Matrads, Matrahedra and A_∞-Bialgebras

Joint work with Samson Saneblidze

Ron Umble, speaker
ron.umble@millersville.edu

Millersville University of Pennsylvania

29 July 2008
Let K_n denote Stasheff’s $(n-2)$-dim’l associahedron with top dim’l cell e_n and let $K = \sqcup K_n$.
Introduction

- Let K_n denote Stasheff’s $(n-2)$-dim’l associahedron with top dim’l cell e_n and let $K = \sqcup K_n$

- Identify cellular chains $C_\ast(K)$ with the A_∞-operad A_∞
Let K_n denote Stasheff’s $(n - 2)$-dim’l associahedron with top dim’l cell e_n and let $K = \sqcup K_n$

Identify cellular chains $C_*(K)$ with the A_∞-operad A_∞

An A_∞-algebra is a graded module A together with a family of operations $\{\mu_n \in \text{Hom}(A^\otimes n, A)\}_{n \geq 1}$ and a chain map

$$\varphi : A_\infty \to \{\text{Hom}(A^\otimes n, A)\}_{n \geq 1}$$

such that $\varphi(e_n) = \mu_n$
Let K_n denote Stasheff’s $(n - 2)$-dim’l associahedron with top dim’l cell e_n and let $K = \bigcup K_n$

Identify cellular chains $C_\ast (K)$ with the A_∞-operad A_∞

An A_∞-algebra is a graded module A together with a family of operations $\{\mu_n \in \text{Hom} (A^{\otimes n}, A)\}_{n \geq 1}$ and a chain map

$$\varphi : A_\infty \to \{\text{Hom} (A^{\otimes n}, A)\}_{n \geq 1}$$

such that $\varphi (e_n) = \mu_n$

In this talk we construct a new family of polyhedra called matrahedra and use them to define the free matrad \mathcal{H}_∞
Let $KK_{t,s}$ denote the $(s + t - 3)$-dim’l matrahedron with top dim’l cell $e_{t,s}$ and let $KK = \sqcup KK_{t,s}$.

Identify cellular chains $C(CKK)$ with $H \infty A \infty$-bialgebra is a module H together with a family of operations $\theta_{t,s}^2 \in \text{Hom}(H^s, H^t)$ and a chain map $\phi: H \infty ! \text{Hom}(H^s, H^t)$ such that $\phi(e_t, s) = \theta_{t,s}^1$.

Recently S. Saneblidze proved that if F is a field, $H(\Omega X; F)$ admits a canonical $A \infty$-bialgebra structure $H(\Omega \Sigma X; F)$ is an $A \infty$-bialgebra with operations $\theta_1^2, \theta_{1^n}^2$.
Let $KK_{t,s}$ denote the $(s + t - 3)$-dim’l matrahedron with top dim’l cell $e_{t,s}$ and let $KK = \bigsqcup KK_{t,s}$.

Identify cellular chains $C_\ast (KK)$ with \mathcal{H}_∞. \

Introduction
Let $KK_{t,s}$ denote the $(s + t - 3)$-dim’l matrahedron with top dim’l cell $e_{t,s}$ and let $KK = \sqcup KK_{t,s}$

Identify cellular chains $C_\bullet(KK)$ with \mathcal{H}_∞

An A_∞-bialgebra is a module H together with a family of operations
\[
\{ \theta^t_s \in Hom(H^\otimes s, H^\otimes t) \}_{s, t \geq 1}
\]
and a chain map
\[
\varphi: \mathcal{H}_\infty \to \{ Hom(H^\otimes s, H^\otimes t) \}_{s, t \geq 1}
\]
such that $\varphi(e_{t,s}) = \theta^t_s$
Let $KK_{t,s}$ denote the $(s + t - 3)$-dim’l matrahedron with top dim’l cell $e_{t,s}$ and let $KK = \bigcup KK_{t,s}$

Identify cellular chains $C_\ast (KK)$ with \mathcal{H}_∞

An A_∞-bialgebra is a module H together with a family of operations
\[\{ \theta_s^t \in Hom(H^\otimes s, H^\otimes t) \}_{s,t \geq 1} \]
and a chain map
\[\varphi : \mathcal{H}_\infty \to \{ Hom(H^\otimes s, H^\otimes t) \}_{s,t \geq 1} \]
such that $\varphi (e_{t,s}) = \theta_s^t$

