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Background

I In our 2011 paper entitled, “Matrads, Biassociahedra, and
A∞-bialgebras”, we constructed a basis for the free matrad
H∞ and the polytopes KKn,m in the ranges 1 ≤ m ≤ 3 and
1 ≤ n ≤ 3

I In these ranges, the reduced coherent framed join provides an
effi cient way to construct a basis, to define the differential,
and to determine KKn,m

I However, outside these ranges we are unable to define an
operator that simultaneously preserves coherency and satisfies
d2 = 0. In fact...

I When m = n = 4, Saneblidze constructed an example with
the following property: If we use all available components of
the face operator to extend the differential, coherency is lost;
if we use only those available components that preserve
coherency, d2 6= 0
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Loop Spaces

I Let S be a topological space with base point ∗

I A base pointed loop on S is a continuous map α : I → S such
that α (0) = α (1) = ∗

I Let ΩS denote the space of all base pointed loops on S

I Given α, β ∈ ΩS , define the product α · β ∈ ΩS by

(α · β) (t) =
{

α (2t) , t ∈ [0, 12 ]
β (2t − 1) , t ∈ [ 12 , 1]
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Homotopy Associativity
I A homotopy from α to β is a continuous map H : I → ΩS
such that H (0) = α and H (1) = β

I Thus {H (s) : s ∈ I} is a 1-parameter family of loops that
continuously deforms α to β

I The loops (αβ) γ and α (βγ) are homotopic via linear change
of parameter
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Stasheff’s Associahedra

I αβγ labels parameter space I = [0, 1]

I (αβ) γ labels the endpoint 0

I α (βγ) labels the endpoint 1

The associahedron K3

I K3 controls homotopy associativity in three variables
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The Associahedron K(4)

I K4 controls homotopy associativity in four variables

The associahedron K4



Quinn Minnich’s Model of K(5)



Associahedra and Biassociahedra

I Kn is an (n− 2)-dim’l polytope controlling homotopy
associativity in n variables

I Associahedra organize the structural data in an
A∞-(co)algebra

I Singular chains on ΩS is a homotopy associative bialgebra

I Transfer of bialgebra structure from chains to homology
induces an A∞-bialgebra structure on homology

I Biassociahedra organize the structural data in an A∞-bialgebra
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Differential Graded R-modules

I Let V be a vector space and let X be a cell complex

I The cellular chains of X , denoted C∗ (X ) , is the graded
vector space generated by cells of X

I The geometric boundary induces a differential operator
∂ : C∗ (X )→ C∗−1 (X ) such that ∂ ◦ ∂ = 0

I The pair (C∗ (X ) , ∂) is a differential graded vector space
(d.g.v.s.)

I Let (V , ∂V ) and (W , ∂W ) be d.g.v.s. A linear map
f : V → W has degree p if f : Vi → Wi+p
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Maps of d.g. R-modules

I |f | denotes the degree of f

I A linear map f : V → W is a chain map if

f ◦ ∂V = (−1)|f | ∂W ◦ f

I Homp (V ,W ) is the vector space of degree p linear maps

I Hom∗ (V ,W ) is a d.g.v.s. with differential

δ (f ) = f ◦ ∂V − (−1)|f | ∂W ◦ f

I δ (f ) = 0 iff f is a chain map
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Definition of an A-infinity Coalgebra

I Let (V , ∂) be a d.g.v.s.

