k,s_k}} \\ dots & & dots \\ rac{\mathbf{b}_{k,t_k}}{\mathbf{a}_{k,1}} & \cdots & rac{\mathbf{b}_{k,t_k}}{\mathbf{a}_{k,s_k}} \end{array}
ight)$$

• Given
$$C = \frac{B_1 | \cdots | B_r}{A_1 | \cdots | A_r}$$
, for each $k = 1, 2, \dots r$

► Compute

$$egin{aligned} \mathbf{a}_{k,1}|\cdots|\mathbf{a}_{k,s_k} &:= \mathcal{ACP}_{A_1\cup\cdots\cup A_k}A_k \ \mathbf{b}_{k,1}|\cdots|\mathbf{b}_{k,t_k} &:= \mathcal{ACP}_{B_k\cup\cdots\cup B_r}B_k \end{aligned}$$

Construct the bipartition matrix

$$C_k = \begin{pmatrix} \frac{\mathbf{b}_{k,1}}{\mathbf{a}_{k,1}} & \cdots & \frac{\mathbf{b}_{k,1}}{\mathbf{a}_{k,s_k}} \\ \vdots & & \vdots \\ \frac{\mathbf{b}_{k,t_k}}{\mathbf{a}_{k,1}} & \cdots & \frac{\mathbf{b}_{k,t_k}}{\mathbf{a}_{k,s_k}} \end{pmatrix}$$

 $ightharpoonup C = C_1 \cdots C_r$

Example $\frac{56|7|8}{1|23|4}$

$$\begin{array}{ll} 1 = \mathcal{ACP}_1 \\ 0|23 = \mathcal{ACP}_{123} \\ 23 \\ 0|0|0|4 = \mathcal{ACP}_{1234} \\ \end{array} \qquad \begin{array}{ll} 56|0|0 = \mathcal{ACP}_{5678} \\ 7|0 = \mathcal{ACP}_{78} \\ 8 = \mathcal{ACP}_8 \\ \end{array}$$

Example $\frac{56|7|8}{1|23|4}$

$$\begin{array}{ll} 1 = \mathcal{ACP}_11 & 56|0|0 = \mathcal{ACP}_{5678}56 \\ 0|23 = \mathcal{ACP}_{123}23 & 7|0 = \mathcal{ACP}_{78}7 \\ 0|0|0|4 = \mathcal{ACP}_{1234}4 & 8 = \mathcal{ACP}_88 \end{array}$$

$$\frac{56|7|8}{1|23|4} = \begin{pmatrix} \frac{30}{1} \\ \frac{0}{1} \\ \frac{0}{1} \end{pmatrix} \begin{pmatrix} \frac{7}{0} & \frac{7}{23} \\ \frac{0}{0} & \frac{0}{23} \end{pmatrix} \begin{pmatrix} \frac{8}{0} & \frac{8}{0} & \frac{8}{0} & \frac{8}{4} \end{pmatrix}$$

Graphical Representation

$$\qquad \qquad \stackrel{B}{A} \leftarrow \qquad \stackrel{\#B+1}{\underbrace{\qquad \qquad \qquad }}$$

Graphical Representation

▶ A **null matrix** with entries of the form $\frac{0|\cdots|0}{0|\cdots|0}$ has dim 0

► A **null matrix** with entries of the form $\frac{0|\cdots|0}{0|\cdots|0}$ has dim 0

$$|(\frac{B}{A})| := \#A + \#B - 1$$

- ► A **null matrix** with entries of the form $\frac{0|\cdots|0}{0|\cdots|0}$ has dim 0
- $|\left(\frac{B}{A}\right)| := \#A + \#B 1$
- $\blacktriangleright |C_1 \cdots C_r| := |C_1| + \cdots + |C_r|$

- ► A **null matrix** with entries of the form $\frac{0 | \cdots | 0}{0 | \cdots | 0}$ has dim 0
- $|\left(\frac{B}{A}\right)| := \#A + \#B 1$
- $|C_1 \cdots C_r| := |C_1| + \cdots + |C_r|$
- ▶ Unique factorization \Rightarrow Define |C| for C indecomposable

▶ A **null matrix** with entries of the form $\frac{0|\cdots|0}{0|\cdots|0}$ has dim 0

$$| \left(\frac{B}{A} \right) | := \#A + \#B - 1$$

$$|C_1 \cdots C_r| := |C_1| + \cdots + |C_r|$$

- ▶ Unique factorization \Rightarrow Define |C| for C indecomposable
- Let $C = \begin{pmatrix} \frac{\beta_{ij}}{\alpha_{ij}} \end{pmatrix}$ be a $q \times p$ indecomposable bipartition matrix over $\{\mathbf{a}_j, \mathbf{b}_i\}$

▶ If $\frac{\beta_{ij}}{\alpha_{ij}} = \frac{0|\cdots|0}{\alpha_{ij}}$ for all (i,j), let C_{i*} denote the i^{th} row of C

- ▶ If $\frac{\beta_{ij}}{\alpha_{ij}} = \frac{0|\cdots|0}{\alpha_{ij}}$ for all (i,j), let C_{i*} denote the i^{th} row of C
- $lackbox{}(\lambda_1^i \cdots \lambda_p^i)$ is the matrix associated with C_{i*} given by Prop 1

- ▶ If $\frac{\beta_{ij}}{\alpha_{ij}} = \frac{0 | \cdots | 0}{\alpha_{ij}}$ for all (i,j), let C_{i*} denote the i^{th} row of C
- $lackbox (\lambda_1^i \cdots \lambda_p^i)$ is the matrix associated with C_{i*} given by Prop 1
- ▶ Define $A_1 | \cdots | A_n \cup B_1 | \cdots | B_n :=$