Recently S. Saneblidze proved that if F is a field, $H_\ast (\Omega X; F)$ admits a canonical A_∞-bialgebra structure
Let $KK_{t,s}$ denote the $(s + t - 3)$-dim’l matrahedron with top dim’l cell $e_{t,s}$ and let $KK = △KK_{t,s}$

Identify cellular chains $C_*(KK)$ with H_∞

An A_∞-bialgebra is a module H together with a family of operations
\[\{ \theta^t_s \in \text{Hom}(H \otimes^s, H \otimes^t) \}_{s,t \geq 1} \]
and a chain map
\[\varphi : H_\infty \to \{ \text{Hom}(H \otimes^s, H \otimes^t) \}_{s,t \geq 1} \]
such that $\varphi(e_{t,s}) = \theta^t_s$

Recently S. Saneblidze proved that if F is a field, $H_*(\Omega X; F)$ admits a canonical A_∞-bialgebra structure

$H_*(\Omega\Sigma X; F)$ is an A_∞-bialgebra with operations $\{ \theta^1_2, \theta^n_1 \}_{n \geq 2}$
Permutahedra

\[P_n = \text{convex hull } \{(\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^n \mid \sigma \in S_n\} \]
Permutahedra

- $P_n = \text{convex hull } \{(\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^n | \sigma \in S_n\}$
- Vertices $v_1, \ldots, v_n!$ in the hyperplane $x_1 + \cdots + x_n = \binom{n}{2}$
Permutahedra

- $P_n = \text{convex hull } \{ (\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^n | \sigma \in S_n \}$
- Vertices $v_1, \ldots, v_n!$ in the hyperplane $x_1 + \cdots + x_n = \binom{n}{2}$
- P_1 is a point *

Matrads, Matrahedra and A_∞-Bialgebras
Permutahedra

- \(P_n = \text{convex hull} \{ (\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^n \mid \sigma \in S_n \} \)
- Vertices \(v_1, \ldots, v_n! \) in the hyperplane \(x_1 + \cdots + x_n = \binom{n}{2} \)
- \(P_1 \) is a point *
- \(P_2 \) is a closed interval
Permutahedra

- $P_n = \text{convex hull } \{(\sigma(1), \ldots, \sigma(n)) \in \mathbb{R}^n | \sigma \in S_n\}$
- Vertices $v_1, \ldots, v_{n!}$ in the hyperplane $x_1 + \cdots + x_n = \binom{n}{2}$
- P_1 is a point *
- P_2 is a closed interval I
- P_3 is a plane hexagonal region
P_4 is a solid truncated octahedron
- P_4 is a solid truncated octahedron

- P_n is an $(n - 1)$-dim’l polyhedron
Let $n = \{1, 2, \ldots n\}$

- $\{\text{Faces in codim } p\} \leftrightarrow \{\text{Partitions } U_1|\cdots|U_{p+1} \text{ of } n\}$
Let $n = \{1, 2, \ldots n\}$

- \{Faces in codim p\} \leftrightarrow \{Partitions $U_1| \cdots |U_{p+1}$ of n\}

- \{Vertices\} $\leftrightarrow S_n = \{$Permutations of n\}
Let $n = \{1, 2, \ldots, n\}$

- $\{\text{Faces in codim } p\} \leftrightarrow \{\text{Partitions } U_1 \mid \cdots \mid U_{p+1} \text{ of } n\}$
- $\{\text{Vertices}\} \leftrightarrow S_n = \{\text{Permutations of } n\}$
- $P_1 : * \leftrightarrow \{1\}$
Combinatorics of Permutahedra

Let \(n = \{1, 2, \ldots, n\} \)

- \(\{\text{Faces in codim } p\} \leftrightarrow \{\text{Partitions } U_1 \mid \cdots \mid U_{p+1} \text{ of } n\} \)
- \(\{\text{Vertices}\} \leftrightarrow S_n = \{\text{Permutations of } n\} \)
- \(P_1 : * \leftrightarrow \{1\} \)
- \(P_2 : \text{edge} \leftrightarrow \{12\}; \text{vertices} \leftrightarrow \{1|2, 2|1\} \)
P_3 as a subdivision of $P_2 \times I$:

\begin{align*}
3|1|2 & \\
13|2 & \\
1|3|2 & \\
1|23 & \\
1|2|3 &
\end{align*}

\begin{align*}
3|12 & \\
123 & \\
12|3 & \\
2|13 & \\
2|1|3 &
\end{align*}

\begin{align*}
3|2|1 & \\
23|1 & \\
2|3|1 & \\
2|13 & \\
2|1|3 &
\end{align*}
P_4 as a subdivision of $P_3 \times I$:
2-faces of P_4:
\(\land_n \) and \(\lor_n \) denote the sets of up-rooted and down-rooted planar *binary* trees with \(n \) levels and \(n + 1 \) leaves.

\[
\begin{array}{c}
1 \\
| \\
2 \\
| \\
3 \\
| \\
4
\end{array}
\]

\[\iff 2 | 4 | 1 | 3 \in \lor_4 \]
\(\wedge_n \) and \(\vee_n \) denote the sets of up-rooted and down-rooted planar *binary* trees with \(n \) levels and \(n + 1 \) leaves.

