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Background

> In our 2011 paper entitled, “Matrads, Biassociahedra, and
Ac-bialgebras”, we constructed a basis for the free matrad
Hoo and the polytopes KK, , in the ranges 1 < m < 3 and
1<n<3

> In these ranges, the reduced coherent framed join provides an
efficient way to construct a basis, to define the differential,
and to determine KK,

> However, outside these ranges we are unable to define an
operator that simultaneously preserves coherency and satisfies
d?> = 0. In fact...

» When m = n = 4, Saneblidze constructed an example with
the following property: If we use all available components of
the face operator to extend the differential, coherency is lost;
if we use only those available components that preserve
coherency, d?> # 0
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Loop Spaces

v

Let S be a topological space with base point *

v

A base pointed loop on S is a continuous map « : | — S such
that « (0) = a (1) = *

v

Let Q)S denote the space of all base pointed loops on S

v

Given a, B € Q)S, define the product a - B € OS by

]
]

a (2t), te|

(“'ﬁ)(t):{ B(2t—1), te]

= O
= N[
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Homotopy Associativity

» A homotopy from a to B is a continuous map H:/ — QS
such that H(0) =a and H(1) = B

» Thus {H (s) : s € I} is a 1-parameter family of loops that
continuously deforms « to 8

> The loops (ap)y and a (B7y) are homotopic via linear change
of parameter

H(1)

H(0)
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The Associahedron K(4)

» K, controls homotopy associativity in four variables

D)

o(. . o)
(0 .)(0 o) ] ((0 o) o)

(oo)oo o(oo)o

((00)0)0 (oo.)o (0(.0)).

The associahedron K,



Quinn Minnich’s Model of K(5)




Associahedra and Biassociahedra

» K, is an (n—2)-dim’l polytope controlling homotopy
associativity in n variables



Associahedra and Biassociahedra

» K, is an (n—2)-dim’l polytope controlling homotopy
associativity in n variables

» Associahedra organize the structural data in an
Aso-(co)algebra



Associahedra and Biassociahedra

» K, is an (n—2)-dim’l polytope controlling homotopy
associativity in n variables

» Associahedra organize the structural data in an
Aso-(co)algebra

» Singular chains on Q)S is a homotopy associative bialgebra



Associahedra and Biassociahedra

» K, is an (n—2)-dim’'l polytope controlling homotopy
associativity in n variables

» Associahedra organize the structural data in an
Aso-(co)algebra

» Singular chains on Q)S is a homotopy associative bialgebra

» Transfer of bialgebra structure from chains to homology
induces an As-bialgebra structure on homology



Associahedra and Biassociahedra
» K, is an (n—2)-dim’'l polytope controlling homotopy
associativity in n variables

» Associahedra organize the structural data in an
Aso-(co)algebra

» Singular chains on Q)S is a homotopy associative bialgebra

» Transfer of bialgebra structure from chains to homology
induces an As-bialgebra structure on homology

» Biassociahedra organize the structural data in an A-bialgebra
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v

Let V be a vector space and let X be a cell complex

v

The cellular chains of X, denoted C, (X), is the graded
vector space generated by cells of X

» The geometric boundary induces a differential operator
9:Ci(X)— Ciz1(X) such that 909 =0

v

The pair (C, (X),0) is a differential graded vector space
(d.g.v.s.)

v

Let (V,dy) and (W,0w) be d.g.v.s. A linear map
f:V— W hasdegree pif f:V, — Wi,
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Maps of d.g. R-modules

v

|f| denotes the degree of f

v

A linear map f : V — W is a chain map if

fody = (—1)flay of

v

Hom,, (V, W) is the vector space of degree p linear maps

v

Hom, (V, W) is a d.g.v.s. with differential
5(F)=fody—(=1)flay of

» 6 (f) = 0iff fis a chain map
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Definition of an A-infinity Coalgebra

> Let (V,0) be ad.guvs.