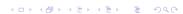
$$(A_1 \cup B_1 + \max A) \mid \cdots \mid (A_n \cup B_n + \max A)$$

- ▶ If $\frac{\beta_{ij}}{\alpha_{ij}} = \frac{0 | \cdots | 0}{\alpha_{ij}}$ for all (i,j), let C_{i*} denote the i^{th} row of C
- $(\lambda_1^i \cdots \lambda_p^i)$ is the matrix associated with C_{i*} given by Prop 1
- ▶ Define $A_1 | \cdots | A_n \uplus B_1 | \cdots | B_n :=$

$$(A_1 \cup B_1 + \max A) \, \big| \cdots \big| \, (A_n \cup B_n + \max A)$$

Define

$$\overset{\wedge}{\alpha_i} := \mu_{\lambda_1^i}(\alpha_{i1}) \uplus \cdots \uplus \mu_{\lambda_p^i}(\alpha_{ip}))$$



- ▶ If $\frac{\beta_{ij}}{\alpha_{ij}} = \frac{0 | \cdots | 0}{\alpha_{ij}}$ for all (i,j), let C_{i*} denote the i^{th} row of C
- $(\lambda_1^i \cdots \lambda_p^i)$ is the matrix associated with C_{i*} given by Prop 1
- ▶ Define $A_1 | \cdots | A_n \uplus B_1 | \cdots | B_n :=$ $(A_1 \cup B_1 + \max A) | \cdots | (A_n \cup B_n + \max A)$
- Define

$$\overset{\wedge}{\alpha_i} := \mu_{\lambda_1^i}(\alpha_{i1}) \uplus \cdots \uplus \mu_{\lambda_p^i}(\alpha_{ip}))$$

lacksquare Then $|C|:=\sum\limits_{1\leq i\leq q}|\overset{\wedge}{lpha}_i|$

Example
$$\left| \left(\frac{0}{1} \ \frac{0}{3} \right) \right| = |13| = 1$$

- **Example** $\left| \left(\frac{0}{1} \ \frac{0}{3} \right) \right| = |13| = 1$
- ▶ |C| is not necessarily the sum of the dim's of its entries

Example
$$\left| \begin{pmatrix} \frac{0}{1} & \frac{0}{3} \end{pmatrix} \right| = |13| = 1$$

▶ |C| is not necessarily the sum of the dim's of its entries

► Example
$$\left| \begin{pmatrix} \frac{0}{12} & \frac{0}{34} \\ \frac{0|0}{1|2} & \frac{0|0}{3|4} \end{pmatrix} \right| = \left| 1234 \right| + \left| 13|24 \right| = 3 + 2 = 5$$

- **Example** $\left| \left(\frac{0}{1} \ \frac{0}{3} \right) \right| = |13| = 1$
- ▶ |C| is not necessarily the sum of the dim's of its entries

► Example
$$\left| \begin{pmatrix} \frac{0}{12} & \frac{0}{34} \\ \frac{0|0}{1|2} & \frac{0|0}{3|4} \end{pmatrix} \right| = \left| 1234 \right| + \left| 13|24 \right| = 3 + 2 = 5$$

▶ If $c_{ij} = \frac{\beta_{ij}}{0 | \cdots | 0}$ for all (i, j), define |C| similarly

- **Example** $\left| \left(\frac{0}{1} \ \frac{0}{3} \right) \right| = |13| = 1$
- ▶ |C| is not necessarily the sum of the dim's of its entries

► Example
$$\left| \begin{pmatrix} \frac{0}{12} & \frac{0}{34} \\ \frac{0|0}{1|2} & \frac{0|0}{3|4} \end{pmatrix} \right| = \left| 1234 \right| + \left| 13|24 \right| = 3 + 2 = 5$$

- ▶ If $c_{ij} = \frac{\beta_{ij}}{0|\cdots|0|}$ for all (i,j), define |C| similarly
- Otherwise...

▶ Deleting or inserting empty blocks in an entry of a bipartition matrix may preserve or change dimension

- Deleting or inserting empty blocks in an entry of a bipartition matrix may preserve or change dimension
- ► Discard bipartition matrices whose dimension increases when empty blocks are inserted

- Deleting or inserting empty blocks in an entry of a bipartition matrix may preserve or change dimension
- ► Discard bipartition matrices whose dimension increases when empty blocks are inserted
- Example Discard the 1-dim'l indecomposable matrix

$$C = \left(\frac{0|1}{1|0} \ \frac{0|1}{1|0} \ \frac{1}{1}\right)$$

Inserting empty blocks in the third entry transforms C into the 3-dim'l decomposable

$$\left(\frac{0|1}{1|0}\;\frac{0|1}{1|0}\;\frac{0|1}{0|1}\right) = \left(\begin{array}{ccc} \frac{0}{1} & \frac{0}{1} & \frac{0}{0} \\ \frac{0}{1} & \frac{0}{1} & \frac{0}{0} \end{array}\right) \left(\begin{array}{ccc} \frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{1}{1} \end{array}\right).$$

► Equate bipartition matrices of the same dimension that differ only in the number of empty blocks in their entries

► Equate bipartition matrices of the same dimension that differ only in the number of empty blocks in their entries

► Example
$$\begin{pmatrix} \frac{0}{1} & \frac{0}{3} \\ \frac{0|0|0}{0|1|0} & \frac{0|0|0}{0|0|3} \end{pmatrix} = \begin{pmatrix} \frac{0}{1} & \frac{0}{3} \\ \frac{0|0}{1|0} & \frac{0|0}{0|3} \end{pmatrix}$$