I For each n ≥ 2,

I Let θn denote the top dimensional cell of Kn

I Choose a deg 0 chain map αn : C∗ (Kn)→ Hom (V ,V⊗n)

I Let ∆n = αn (θ
n)

I (V , ∂,∆2,∆3, . . .) is an A∞-coalgebra if for each n ≥ 2,

δ (∆n) = αn∂ (θn)
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Structure Relations
I Expanding αn∂ (θn) expresses structure relations in more
familiar form:

δ (∆n) =
n−2
∑
i=1

n−i−1
∑
j=0

(−1)i (n+j+1)
(
1⊗j ⊗ ∆i+1 ⊗ 1⊗n−i−j−1

)
∆n−i

I ∆n is a chain homotopy among the quadratic compositions
encoded by the codim 1 cells of Kn
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Definition of an A-infinity Bialgebra

I Assume ∃ (m+ n− 3)-dim’l polytopes KKn,m of which
KK1,n ∼= KKn,1 ∼= Kn

I For each m, n ∈N, m+ n ≥ 3,

I Let θnm denote the top dimensional cell of KKn,m

I Choose a chain map αnm : C∗ (KKn,m)→ Hom (V⊗m ,V⊗n)

I Let ωnm = αnm (θ
n
m)

I (V , ∂,ωn
m)m+n≥3 is an A∞-bialgebra if for each m and n

δ (ωn
m) = αnm∂ (θnm)

I Let us construct KKm,n when 1 ≤ m ≤ 3 or 1 ≤ n ≤ 3
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Augmented Partitions and Bipartitions

I An ordered set is ∅ or a finite strictly increasing subset of N

I Let A be an ordered set; let r > 0

I P ′r (A) denotes the augmented length r partitions of A

I P ′r (∅) = {0| · · · |0} with r empty blocks
I P ′r (A) = {A1 | · · · |Ar } , where Ai1 ∪ · · · ∪ Ait = A, Aij 6= ∅

for some i1 < · · · < it ≤ r
I Some Ai may be empty

I Define π : P ′ (A)→ P (A) by deleting empty blocks

I Dimension
∣∣∣A1| · · · |Ar ∣∣∣ :=

∣∣∣π (A1| · · · |Ar )∣∣∣
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I P ′r (∅) = {0| · · · |0} with r empty blocks
I P ′r (A) = {A1 | · · · |Ar } , where Ai1 ∪ · · · ∪ Ait = A, Aij 6= ∅

for some i1 < · · · < it ≤ r
I Some Ai may be empty

I Define π : P ′ (A)→ P (A) by deleting empty blocks

I Dimension
∣∣∣A1| · · · |Ar ∣∣∣ :=
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Bipartition Matrices

I A bipartition is a pair β
α := (α, β) ∈ P ′r (A)× P ′r (B)

I Example
7|0|6
0|1|0 ∈ P

′
3 ({1})× P ′3 ({6, 7})

I Let a1, . . . , ap ,b1, . . . ,bq be ordered sets; R = (rij ) ∈Nq×p

I Choose bipartitions
βij
αij
∈ P ′rij (aj )× P ′rij (bi )

I
(

βij
αij

)q×p
is a bipartition matrix over {ai ,bj} w.r.t. R
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Bipartition Matrices

I Example

 4|5
1|0

5|4
3|2

7|0|6
0|1|0

67
23

 is a bipartition matrix

over a1 = {1} , a2 = {2, 3} , b1 = {4, 5} , b2 = {6, 7}

with respect to

(
2 2

3 1

)



The Lambda Merging Map
I Let A1| · · · |An+1 ∈ P ′n+1 (A)

I Let λ =
{

λ1 < · · · < λk
}
⊆ {1, 2, . . . , n} ;

define λ0 := 0 and λk+1 := n+ 1

I Let Āi = Aλi−1+1 ∪ · · · ∪ Aλi

I The λ-merging map µλ : P ′n+1(A)→ P ′k+1(A) is defined

µλ (A1| · · · |An+1) := Ā1| · · · |Āk+1
I Example: µ{2,5}2|1|0|5|4|3 = 12|45|3

I Extreme cases: µ∅ (A1| · · · |An+1) = A

µ{1,2,...,n} (A1| · · · |An+1) = A1| · · · |An+1
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Proposition 1

Given a q × p bipartition matrix
(

βij
αij

)
over {aj ,bi} w.r.t. (rij ) ,

there is a unique q × p matrix of ordered sets (λij ) such that
1. µλ1j

(α1j ) = · · · = µλqj
(αqj ) for each j

(denominators in j th column are equal)