» For each n > 2,
> Let 8" denote the top dimensional cell of K,
» Choose a deg 0 chain map &, : C, (Kp) — Hom (V, V&)
> Let An = Kp (9”)

» (V,9,A5,A3,...) is an As-coalgebra if for each n > 2,

5 (D) = a,d (67)
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Structure Relations

» Expanding a,0 (6") expresses structure relations in more
familiar form:

||
||M|

Z n+J+1) (1®j QAit1 ® 1®n—i—j—l) A,

» A, is a chain homotopy among the quadratic compositions
encoded by the codim 1 cells of K,

(1e194,)A, (184)4A,

(a,0101)4, (1 5,81)4,

(ae1)a,
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Definition of an A-infinity Bialgebra

» Assume 3 (m+ n— 3)-dim’'l polytopes KK, m of which
KKin 2 KKp1 &

n

» Foreach m,ne€ N, m+n > 3,

> Let 0] denote the top dimensional cell of KK, m
» Choose a chain map a?, : C, (KKp,m) — Hom (V&M v®n)

> Let wp =al (67)

> (V,0,w}) >3 is an Ac-bialgebra if for each m and n

6 (wp) = apd (67)

> Let us construct KKy, , when 1 < m<30r1<n<3
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Augmented Partitions and Bipartitions

> An ordered set is @ or a finite strictly increasing subset of IN

v

Let A be an ordered set; let r > 0

» PJ(A) denotes the augmented length r partitions of A
» P/ (&) ={0|---|0} with r empty blocks
> 'D;(A):{All"'|Af}’WhereAhU"'UAit:Av Aij 5&@
forsome i < ---<ip <r

» Some A; may be empty

v

Define 7t : P’ (A) — P (A) by deleting empty blocks

v

Dimension ‘Al\ - A,

= | (Al 14)
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Bipartition Matrices

v

A bipartition is a pair g = (a,B) € P, (A) x P/ (B)

Example gmg € P, ({1}) x P} ({6,7})

v

» Letay,...,ap, by, ..., by be ordered sets; R = (rj) € N9*P

v

LBy
Choose bipartitions 07,-11- € Py, (aj) x P (b))

Bi\97P . . i .
(a—”> is a bipartition matrix over {a; b;} w.r.t. R
i

v



Bipartition Matrices

|5 54

10 3] . . . .

» Example is a bipartition matrix
7/0l6 67
ojtjo 23

over a; = {1}, ap = {2,3}, by = {4,5}, b, = {6,7}

2 2
with respect to
31
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The Lambda Merging Map
> Let A|---|Apr1 € Phyy (A)

v

LetA:{A1<~~<A"}g{1,2,...,n};

define A% := 0 and A*t1 .= n+1

v

Let A; :A/\i—1+1U“‘UA/\i

v

The A-merging map 1, : P, (A) — P, (A) is defined
i (Al Anga) == Al Ak
Example: i, 5,2|1[0]5[4[3 = 12[45(3
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The Lambda Merging Map

> Let Atl -+ [Anis € Py, (A)

— 1 k .
let A= {at <o <afb c L2 )

define A% := 0 and AF*1 :=n41
> Let Ai:A/\i—1+1U“‘UA/\i
» The A-merging map 1, : P, (A) — P, (A) is defined
i (Al Anga) == Al Ak

> Example: ji(, 5,2|1/0[5/4[3 = 12[45[3
» Extreme cases: j, (Ai| - |App1) = A

H{2,..n} (A1| T |An+1) = A1| s |A,,+1



Proposition 1
Given a q x p bipartition matrix (%) over {a;,b;} w.r.t. (rj),
ij
there is a unique q X p matrix of ordered sets (Aj;) such that

L. By, (@) == Py (wgj) for each j

(denominators in j* column are equal)



Proposition 1

Given a q x p bipartition matrix (%) over {a;,b;} w.r.t. (rj),

there is a unique q X p matrix of ordered sets (Aj;) such that

L. By, (aj) == Ky (wgj) for each j
(denominators in jt column are equal)
2. 4y, (Bjy) == o, <ﬁip) for each i

h

(numerators in i row are equal)