► Equate bipartition matrices of the same dimension that differ only in the number of empty blocks in their entries

▶ Example
$$\begin{pmatrix} \frac{0}{1} & \frac{0}{3} \\ \frac{0|0|0}{0|1|0} & \frac{0|0|0}{0|0|3} \end{pmatrix} = \begin{pmatrix} \frac{0}{1} & \frac{0}{3} \\ \frac{0|0}{1|0} & \frac{0|0}{0|3} \end{pmatrix}$$

Only preserve empty blocks necessary to preserve dimension

Conventions for Bipartition Matrices

► Equate bipartition matrices of the same dimension that differ only in the number of empty blocks in their entries

▶ Example
$$\begin{pmatrix} \frac{0}{1} & \frac{0}{3} \\ \frac{0|0|0}{0|1|0} & \frac{0|0|0}{0|0|3} \end{pmatrix} = \begin{pmatrix} \frac{0}{1} & \frac{0}{3} \\ \frac{0|0}{1|0} & \frac{0|0}{0|3} \end{pmatrix}$$

- Only preserve empty blocks necessary to preserve dimension
- **Example** Preserve all empty blocks in

$$C = \begin{pmatrix} \frac{0}{1} & \frac{0}{3} \\ \frac{0|0}{1|0} & \frac{0|0}{0|3} \end{pmatrix}$$

Removing empty blocks in the second row increases dimension

Framed Elements

▶ Given $\mathbf{a}(m)$ and $\mathbf{b}(n)$ of orders m and n, and $r \ge 1$, let

$$\frac{\beta}{\alpha} \in P'_r(\mathbf{a}(m)) \times P'_r(\mathbf{b}(n))$$

Framed Elements

▶ Given $\mathbf{a}(m)$ and $\mathbf{b}(n)$ of orders m and n, and $r \ge 1$, let

$$\frac{\beta}{\alpha} \in P_r'(\mathbf{a}(m)) \times P_r'(\mathbf{b}(n))$$

▶ If r = 1 or mn = 0, the set of **framed elements**

$$\alpha \uplus_f \beta := \left\{ \left(\frac{\beta}{\alpha} \right) \right\}$$

Framed Elements

▶ Given $\mathbf{a}(m)$ and $\mathbf{b}(n)$ of orders m and n, and $r \ge 1$, let

$$\frac{\beta}{\alpha} \in P_r'(\mathbf{a}(m)) \times P_r'(\mathbf{b}(n))$$

▶ If r = 1 or mn = 0, the set of **framed elements**

$$\alpha \uplus_f \beta := \left\{ \left(\frac{\beta}{\alpha} \right) \right\}$$

• Otherwise, assume inductively that the set of framed elements $\alpha' \uplus_f \beta'$ has been defined for all $\frac{\beta'}{\alpha'} \in P'(\mathbf{a}(s)) \times P'(\mathbf{b}(t))$ such that $(s,t) \leq (m,n)$ and s+t < m+n

► Given
$$\frac{B_1|\cdots|B_r}{A_1|\cdots|A_r} = \frac{\beta}{\alpha}$$
, for $k = 1, 2, ..., r$:

► Given
$$\frac{B_1|\cdots|B_r}{A_1|\cdots|A_r} = \frac{\beta}{\alpha}$$
, for $k = 1, 2, ..., r$:

 $lackbox{f Compute} \; {f a}_1|\cdots|{f a}_p := \mathcal{ACP}_{A_1\cup\cdots\cup A_k}A_k$

• Given
$$\frac{B_1|\cdots|B_r}{A_1|\cdots|A_r} = \frac{\beta}{\alpha}$$
, for $k = 1, 2, ..., r$:

- $lackbox{\sf Compute } f a_1|\cdots|f a_p:=\mathcal{ACP}_{A_1\cup\cdots\cup A_k}A_k$
- $lackbox{f Compute } lackbox{f b}_1|\cdots|lackbox{f b}_q:=\mathcal{ACP}_{B_k\cup\cdots\cup B_r}B_k$

► Given
$$\frac{B_1|\cdots|B_r}{A_1|\cdots|A_r} = \frac{\beta}{\alpha}$$
, for $k = 1, 2, ..., r$:

- $lackbox{\sf Compute } f a_1 | \cdots | f a_p := \mathcal{ACP}_{A_1 \cup \cdots \cup A_k} A_k$
- $lackbox{\sf Compute } \mathbf{b}_1|\cdots|\mathbf{b}_q:=\mathcal{ACP}_{B_k\cup\cdots\cup B_r}B_k$
- ► Choose $R \in \mathbb{N}^{q \times p}$ and indecomposable $\left(\frac{\beta_i'}{\alpha_j'}\right)$ over $\left\{\mathbf{a}_j, \mathbf{b}_i\right\}$ w.r.t. R

► Given
$$\frac{B_1|\cdots|B_r}{A_1|\cdots|A_r} = \frac{\beta}{\alpha}$$
, for $k = 1, 2, ..., r$:

- $lackbox{\sf Compute } f a_1 | \cdots | f a_p := \mathcal{ACP}_{A_1 \cup \cdots \cup A_k} A_k$
- $lackbox{\sf Compute } lackbox{\sf b}_1|\cdots|lackbox{\sf b}_q:=\mathcal{ACP}_{B_k\cup\cdots\cup B_r}B_k$
- ▶ Choose $R \in \mathbb{N}^{q \times p}$ and indecomposable $\left(\frac{\beta_i'}{\alpha_j'}\right)$ over $\left\{\mathbf{a}_j, \mathbf{b}_i\right\}$ w.r.t. R
- ▶ Choose $c_{ij}^k \in \alpha_j' \uplus_f \beta_i'$