2. µλi1
(βi1) = · · · = µλip

(
βip

)
for each i

(numerators in i th row are equal)

3. all λij have the same maximal cardinality r < min {rij}
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Proposition 1

Given a q × p bipartition matrix
(

βij
αij

)
over {aj ,bi} w.r.t. (rij ) ,

there is a unique q × p matrix of ordered sets (λij ) such that
1. µλ1j

(α1j ) = · · · = µλqj
(αqj ) for each j

(denominators in j th column are equal)

2. µλi1
(βi1) = · · · = µλip

(
βip

)
for each i

(numerators in i th row are equal)

3. all λij have the same maximal cardinality r < min {rij}

Example:

 45|0
1|0

5|4|0
0|2|3

7|0|0|6
0|1|0|0

0|7|6
2|0|3

 µλ 

 45|0
1|0

45|0
2|3

7|6
1|0

7|6
2|3

 ,
where λ =

(
{1} {2}
{2} {2}

)



Decomposability

I Definition A bipartition matrix is indecomposable if its
associated λ matrix is null

I Theorem A bipartition matrix has a unique indecomposable
factorization

I Example

(
56|7|8
1|23|4

)
=


56
1

0
1

0
1


( 7

0
7
23

0
0

0
23

) ( 8
0

8
0

8
0

8
4

)
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Augmented Consecutive Partitions

I Let B be an ordered set

I ACPBB = B

I ACPB∅ = 0| · · · |0 (# empty blocks = #B + 1)

I ACP{1,2,...,9} {2, 5, 6, 8} = 0|2|0|56|8|0
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Factoring a Bipartition

I Given C =
B1| · · · |Br
A1| · · · |Ar

, for each k = 1, 2, . . . r

I Compute
ak ,1| · · · |ak ,sk := ACPA1∪···∪AkAk
bk ,1| · · · |bk ,tk := ACPBk∪···∪BrBk

I Construct the bipartition matrix

Ck =


bk ,1
ak ,1

· · · bk ,1
ak ,sk

...
...

bk ,tk
ak ,1

· · · bk ,tk
ak ,sk


I C = C1 · · ·Cr
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Factoring a Bipartition

I Example
56|7|8
1|23|4

1 = ACP11 56|0|0 = ACP567856
0|23 = ACP12323 7|0 = ACP787
0|0|0|4 = ACP12344 8 = ACP88

I
56|7|8
1|23|4 =


56
1

0
1

0
1
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7
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0
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Graphical Representation

I
B
A
←

#B+1

#A+1

I
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Dimension of a Bipartition Matrix

I A null matrix with entries of the form 0|···|0
0|···|0 has dim 0

I
∣∣(B
A

)∣∣ := #A+#B − 1

I |C1 · · ·Cr | := |C1|+ · · ·+ |Cr |

I Unique factorization ⇒ Define |C | for C indecomposable

I Let C =
(

βij
αij

)
be a q × p indecomposable bipartition matrix
over {aj ,bi}
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Dimension of a Bipartition Matrix

I If
βij
αij
= 0|···|0

αij
for all (i , j) , let Ci∗ denote the i th row of C

I (λi1 · · · λip) is the matrix associated with Ci∗ given by Prop 1

I Define A1| · · · |An dB1| · · · |Bn :=

(A1 ∪ B1 +maxA) | · · · | (An ∪ Bn +maxA)

I Define
∧
αi := µλi1

(αi1)d · · ·d µλip
(αip))

I Then |C | := ∑
1≤i≤q

|∧αi |
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Dimension of a Bipartition Matrix