Proposition 1

Given a q x p bipartition matrix (%) over {a;,b;} w.r.t. (rj),

there is a unique q X p matrix of ordered sets (Aj;) such that

L. By, (aj) == Ky (wgj) for each j
(denominators in jt column are equal)
2. 4y, (Bjy) == o, <ﬁip) for each i

h

(numerators in i row are equal)

3. all Ajj have the same maximal cardinality r < min {r;}



Proposition 1

Given a q X p bipartition matrix <%> over {aj, b} w.r.t. (rj),

there is a unique q X p matrix of ordered sets (Aj;) such that

(denominators in j* column are equal)
2. py, (Bi) = =M, <ﬁ ) for each i

th

(numerators in i row are equal)

3. all Ajj have the same maximal cardinality r < min {r;}

450 54)0 4510 450
10 023 1y 10 23
Example: S ,
7[ojo[6  0[7]6 76 76
0|1jojo  2[03 10 23

= () ()
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Decomposability

» Definition A bipartition matrix is indecomposable if its
associated A matrix is null

» Theorem A bipartition matrix has a unique indecomposable
factorization

» Example

56|78
123]4)

VRS
olo ol

SN—
—~
ol
ol
ol
oo
N

RO RO »—l‘g
o &~
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Augmented Consecutive Partitions

Let B be an ordered set

v

v

ACPgB =B

v

ACPg@ =0|---|0 (# empty blocks = #B + 1)

v

ACP12...9y{2.5,6,8} = 0[2/0[56(8|0



Factoring a Bipartition

Bl|”.|Br,foreachk:1,2,...r

> Given ( = —————
Al |A



Factoring a Bipartition

_ Bil--|B,
» Given C = ———, foreach k=1,2,...r
Arl- - |A,
» Compute
ak,1| cee |ak,sk = -AC,PAIUWUA,(A/(

bk,l‘ cee ’bk,fk = -AC’PBkUmUB, Bk



Factoring a Bipartition

Bl|'”|Br,foreachk:1,2,...r

> Given ( = —————
Al |A

» Compute
akl|---|ak§k:::¢4C77Aﬂ}nuAkAk

bki""’bkik:::¢4C7)BAI~UB,Bk

» Construct the bipartition matrix

b . bia

a1 A,s)
Ck = :

byt bg.¢,

a1 A5y



Factoring a Bipartition

» Given C = Bl""'Bf,foreachk:1,2,...r

Al |A

» Compute
akl|---|ak§k:::¢4C77Aﬂ}nuAkAk

bki""’bkik:::¢4C7)BAI~UB,Bk

» Construct the bipartition matrix

by 0 bl
a1 A,s)
Ck = :
bee,  brg
a1 A5y

» C=GCG---C



Factoring a Bipartition

» Example w
P 13)4
1=ACP;1
023 = ACP12323
0’0’0’4 = ACP12344

56/0|0 = ACPs67556
7‘0 = ACP+g7
8 = ACPg8



Factoring a Bipartition

» Example w
P 13)4
1=ACP;1 56/0|0 = ACPs67556
0’23 = ACP12323 7‘0 = ACP+g7
0(0[0]4 = ACP12344 8 = ACPs8
56
1 7017
. 56718 _ | o 023 ) (s s 8 8
1234 | ! 0 0 ¢ o 0 4
0 0 23
1



Graphical Representation

#B+1

- K

#A+1

v
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Graphical Representation

&
SN €

#A+1
-1 (3 )
X x )
- iLJ[YYYX]

oloo
|00
S~—

<IZI%
<>

|5
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Dimension of a Bipartition Matrix

A null matrix with entries of the form % has dim 0

v

v

(8)]:= A+ #E -1

v

G- Gl =G|+ +]|C|

v

Unique factorization = Define |C| for C indecomposable

Let C = <&> be a g X p indecomposable bipartition matrix

Xjj

v

over {aj, b;}
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v

(Af - A;) is the matrix associated with C;, given by Prop 1

v

Define A;|--- |A,UBy|---|B,:=
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Dimension of a Bipartition Matrix

v

If B % for all (i,j), let Cj. denote the i*" row of C

ajj

v

(Af - A;) is the matrix associated with C;, given by Prop 1

v

Define A;|--- |A,UBy|---|B,:=
(AL UB; +maxA) || (A, UB, + maxA)