• Given
$$\frac{B_1|\cdots|B_r}{A_1|\cdots|A_r} = \frac{\beta}{\alpha}$$
, for $k = 1, 2, ..., r$:

- $lackbox{\sf Compute } f a_1 | \cdots | f a_p := \mathcal{ACP}_{A_1 \cup \cdots \cup A_k} A_k$
- $lackbox{\sf Compute } lackbox{\sf b}_1|\cdots|lackbox{\sf b}_q:=\mathcal{ACP}_{B_k\cup\cdots\cup B_r}B_k$
- ▶ Choose $R \in \mathbb{N}^{q \times p}$ and indecomposable $\left(\frac{\beta_i'}{\alpha_j'}\right)$ over $\left\{\mathbf{a}_j, \mathbf{b}_i\right\}$ w.r.t. R
- ▶ Choose $c_{ij}^k \in \alpha_j' \, \uplus_f \, \beta_i'$
- Form the **framed matrix** $C_k = \left(c_{ij}^k\right)$

- Given $\frac{B_1|\cdots|B_r}{A_1|\cdots|A_r} = \frac{\beta}{\alpha}$, for k = 1, 2, ..., r:
 - $lackbox{\sf Compute } f a_1 | \cdots | f a_p := \mathcal{ACP}_{A_1 \cup \cdots \cup A_k} A_k$
 - $lackbox{\sf Compute } lackbox{\sf b}_1|\cdots|lackbox{\sf b}_q:=\mathcal{ACP}_{B_k\cup\cdots\cup B_r}B_k$
 - ▶ Choose $R \in \mathbb{N}^{q \times p}$ and indecomposable $\left(\frac{\beta_i'}{\alpha_j'}\right)$ over $\left\{\mathbf{a}_j, \mathbf{b}_i\right\}$ w.r.t. R
 - ▶ Choose $c_{ij}^k \in \alpha_j' \, \uplus_f \, \beta_i'$
 - Form the **framed matrix** $C_k = \left(c_{ij}^k\right)$
- ▶ The set of **framed elements** $\alpha \uplus_f \beta := \{C_1 \cdots C_r\}$, where C_i ranges over all possible framed matrices and the product is formal juxtaposition

The Framed Join of Ordered Sets

▶ **Definition** The framed join of a(m) and b(n) is the set

$$\mathbf{a}(m)\circledast\mathbf{b}(n):=\bigcup_{\substack{\frac{\beta}{\alpha}\in P_r'(\mathbf{a}(m))\times P_r'(\mathbf{b}(n))\\r>1}}\alpha\uplus_f\beta$$

The Framed Join of Ordered Sets

▶ **Definition** The framed join of a(m) and b(n) is the set

$$\mathbf{a}(m)\circledast\mathbf{b}(n):=\bigcup_{\substack{\frac{\beta}{\alpha}\in P_r'(\mathbf{a}(m))\times P_r'(\mathbf{b}(n))\\r>1}}\alpha\uplus_f\beta$$

Example $1 \circledast 1 = \left\{ \frac{1}{1}, \ \frac{0|1}{1|0} = \left(\frac{0}{1} \atop \frac{0}{1} \right) \left(\frac{1}{0} \ \frac{1}{0} \right), \ \frac{1|0}{0|1} = \left(\frac{1}{0} \right) \left(\frac{0}{1} \right) \right\}$

The Framed Join of Ordered Sets

▶ **Definition** The framed join of a(m) and b(n) is the set

$$\mathbf{a}(m) \circledast \mathbf{b}(n) := \bigcup_{\substack{\frac{\beta}{\alpha} \in P'_r(\mathbf{a}(m)) \times P'_r(\mathbf{b}(n)) \\ r > 1}} \alpha \uplus_f \beta$$

- **Example** $1 \circledast 1 = \left\{ \frac{1}{1}, \ \frac{0|1}{1|0} = \left(\frac{0}{\frac{1}{1}} \right) \left(\frac{1}{0} \ \frac{1}{0} \right), \ \frac{1|0}{0|1} = \left(\frac{1}{0} \right) \left(\frac{0}{1} \right) \right\}$
- ▶ **Remark** $PP_{2,2} = KK_{2,2} \leftrightarrow 1 \circledast 1$

$$\begin{array}{c|ccccc}
0|1 & & & & & & & & & & & & \\
\hline
1|0 & & & & & & & & & & & \\
\hline
\end{array}$$

The Hopf relation holds up to homotopy

▶ Define $\pi: P'(A) \rightarrow P(A)$ by deleting empty blocks

- ▶ Define $\pi: P'(A) \rightarrow P(A)$ by deleting empty blocks
- ▶ **Definition** $A \ q \times p$ indecomposable bipartition matrix $\left(\frac{\beta_{ij}}{\alpha_{ij}}\right)$ over $\{\mathbf{a}_j, \mathbf{b}_i\}$ is

- ▶ Define $\pi: P'(A) \rightarrow P(A)$ by deleting empty blocks
- ▶ **Definition** $A \ q \times p$ indecomposable bipartition matrix $\left(\frac{\beta_{ij}}{\alpha_{ij}}\right)$ over $\{\mathbf{a}_j, \mathbf{b}_i\}$ is
 - column coherent if

$$\pi(\overset{\wedge}{\alpha_q}) \times \cdots \times \pi(\overset{\wedge}{\alpha_1}) \sqsubseteq \Delta^{(q-1)}(P_{\#(\mathbf{a}_1 \cup \cdots \cup \mathbf{a}_p)})$$