The bijections \(S_n \leftrightarrow \wedge_n \) and \(S_n \leftrightarrow \vee_n \) transfer the *Bruhat* partial order generated by transpositions

\[
a_1 \mid \cdots \mid a_n < a_1 \mid \cdots \mid a_{i+1} \mid a_i \mid \cdots \mid a_n \text{ iff } a_i < a_{i+1}
\]

to \(\wedge_n \) and \(\vee_n \).
Let X be a polytope; $\mathcal{V}(X)$ denotes the set of vertices of X.
Posets of Vertices

- Let X be a polytope; $\mathcal{V}(X)$ denotes the set of vertices of X
- Set $PP_{n,0} = PP_{0,n} = P_n$
Posets of Vertices

- Let X be a polytope; $\mathcal{V}(X)$ denotes the set of vertices of X
- Set $\mathcal{P}P_{n,0} = \mathcal{PP}_{0,n} = P_n$
- $\mathcal{P}P_{n,0} := \mathcal{V}(\mathcal{PP}_{n,0}) \leftrightarrow \vee_n$
Let X be a polytope; $\mathcal{V}(X)$ denotes the set of vertices of X

Set $PP_{n,0} = PP_{0,n} = P_n$

$PP_{n,0} := \mathcal{V}(PP_{n,0}) \leftrightarrow \lor_n$

$PP_{0,n} := \mathcal{V}(PP_{0,n}) \leftrightarrow \land_n$
A. Tonks’ cellular projection $\vartheta : P_n \rightarrow K_{n+1}$ forgets levels
A. Tonks’ cellular projection $\vartheta : P_n \rightarrow K_{n+1}$ forgets levels

$\vartheta(a) = \vartheta(b)$ iff $a \cong b$ (as planar trees)
Stasheff’s Associahedra

\[K_{n+1} = P_n / \sim \]
Stasheff’s Associahedra

- $K_{n+1} = P_n / \sim$
- $K_2 = *$
Stasheff’s Associahedra

- $K_{n+1} = P_n / \sim$
- $K_2 = *$
- $K_3 = I$
Stasheff’s Associahedra

- $K_{n+1} = P_n / \sim$
- $K_2 = *$
- $K_3 = I$
- $K_4 = P_3 / \sim$ is a pentagonal region
Stasheff’s Associahedra

- $K_{n+1} = P_n / \sim$
- $K_2 = *$
- $K_3 = I$
- $K_4 = P_3 / \sim$ is a pentagonal region
- $K_5 :$

J-L Loday’s rendering of K_5
Matrahedra

\[KK_{n+1,1} = P_{n,0}/ \sim \text{ and } KK_{n+1,1} := \mathcal{V}(KK_{n+1,1}) \]
Matrahedra

\[KK_{n+1,1} = P_{n,0}/ \sim \text{ and } KK_{n+1,1} := \mathcal{V}(KK_{n+1,1}) \]

\[KK_{1,n+1} = P_{0,n}/ \sim \text{ and } KK_{1,n+1} := \mathcal{V}(KK_{1,n+1}) \]
Matrahedra

- $KK_{n+1,1} = P_{n,0}/\sim$ and $KK_{n+1,1} := \mathcal{V}(KK_{n+1,1})$
- $KK_{1,n+1} = P_{0,n}/\sim$ and $KK_{1,n+1} := \mathcal{V}(KK_{1,n+1})$