Define

v

A
Kj = }4/\3(06/1) v.-.-u Hai (ajp))

v

Then |C| := <Z |z/)\c,-|
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v

Example |[($9)|=113]=1

v

|C| is not necessarily the sum of the dim'’s of its entries

0 0
2 34

> Example (| g0 g || =[1234] + 13124 =342 =5
2 32
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Dimension of a Bipartition Matrix

v

Example |[($9)|=113]=1

v

|C| is not necessarily the sum of the dim'’s of its entries

0 0
2 34

> Example (| g0 g || =[1234] + 13124 =342 =5
2 32

v

If 5 = ooy for all (i,j), define |C| similarly

Otherwise...

v
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Conventions for Bipartition Matrices

> Deleting or inserting empty blocks in an entry of a bipartition
matrix may preserve or change dimension

» Discard bipartition matrices whose dimension increases when
empty blocks are inserted

» Example Discard the 1-dim’l indecomposable matrix
_ (oot
- \1jo 1/0 1

Inserting empty blocks in the third entry transforms C into
the 3-dim’l decomposable

01 O O1Y _
1o 1jo oj1) —

N

=N [=}
=N [=}
oo oo
N——
—~
O
Ol
Ol
Ol
==
~—
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Conventions for Bipartition Matrices

» FEquate bipartition matrices of the same dimension that differ
only in the number of empty blocks in their entries

0
1

o RO

=
=3
S wlo

0
3
| o 0 0J0
1 \

» Example

<
S
=)

9
=
=)

=]

=]
[
=)
=}
[



Conventions for Bipartition Matrices

» FEquate bipartition matrices of the same dimension that differ
only in the number of empty blocks in their entries

0
1
» Example 0

ojojo  0j0jo
3

0
3
0/ojo 0l | o
0ji[o 00| 1

> Only preserve empty blocks necessary to preserve dimension



Conventions for Bipartition Matrices

» FEquate bipartition matrices of the same dimension that differ
only in the number of empty blocks in their entries

0
1
» Example 0

0
3
0jojo  o[ojo
0/ij0 0[o3

> Only preserve empty blocks necessary to preserve dimension
» Example Preserve all empty blocks in
0

0
1 3
oo o[o
1o 0of

w

Removing empty blocks in the second row increases dimension
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Framed Elements

» Given a(m) and b(n) of orders m and n, and r > 1, let

g € P/(a(m)) x P}(b(n))

r

» If r=1or mn =0, the set of framed elements

= {(2)

» Otherwise, assume inductively that the set of framed elements
o' Ur B has been defined for all & ¢ P'(a(s)) x P'(b(t))
such that (s,t) < (m,n) and s+t < m+n
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Framed Matrices

 Bi---|B B

» Given ———— =% fork=1,2,...,r:
A1||Ar o

» Compute a1|---|ap := ACPa,u...ua, Ak

v

Compute by|---|bg := ACPpg, ..us, Bk

v

/

Choose R € IN9*P and indecomposable <’z}> over {aj,b;}
J

w.rt. R

v

k / /
Choose ¢j; € a; Ur B;

v

Form the framed matrix C, = (ij)



Framed Matrices

 Bi---|B B

» Given ———— =% fork=1,2,...,r:
A1||Ar o

» Compute a1|---|ap := ACPa,u...ua, Ak

v

Compute by|---|bg := ACPpg, ..us, Bk

v

/

Choose R € IN9*P and indecomposable <’z}> over {aj,b;}
J

w.r.t. R

» Choose c,-‘j- € o Ur B;
» Form the framed matrix C, = (cé‘)
> The set of framed elements a U B := {C; - -- G, }, where