- ▶ Define $\pi: P'(A) \rightarrow P(A)$ by deleting empty blocks
- ▶ **Definition** $A \ q \times p$ indecomposable bipartition matrix $\left(\frac{\beta_{ij}}{\alpha_{ij}}\right)$ over $\{\mathbf{a}_j, \mathbf{b}_i\}$ is
 - column coherent if

$$\pi(\overset{\wedge}{\alpha_q})\times \cdots \times \pi(\overset{\wedge}{\alpha_1}) \sqsubseteq \Delta^{(q-1)}(P_{\#(\mathbf{a}_1\cup \cdots \cup \mathbf{a}_p)})$$

► row coherent if

$$\pi(\overset{\vee}{\beta_1})\times \cdots \times \pi(\overset{\vee}{\beta_p}) \sqsubseteq \Delta^{(p-1)}(P_{\#(\mathbf{b}_1\cup \cdots \cup \mathbf{b}_q)})$$

- ▶ Define $\pi: P'(A) \rightarrow P(A)$ by deleting empty blocks
- ▶ **Definition** $A \ q \times p$ indecomposable bipartition matrix $\left(\frac{B_{ij}}{\alpha_{ij}}\right)$ over $\{\mathbf{a}_j, \mathbf{b}_i\}$ is
 - column coherent if

$$\pi(\overset{\wedge}{\alpha_q})\times \cdots \times \pi(\overset{\wedge}{\alpha_1}) \sqsubseteq \Delta^{(q-1)}(P_{\#(\mathbf{a}_1\cup \cdots \cup \mathbf{a}_p)})$$

▶ row coherent if

$$\pi(\stackrel{\vee}{\beta_1})\times \cdots \times \pi(\stackrel{\vee}{\beta_p}) \sqsubseteq \Delta^{(p-1)}(P_{\#(\mathbf{b}_1\cup \cdots \cup \mathbf{b}_q)})$$

coherent if column and row coherent

▶ Definition The coherent framed join $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$ is obtained by only admitting coherent matrices in the inductive step

▶ Definition The coherent framed join $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$ is obtained by only admitting coherent matrices in the inductive step

Example
$$12 \circledast 1 = \left\{ \frac{1}{12}, \frac{0|1}{1|2}, \frac{0|1}{2|1}, \boxed{\frac{0|1}{12|0}}, \frac{1|0}{1|2}, \frac{1|0}{2|1}, \frac{1|0}{0|12} \right\}$$

$$\frac{0|0|1}{1|2|0}, \frac{0|0|1}{2|1|0}, \frac{0|1|0}{1|0|2}, \frac{0|1|0}{2|0|1}, \frac{1|0|0}{0|1|2}, \frac{1|0|0}{0|2|1} \right\}$$

- ▶ **Definition** The **coherent framed join** $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$ is obtained by only admitting coherent matrices in the inductive step
- **Example** $12 \circledast 1 = \left\{ \frac{1}{12}, \frac{0|1}{1|2}, \frac{0|1}{2|1}, \boxed{\frac{0|1}{12|0}}, \frac{1|0}{1|2}, \frac{1|0}{2|1}, \frac{1|0}{0|12} \right\}$

$$\frac{0|0|1}{1|2|0}, \frac{0|0|1}{2|1|0}, \frac{0|1|0}{1|0|2}, \frac{0|1|0}{2|0|1}, \frac{1|0|0}{0|1|2}, \frac{1|0|0}{0|2|1} \right\}$$

▶ Left factor of $\frac{0|1}{12|0} = \begin{pmatrix} \frac{0}{12} \\ \frac{0}{12} \end{pmatrix} \begin{pmatrix} \frac{1}{0} & \frac{1}{0} & \frac{1}{0} \end{pmatrix}$ is incoherent because

$$\pi(\stackrel{\wedge}{lpha_2}) imes \pi(\stackrel{\wedge}{lpha_1}) = 12 imes 12
ot \sqsubseteq \Delta^{(1)}(P_2)$$



- ▶ **Definition** The **coherent framed join** $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$ is obtained by only admitting coherent matrices in the inductive step
- ▶ Example $12 \circledast 1 = \left\{ \frac{1}{12}, \frac{0|1}{1|2}, \frac{0|1}{2|1}, \boxed{0|1 \over 12|0}, \frac{1|0}{1|2}, \frac{1|0}{2|1}, \frac{1|0}{0|12} \right\}$

$$\frac{0|0|1}{1|2|0}, \frac{0|0|1}{2|1|0}, \frac{0|1|0}{1|0|2}, \frac{0|1|0}{2|0|1}, \frac{1|0|0}{0|1|2}, \frac{1|0|0}{0|2|1} \right\}$$

▶ Left factor of $\frac{0|1}{12|0} = \begin{pmatrix} \frac{0}{12} \\ \frac{0}{12} \end{pmatrix} \begin{pmatrix} \frac{1}{0} & \frac{1}{0} & \frac{1}{0} \end{pmatrix}$ is incoherent because

$$\pi(\stackrel{\wedge}{\alpha_2}) \times \pi(\stackrel{\wedge}{\alpha_1}) = 12 \times 12 \not\sqsubseteq \Delta^{(1)}(P_2)$$