I Example
∣∣( 0
1
0
3

)∣∣ = |13| = 1

I |C | is not necessarily the sum of the dim’s of its entries

I Example

∣∣∣∣∣∣
 0

12
0
34

0|0
1|2

0|0
3|4

∣∣∣∣∣∣ =
∣∣∣1234∣∣∣+ ∣∣∣13|24∣∣∣ = 3+ 2 = 5

I If cij =
βij

0|···|0 for all (i , j) , define |C | similarly

I Otherwise...
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Conventions for Bipartition Matrices

I Deleting or inserting empty blocks in an entry of a bipartition
matrix may preserve or change dimension

I Discard bipartition matrices whose dimension increases when
empty blocks are inserted

I Example Discard the 1-dim’l indecomposable matrix

C =
(
0|1
1|0

0|1
1|0

1
1

)
Inserting empty blocks in the third entry transforms C into
the 3-dim’l decomposable(

0|1
1|0

0|1
1|0

0|1
0|1

)
=

(
0
1

0
1

0
0

0
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0
1

0
0

) ( 1
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Conventions for Bipartition Matrices

I Equate bipartition matrices of the same dimension that differ
only in the number of empty blocks in their entries

I Example

 0
1

0
3

0|0|0
0|1|0

0|0|0
0|0|3

 =

 0
1

0
3

0|0
1|0

0|0
0|3


I Only preserve empty blocks necessary to preserve dimension

I Example Preserve all empty blocks in

C =

 0
1

0
3

0|0
1|0

0|0
0|3


Removing empty blocks in the second row increases dimension
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Framed Elements

I Given a(m) and b(n) of orders m and n, and r ≥ 1, let

β

α
∈ P ′r (a(m))× P ′r (b(n))

I If r = 1 or mn = 0, the set of framed elements

αdf β :=
{(

β

α

)}
I Otherwise, assume inductively that the set of framed elements

α′ df β′ has been defined for all β′

α′ ∈ P ′(a(s))× P ′(b(t))
such that (s, t) ≤ (m, n) and s + t < m+ n
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Framed Matrices

I Given
B1| · · · |Br
A1| · · · |Ar

=
β

α
, for k = 1, 2, . . . , r :

I Compute a1 | · · · |ap := ACPA1∪···∪AkAk
I Compute b1 | · · · |bq := ACPBk∪···∪BrBk

I Choose R ∈Nq×p and indecomposable
(

β′i
α′j

)
over

{
aj ,bi

}
w.r.t. R

I Choose ckij ∈ α′j df β′i

I Form the framed matrix Ck =
(
ckij

)
I The set of framed elements αdf β := {C1 · · ·Cr} , where
Ci ranges over all possible framed matrices and the product is
formal juxtaposition
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The Framed Join of Ordered Sets
I Definition The framed join of a(m) and b(n) is the set

a(m)~ b(n) :=
⋃

β
α∈P ′r (a(m))×P ′r (b(n))

r≥1

αdf β

I Example 1~ 1 =
{
1
1 ,

0|1
1|0 =

( 0
1
0
1

) ( 1
0
1
0

)
, 1|0
0|1 =

( 1
0

) ( 0
1

)}
I Remark PP2,2 = KK2,2 ↔ 1~ 1

0|1
1|0

1
1

1|0
0|1

The Hopf relation holds up to homotopy
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Coherence

I Define π : P ′ (A)→ P (A) by deleting empty blocks

I Definition A q × p indecomposable bipartition matrix
(

βij
αij

)
over {aj ,bi} is

I column coherent if

π(
∧

αq)× · · · × π(
∧
α1) v ∆(q−1)(P#(a1∪···∪ap ))

I row coherent if

π(
∨
β1)× · · · × π(

∨
βp) v ∆(p−1)(P#(b1∪···∪bq ))

I coherent if column and row coherent
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The Coherent Framed Join of Ordered Sets

I Definition The coherent framed join a(m)~pp b(n) is
obtained by only admitting coherent matrices in the inductive
step