C; ranges over all possible framed matrices and the product is
formal juxtaposition
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» Definition The framed join of a(m) and b(n) is the set

a(m)®b(n):= U aUr B

» Example 1@1:{%, %:(



The Framed Join of Ordered Sets

» Definition The framed join of a(m) and b(n) is the set

4]
> Bxample 101={}. 55 = (1) (). ot = (5) (D)}
» Remark PP =KKyp = 1®1

0[1 1 1/0

1/0 1 0J1

% XX

The Hopf relation holds up to homotopy
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;
over {aj, b;} is

» column coherent if

A _
m(ag) x -+ x 7w(ay) Al 1)(P#(alu~-uap))
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Coherence

» Define 71 : P’ (A) — P (A) by deleting empty blocks

)

» Definition A g X p indecomposable bipartition matrix <5—”)

over {aj, b;} is

» column coherent if

A _
m(ag) x -+ x 7w(ay) Al 1)(P#(alu~-uap))

» row coherent if

) ) (p-1)
T(By) X -+ X (B,) & APV (Pybu.Ubg))

» coherent if column and row coherent
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The Coherent Framed Join of Ordered Sets

» Definition The coherent framed join a(m) ®p, b(n) is
obtained by only admitting coherent matrices in the inductive
step

N

)1 o1 ot | o1 |10 100 10
» Example 12®1 = {2| 70| 20 | 12 21 onz

—_
N

o[o[t o[o[t o[1jo o[1jo 1[ojo 1]0]o
1]2]0" 2[1j0" 1]0[2" 2[0[1’ 0[1[2" 0[2|1



The Coherent Framed Join of Ordered Sets

» Definition The coherent framed join a(m) ®p, b(n) is
obtained by only admitting coherent matrices in the inductive
step

0

» Example 12®1= {12 % 0}1 oL | Ljo.

N

—
)
o
=
N

o[o[t o[o[t o[1jo o[1jo 1[ojo 1]0]o
1]2]0" 2[1j0" 1]0[2" 2[0[1’ 0[1[2" 0[2|1

of1

0
o = (12> (% % %) is incoherent because

» Left factor of

(ay) % m(ay) = 12 x 12 Z AW (Py)



The Coherent Framed Join of Ordered Sets

>

Definition The coherent framed join a(m) ®,, b(n) is
obtained by only admitting coherent matrices in the inductive
step

0

N

Example 12®1 = {12 0{ 0‘1

—
)
o
—
N

o[o[t o[o[t o[1jo o[1jo 1[ojo 1]0]o
1]2]0" 2[1j0" 1]0[2" 2[0[1’ 0[1[2" 0[2|1

of1

Left factor of 200

0
(B 111y
= ( ) (5 5 §) is incoherent because

() x () = 12 x 12 Z AD(Py)

Replace entries in all possible ways to obtain coherence

a0 0 0o
oveon = {() 30, (8) 60 (2)aed)
12
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The Differential

» Letm={1,2,....m};letp e m®@p,n
» d(p) denotes codim 1 elements
» Fortopdim’lp=mUn={1,2,..., m+ n} define

d(mWn) = {codim 1 elements of m ®,, n}

» Example

0[o 0
= _ Jopor 10 10 10 (37 ) 111 3\ (111
d(2U1) = {12’ sz oo (3 )6 59) (o )(5o0)
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The Differential

» For lower dim'l cells insert empty blocks and subdivide in all
possible ways that preserve coherence

= (01 _ o[1o,  ofof1
>0 (1|2) = 1oz Y 1120

= (10 _ 1jojo  1]ofo
> d (‘|12> = o2 Y o



The Differential

v

For lower dim’l cells insert empty blocks and subdivide in all
possible ways that preserve coherence

= (01 _ o[1o,  ofof1
>0 (1|2) = 1oz Y 1120
=~/ 10\ _ 1jojo,  1]0[0
>a( |12>_0‘12U02|1



PP(2,3) = KK(2,3)

1/0j0 10 1/0/0
012 012 0)2)1
1 1o
12 21
0|1/0 . 0/1j0
1j02 =TS 20/1
ol ot
112 211
0j0
12 (lll) _ oo ojo[1
ooflooo 1200 4 A (o0 2/1/0
" 2(111) ! |20|(111
ooflooof i |0 |{ooo0
12 o0 "\12
L1y
oo flooo