Replace entries in all possible ways to obtain coherence

$$12|0 \uplus_c 0|1 = \left\{ \left(\begin{smallmatrix} 0|0 \\ \frac{2}{1} \\ 0 \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 1 \\ 0 \\ \frac{1}{0} \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 \\ \frac{1}{12} \\ \frac{0}{1} \end{smallmatrix} \right) \left(\begin{smallmatrix} 1 \\ \frac{1}{0} \\ \frac{1}{0} \end{smallmatrix} \right), \left(\begin{smallmatrix} 0|0 \\ \frac{2}{1} \\ \frac{0}{0} \end{smallmatrix} \right) \left(\begin{smallmatrix} 1 \\ \frac{0}{12} \\ \frac{1}{0} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{0} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{0} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{0} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{0} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{smallmatrix} \right) \left(\begin{smallmatrix}$$

▶ Let $\mathfrak{m} = \{1, 2, ..., m\}$; let $\rho \in \mathfrak{m} \circledast_{pp} \mathfrak{n}$

- ▶ Let $\mathfrak{m} = \{1, 2, ..., m\}$; let $\rho \in \mathfrak{m} \circledast_{pp} \mathfrak{n}$
- ullet $ilde{\partial}(
 ho)$ denotes codim 1 elements

- ▶ Let $\mathfrak{m} = \{1, 2, ..., m\}$; let $\rho \in \mathfrak{m} \circledast_{pp} \mathfrak{n}$
- ullet $ilde{\partial}(
 ho)$ denotes codim 1 elements
- For top dim'l $ho=\mathfrak{m} \ \mathbb{U} \ \mathfrak{n}=\{1,2,\ldots,\mathit{m}+\mathit{n}\}$ define
 - $\tilde{\partial}(\mathfrak{m} \, \mathbb{U} \, \mathfrak{n}) = \{ \text{codim 1 elements of } \mathfrak{m} \, \circledast_{\mathit{pp}} \, \mathfrak{n} \}$

- ▶ Let $\mathfrak{m} = \{1, 2, ..., m\}$; let $\rho \in \mathfrak{m} \circledast_{pp} \mathfrak{n}$
- ullet $ilde{\partial}(
 ho)$ denotes codim 1 elements
- For top dim'l $ho=\mathfrak{m} \uplus \mathfrak{n}=\{1,2,\ldots,m+n\}$ define $\tilde{\partial}(\mathfrak{m} \uplus \mathfrak{n})=\{ \mathrm{codim} \ 1 \ \mathrm{elements} \ \mathrm{of} \ \mathfrak{m} \circledast_{pp} \mathfrak{n} \}$
- Example

$$\tilde{\partial}(2 \uplus \mathbf{1}) = \left\{ \frac{0|1}{1|2}, \frac{0|1}{2|1}, \frac{1|0}{1|2}, \frac{1|0}{2|1}, \frac{1|0}{0|12}, \left(\frac{\frac{0|0}{2|1}}{\frac{0}{12}} \right) \left(\frac{1}{0} \ \frac{1}{0} \ \frac{1}{0} \right), \left(\frac{\frac{0}{12}}{\frac{0}{1|2}} \right) \left(\frac{1}{0} \ \frac{1}{0} \ \frac{1}{0} \right) \right\}$$

► For lower dim'l cells insert empty blocks and subdivide in all possible ways that preserve coherence

► For lower dim'l cells insert empty blocks and subdivide in all possible ways that preserve coherence

$$\qquad \qquad \tilde{\partial} \left(\frac{0|1}{1|2} \right) = \frac{0|1|0}{1|0|2} \cup \frac{0|0|1}{1|2|0}$$

► For lower dim'l cells insert empty blocks and subdivide in all possible ways that preserve coherence

$$\qquad \qquad \tilde{\partial} \left(\frac{0|1}{1|2} \right) = \frac{0|1|0}{1|0|2} \cup \frac{0|0|1}{1|2|0}$$

$$\qquad \qquad \bullet \ \, \tilde{\partial} \left(\frac{1|0}{0|12} \right) = \frac{1|0|0}{0|1|2} \cup \frac{1|0|0}{0|2|1}$$

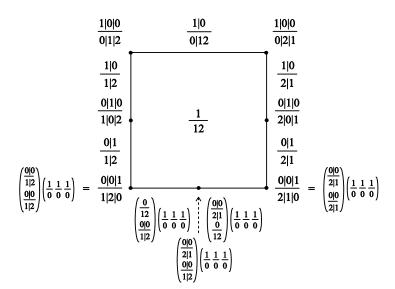
 For lower dim'l cells insert empty blocks and subdivide in all possible ways that preserve coherence

$$\tilde{\partial} \left(\frac{0|1}{1|2} \right) = \frac{0|1|0}{1|0|2} \cup \frac{0|0|1}{1|2|0}$$

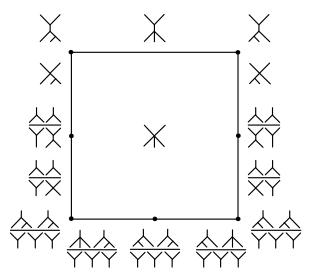
$$ightarrow ilde{\partial} \left(rac{1|0}{0|12}
ight) = rac{1|0|0}{0|1|2} \cup rac{1|0|0}{0|2|1}$$

$$\qquad \qquad \tilde{\partial} \left(\left(\begin{smallmatrix} \frac{0|0}{2|1} \\ \frac{0}{12} \end{smallmatrix} \right) \left(\begin{smallmatrix} \frac{1}{0} & \frac{1}{0} & \frac{1}{0} \end{smallmatrix} \right) \right) = \left(\begin{smallmatrix} \frac{0|0}{2|1} \\ \frac{0|0}{1|2} \end{smallmatrix} \right) \left(\begin{smallmatrix} \frac{1}{0} & \frac{1}{0} & \frac{1}{0} \end{smallmatrix} \right) \cup \left(\begin{smallmatrix} \frac{0|0}{2|1} \\ \frac{0|0}{2|1} \end{smallmatrix} \right) \left(\begin{smallmatrix} \frac{1}{0} & \frac{1}{0} & \frac{1}{0} \end{smallmatrix} \right)$$