I Example 12~ 1 =
{
1
12 ,

0|1
1|2 ,

0|1
2|1 ,

0|1
12|0 ,

1|0
1|2 ,

1|0
2|1 ,

1|0
0|12

0|0|1
1|2|0 ,

0|0|1
2|1|0 ,

0|1|0
1|0|2 ,

0|1|0
2|0|1 ,

1|0|0
0|1|2 ,

1|0|0
0|2|1

}
I Left factor of 0|1

12|0 =
( 0

12
0
12

) ( 1
0
1
0
1
0

)
is incoherent because

π(
∧
α2)× π(

∧
α1) = 12× 12 6v ∆(1)(P2)

I Replace entries in all possible ways to obtain coherence

12|0dc 0|1 =
{(

0|0
2|1
0
12

) ( 1
0
1
0
1
0

)
,

(
0
12
0|0
1|2

) ( 1
0
1
0
1
0

)
,

(
0|0
2|1
0|0
1|2

) ( 1
0
1
0
1
0

)}
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The Differential

I Let m = {1, 2, . . . ,m} ; let ρ ∈ m~pp n

I ∂̃(ρ) denotes codim 1 elements

I For top dim’l ρ = md n = {1, 2, . . . ,m+ n} define

∂̃(md n) = {codim 1 elements of m~pp n}

I Example

∂̃(2d 1) =
{
0|1
1|2 ,

0|1
2|1 ,

1|0
1|2 ,

1|0
2|1 ,

1|0
0|12 ,

(
0|0
2|1
0
12

)( 1
0
1
0
1
0

)
,

(
0
12
0|0
1|2

)( 1
0
1
0
1
0
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The Differential

I For lower dim’l cells insert empty blocks and subdivide in all
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The Reduced Coherent Framed Join of Ordered Sets

I Define an equivalence relation ∼ on a(m)~pp b(n):

I C =
(
cij
)
∼ C ′ =

(
c ′ij

)
iff cij and c ′ij differ only in the

number or placement of empty blocks 00

I Example
( 0
1

0
3

)
=
(
0|0
1|0

0|0
0|3

)
=
(
0|0
0|1

0|0
3|0

)
I Definition The reduced coherent framed join of a(m)
and b(n) is the set

a(m)~kk b(n) = a(m)~pp b(n)/ ∼

I In a(m)~kk b(n)

I Dimension of matrix is the sum of the dimensions of its entries

I Differential acts on matrix as a derivation of its entries
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The Polytopes KK

I KKn+1,m+1 ↔ m~kk n

I In KK1,4 ↔ 3~kk 0 we have(
0
2

)(
0
1
0
3

)
=

(
0
2

)(
0|0
1|0

0|0
0|3

)
=

(
0
2

)(
0|0
0|1

0|0
3|0

)
so that

0|0
2|13 =

0|0|0
2|1|3 =

0|0|0
2|3|1

I Canonical projection ϑϑ : m~pp n→ m~kk n is
combinatorially equivalent to Tonks’projection when m = 0
or n = 0
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Stasheff’s Associahedron K(4)



The Polytope KK(3,3)

Front view Rear view

I ∂KK3,3 consists of 8 heptagons and 22 squares



A-infinity Bialgebras

I It is possible to define a global differential on a(m)~pp b(n)
but at the cost of coherence

I The global differential is very diffi cult to describe

I Identify the cellular chains C∗ (KK ) with the free matrad H∞

I Definition An A∞-bialgebra is an algebra over H∞
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Concluding Remarks

I Applications require parallel construction of bimultiplihedra JJ

I We transfer a biassociative bialgebra on chains to homology

I Realize an induced A∞-bialgebra structure on homology

I Theorem A non-trivial A∞-coalgebra structure on
H∗ (X ;Q) induces a non-trivial A∞-bialgebra structure on
H∗ (ΩΣX ;Q)

I The A∞-bialgebra structure on H∗ (ΩΣX ;Q) is a rational
homology invariant

I Prior to this work, all known rational homology invariants of
ΩΣX were trivial
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The End

Thank you!