12

0/0°
201
0j0
21

|~

o |=

o=



PP(2,3) = KK(2,3)

X X X

X X
AA AA
TX1 X r XY
AA AA
YX XY

I N y A A
YYY AA AA AAYYY
YYY YYY YYY
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The Reduced Coherent Framed Join of Ordered Sets

» Define an equivalence relation ~ on a(m) ®,, b(n):

» C=(¢j)~C = (c&) iff ¢jj and C/{j differ only in the

number or placement of empty blocks %

0 0y _ (0o o) _ (0o ol
> Example (7 3) = <1|o o|3) = <0\1 30
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The Reduced Coherent Framed Join of Ordered Sets

» Define an equivalence relation ~ on a(m) ®,, b(n):

» C=(¢j)~C = (c&) iff ¢jj and C/{j differ only in the

number or placement of empty blocks %

» Example (% 9)= (% %) — <% %)
» Definition The reduced coherent framed join of a(m)
and b(n) is the set
a(m) @k b(n) = a(m) ®p, b(n)/ ~
> In a(m) ®g b(n)

» Dimension of matrix is the sum of the dimensions of its entries



The Reduced Coherent Framed Join of Ordered Sets

Define an equivalence relation ~ on a(m) ®,, b(n):

v

» C=(¢j)~C = (c&) iff ¢jj and C/{j differ only in the

number or placement of empty blocks %

v

0 0y _ (00 0j0) _ (o oo
Example (3 3)—<1|o o|3)_<0\1 30

Definition The reduced coherent framed join of a(m)
and b(n) is the set

v

a(m) ®u b(n) = a(m) ®pp b(n)/ ~

v

In a(m) ®xx b(n)

» Dimension of matrix is the sum of the dimensions of its entries

» Differential acts on matrix as a derivation of its entries
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> In KKi 4 < 3 ®kk 0 we have

0 (0 0Y _ (0) (0o 0[oy _ (0} (oo 0fo
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The Polytopes KK

> KKntimi1 < Mm@ n

> In KKi 4 < 3 ®kk 0 we have

(2) (2 3)=(2) (5 o) = (2) (o 5e)

so that

[y

0jo _ o[ojo  ojojo
2]13 2113 231

» Canonical projection 98 : m ®pp 1 — M Py 1 is

combinatorially equivalent to Tonks’ projection when m = 0
orn=20



Stasheff's Associahedron K(4)

231
2|13
2113
123

1123

23]1

1123

3201
3|12
3|12
1312

11312

31211
231 3|12

2013 312

9 123 1312

11213 1|23 13|12



The Polytope KK(3,3)

Front view Rear view

» JKK3 3 consists of 8 heptagons and 22 squares



A-infinity Bialgebras

> It is possible to define a global differential on a(m) ®p, b(n)
but at the cost of coherence



A-infinity Bialgebras

> It is possible to define a global differential on a(m) ®p, b(n)
but at the cost of coherence

> The global differential is very difficult to describe



A-infinity Bialgebras

» It is possible to define a global differential on a(m) &, b(n)
but at the cost of coherence

> The global differential is very difficult to describe

» Identify the cellular chains C. (KK) with the free matrad Heo



A-infinity Bialgebras

v

It is possible to define a global differential on a(m) ®,, b(n)
but at the cost of coherence

v

The global differential is very difficult to describe

v

Identify the cellular chains C, (KK) with the free matrad Heo

v

Definition An A-bialgebra is an algebra over Hq
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Concluding Remarks

» Applications require parallel construction of bimultiplihedra JJ
» We transfer a biassociative bialgebra on chains to homology
» Realize an induced As-bialgebra structure on homology

» Theorem A non-trivial Ax-coalgebra structure on
H, (X ; Q) induces a non-trivial As-bialgebra structure on
H. (QXX; Q)

» The Ax-bialgebra structure on H, (QQXX; Q) is a rational
homology invariant

» Prior to this work, all known rational homology invariants of
OXX were trivial



The End

Thank you!