PP(2,3) = KK(2,3)



PP(2,3) = KK(2,3)



▶ Define an equivalence relation \sim on $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$:

- ▶ Define an equivalence relation \sim on $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$:
 - $C = (c_{ij}) \sim C' = (c'_{ij})$ iff c_{ij} and c'_{ij} differ only in the number or placement of empty blocks $\frac{0}{0}$

- ▶ Define an equivalence relation \sim on $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$:
 - $C = (c_{ij}) \sim C' = (c'_{ij})$ iff c_{ij} and c'_{ij} differ only in the number or placement of empty blocks $\frac{0}{0}$
- ▶ Example $\begin{pmatrix} \frac{0}{1} & \frac{0}{3} \end{pmatrix} = \begin{pmatrix} \frac{0|0}{1|0} & \frac{0|0}{0|3} \end{pmatrix} = \begin{pmatrix} \frac{0|0}{0|1} & \frac{0|0}{3|0} \end{pmatrix}$

- ▶ Define an equivalence relation \sim on $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$:
 - $C = (c_{ij}) \sim C' = (c'_{ij})$ iff c_{ij} and c'_{ij} differ only in the number or placement of empty blocks $\frac{0}{0}$
- ▶ Example $\begin{pmatrix} \frac{0}{1} & \frac{0}{3} \end{pmatrix} = \begin{pmatrix} \frac{0|0}{1|0} & \frac{0|0}{0|3} \end{pmatrix} = \begin{pmatrix} \frac{0|0}{0|1} & \frac{0|0}{3|0} \end{pmatrix}$
- ▶ Definition The reduced coherent framed join of a(m) and b(n) is the set

$$\mathbf{a}(m) \circledast_{kk} \mathbf{b}(n) = \mathbf{a}(m) \circledast_{pp} \mathbf{b}(n) / \sim$$

- ▶ Define an equivalence relation \sim on $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$:
 - $C = (c_{ij}) \sim C' = (c'_{ij})$ iff c_{ij} and c'_{ij} differ only in the number or placement of empty blocks $\frac{0}{0}$
- ▶ Example $\begin{pmatrix} \frac{0}{1} & \frac{0}{3} \end{pmatrix} = \begin{pmatrix} \frac{0|0}{1|0} & \frac{0|0}{0|3} \end{pmatrix} = \begin{pmatrix} \frac{0|0}{0|1} & \frac{0|0}{3|0} \end{pmatrix}$
- ▶ Definition The reduced coherent framed join of a(m) and b(n) is the set

$$\mathbf{a}(m) \circledast_{kk} \mathbf{b}(n) = \mathbf{a}(m) \circledast_{pp} \mathbf{b}(n) / \sim$$

▶ In $\mathbf{a}(m) \circledast_{kk} \mathbf{b}(n)$

- ▶ Define an equivalence relation \sim on $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$:
 - $C = (c_{ij}) \sim C' = (c'_{ij})$ iff c_{ij} and c'_{ij} differ only in the number or placement of empty blocks $\frac{0}{0}$
- ► Example $\begin{pmatrix} \frac{0}{1} & \frac{0}{3} \end{pmatrix} = \begin{pmatrix} \frac{0|0}{1|0} & \frac{0|0}{0|3} \end{pmatrix} = \begin{pmatrix} \frac{0|0}{0|1} & \frac{0|0}{3|0} \end{pmatrix}$
- ▶ Definition The reduced coherent framed join of a(m) and b(n) is the set

$$\mathbf{a}(m) \circledast_{kk} \mathbf{b}(n) = \mathbf{a}(m) \circledast_{pp} \mathbf{b}(n) / \sim$$

- ▶ In $\mathbf{a}(m) \circledast_{kk} \mathbf{b}(n)$
 - Dimension of matrix is the sum of the dimensions of its entries

- ▶ Define an equivalence relation \sim on $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$:
 - $C = (c_{ij}) \sim C' = (c'_{ij})$ iff c_{ij} and c'_{ij} differ only in the number or placement of empty blocks $\frac{0}{0}$
- ► Example $\begin{pmatrix} \frac{0}{1} & \frac{0}{3} \end{pmatrix} = \begin{pmatrix} \frac{0|0}{1|0} & \frac{0|0}{0|3} \end{pmatrix} = \begin{pmatrix} \frac{0|0}{0|1} & \frac{0|0}{3|0} \end{pmatrix}$
- ▶ Definition The reduced coherent framed join of a(m) and b(n) is the set

$$\mathbf{a}(m) \circledast_{kk} \mathbf{b}(n) = \mathbf{a}(m) \circledast_{pp} \mathbf{b}(n) / \sim$$

- ▶ In $\mathbf{a}(m) \circledast_{kk} \mathbf{b}(n)$
 - Dimension of matrix is the sum of the dimensions of its entries
 - Differential acts on matrix as a derivation of its entries

The Polytopes KK

 $\blacktriangleright \ KK_{n+1,m+1} \leftrightarrow \mathfrak{m} \circledast_{kk} \mathfrak{n}$

The Polytopes KK

- $ightharpoonup KK_{n+1,m+1} \leftrightarrow \mathfrak{m} \circledast_{kk} \mathfrak{n}$
- ▶ In $KK_{1.4} \leftrightarrow 3 \circledast_{kk}$ o we have

$$\begin{pmatrix} \frac{0}{2} \end{pmatrix} \begin{pmatrix} \frac{0}{1} & \frac{0}{3} \end{pmatrix} = \begin{pmatrix} \frac{0}{2} \end{pmatrix} \begin{pmatrix} \frac{0|0}{1|0} & \frac{0|0}{0|3} \end{pmatrix} = \begin{pmatrix} \frac{0}{2} \end{pmatrix} \begin{pmatrix} \frac{0|0}{0|1} & \frac{0|0}{3|0} \end{pmatrix}$$

so that

$$\frac{0|0}{2|13} = \frac{0|0|0}{2|1|3} = \frac{0|0|0}{2|3|1}$$

The Polytopes KK

- $ightharpoonup KK_{n+1,m+1} \leftrightarrow \mathfrak{m} \circledast_{kk} \mathfrak{n}$
- ▶ In $KK_{1.4} \leftrightarrow 3 \circledast_{kk}$ o we have

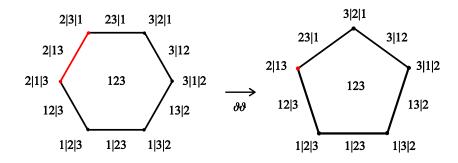
$$\begin{pmatrix} \frac{0}{2} \end{pmatrix} \begin{pmatrix} \frac{0}{1} & \frac{0}{3} \end{pmatrix} = \begin{pmatrix} \frac{0}{2} \end{pmatrix} \begin{pmatrix} \frac{0|0}{1|0} & \frac{0|0}{0|3} \end{pmatrix} = \begin{pmatrix} \frac{0}{2} \end{pmatrix} \begin{pmatrix} \frac{0|0}{0|1} & \frac{0|0}{3|0} \end{pmatrix}$$

so that

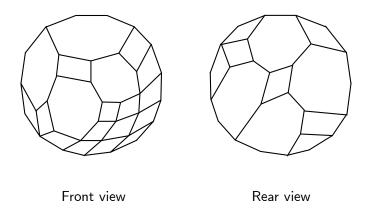
$$\frac{0|0}{2|13} = \frac{0|0|0}{2|1|3} = \frac{0|0|0}{2|3|1}$$

▶ Canonical projection $\vartheta\vartheta:\mathfrak{m}\circledast_{pp}\mathfrak{n}\to\mathfrak{m}\circledast_{kk}\mathfrak{n}$ is combinatorially equivalent to Tonks' projection when m=0 or n=0

Stasheff's Associahedron K(4)



The Polytope KK(3,3)



▶ $\partial KK_{3,3}$ consists of 8 heptagons and 22 squares

▶ It is possible to define a global differential on $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$ but at the cost of coherence

- ▶ It is possible to define a global differential on $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$ but at the cost of coherence
- The global differential is very difficult to describe

- ▶ It is possible to define a global differential on $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$ but at the cost of coherence
- ▶ The global differential is very difficult to describe
- lacktriangle Identify the cellular chains $\mathcal{C}_*\left(\mathcal{KK}
 ight)$ with the free matrad \mathcal{H}_∞

- ▶ It is possible to define a global differential on $\mathbf{a}(m) \circledast_{pp} \mathbf{b}(n)$ but at the cost of coherence
- The global differential is very difficult to describe
- lacktriangle Identify the cellular chains $\mathcal{C}_*\left(\mathcal{KK}
 ight)$ with the free matrad \mathcal{H}_∞
- ▶ **Definition** An A_∞ -bialgebra is an algebra over \mathcal{H}_∞

▶ Applications require parallel construction of bimultiplihedra JJ

- ► Applications require parallel construction of bimultiplihedra JJ
- ▶ We transfer a biassociative bialgebra on chains to homology

- Applications require parallel construction of bimultiplihedra JJ
- ▶ We transfer a biassociative bialgebra on chains to homology
- ▶ Realize an induced A_{∞} -bialgebra structure on homology

- ► Applications require parallel construction of bimultiplihedra JJ
- ▶ We transfer a biassociative bialgebra on chains to homology
- lacktriangle Realize an induced A_{∞} -bialgebra structure on homology
- ▶ **Theorem** A non-trivial A_{∞} -coalgebra structure on $H_*(X;\mathbb{Q})$ induces a non-trivial A_{∞} -bialgebra structure on $H_*(\Omega\Sigma X;\mathbb{Q})$

- Applications require parallel construction of bimultiplihedra JJ
- We transfer a biassociative bialgebra on chains to homology
- ightharpoonup Realize an induced A_{∞} -bialgebra structure on homology
- ▶ **Theorem** A non-trivial A_{∞} -coalgebra structure on $H_*(X;\mathbb{Q})$ induces a non-trivial A_{∞} -bialgebra structure on $H_*(\Omega\Sigma X;\mathbb{Q})$
- ► The A_{∞} -bialgebra structure on $H_*\left(\Omega\Sigma X;\mathbb{Q}\right)$ is a rational homology invariant

- Applications require parallel construction of bimultiplihedra JJ
- We transfer a biassociative bialgebra on chains to homology
- lacktriangle Realize an induced A_{∞} -bialgebra structure on homology
- ▶ **Theorem** A non-trivial A_{∞} -coalgebra structure on $H_*(X;\mathbb{Q})$ induces a non-trivial A_{∞} -bialgebra structure on $H_*(\Omega\Sigma X;\mathbb{Q})$
- ► The A_{∞} -bialgebra structure on $H_*\left(\Omega\Sigma X;\mathbb{Q}\right)$ is a rational homology invariant
- Prior to this work, all known rational homology invariants of $\Omega\Sigma X$ were trivial

The End

Thank you!