Goal: Construct the matrahedron $KK_{t,s}$ for all $s, t \geq 2$
Matrahedra

- $KK_{n+1,1} = P_{n,0}/\sim$ and $KK_{n+1,1} := \mathcal{V}(KK_{n+1,1})$

- $KK_{1,n+1} = P_{0,n}/\sim$ and $KK_{1,n+1} := \mathcal{V}(KK_{1,n+1})$

- **Goal**: Construct the matrahedron $KK_{t,s}$ for all $s, t \geq 2$

- Our construction has three steps:
Matrahedra

- $KK_{n+1,1} = P_{n,0}/\sim$ and $KK_{n+1,1} := V(KK_{n+1,1})$

- $KK_{1,n+1} = P_{0,n}/\sim$ and $KK_{1,n+1} := V(KK_{1,n+1})$

Goal: Construct the matrahedron $KK_{t,s}$ for all $s, t \geq 2$

- Our construction has three steps:

 1. **Construct the poset of vertices $PP_{t,s}$**
Matrahedra

- $KK_{n+1,1} = P_{n,0}/\sim$ and $KK_{n+1,1} := \mathcal{V}(KK_{n+1,1})$
- $KK_{1,n+1} = P_{0,n}/\sim$ and $KK_{1,n+1} := \mathcal{V}(KK_{1,n+1})$

Goal: Construct the matrahedron $KK_{t,s}$ for all $s, t \geq 2$

Our construction has three steps:

1. **Construct the poset of vertices \mathcal{P}_t**
2. **Construct $PP_{t,s}$ as a subdivision of P_{s+t}**
Matrahedra

- $KK_{n+1,1} = P_{n,0}/ \sim$ and $KK_{n+1,1} := V(KK_{n+1,1})$
- $KK_{1,n+1} = P_{0,n}/ \sim$ and $KK_{1,n+1} := V(KK_{1,n+1})$

Goal: Construct the matrahedron $KK_{t,s}$ for all $s, t \geq 2$

Our construction has three steps:

1. Construct the poset of vertices $PP_{t,s}$

2. Construct $PP_{t,s}$ as a subdivision of P_{s+t}

3. Form the quotient space $KK_{t+1,s+1} = PP_{t,s}/ \sim$
Markl’s Construction

- $KK_{t,s}$ is identical to M. Markl’s polytope B^t_s in the range $s + t \leq 6$
Markl’s Construction

- $KK_{t,s}$ is identical to M. Markl’s polytope B^t_s in the range $s + t \leq 6$
- Markl’s construction makes arbitrary choices
Markl’s Construction

- $KK_{t,s}$ is identical to M. Markl’s polytope B^t_s in the range $s + t \leq 6$
- Markl’s construction makes arbitrary choices
- Our construction uses the S-U diagonal on associahedra to control all such choices
Markl’s Construction

- $KK_{t,s}$ is identical to M. Markl’s polytope B_s^t in the range $s + t \leq 6$
- Markl’s construction makes arbitrary choices
- Our construction uses the S-U diagonal on associahedra to control all such choices
- For us, all choices were made once and for all when constructing the S-U diagonal
We are interested in the product posets \land_t^S and \lor_t^S with lexicographic ordering.
Iterated S-U Diagonal

- We are interested in the product posets \wedge_t^s and \vee_t^s with lexicographic ordering.

- $\Delta_P : C_\ast (P_n) \rightarrow C_\ast (P_n) \otimes C_\ast (P_n)$ denotes the S-U diagonal.

(Millersville University of Pennsylvania)
Iterated S-U Diagonal

- We are interested in the product posets $\land_t^{\times s}$ and $\lor_t^{\times s}$ with lexicographic ordering

- $\Delta_P : C_\ast(P_n) \rightarrow C_\ast(P_n) \otimes C_\ast(P_n)$ denotes the S-U diagonal

- Define $\Delta_P^{(0)} = \text{Id}$ and $\Delta_P^{(k)} = \left(\Delta_P \otimes \text{Id}^{\otimes k-1}\right) \Delta_P^{(k-1)}$
Iterated S-U Diagonal

- We are interested in the product posets \wedge_t^s and \vee_t^s with lexicographic ordering.

- $\Delta_P : C_*(P_n) \rightarrow C_*(P_n) \otimes C_*(P_n)$ denotes the S-U diagonal.

- Define $\Delta_P^{(0)} = \text{Id}$ and $\Delta_P^{(k)} = \left(\Delta_P \otimes \text{Id}^{\otimes k-1} \right) \Delta_P^{(k-1)}$.

- \wedge_n and γ^n denote the up-rooted and down-rooted n-leaf corolla.
Iterated S-U Diagonal

- We are interested in the product posets \wedge_t^s and \vee_t^s with lexicographic ordering.

- $\Delta_P : C_\ast(P_n) \to C_\ast(P_n) \otimes C_\ast(P_n)$ denotes the S-U diagonal.

- Define $\Delta_P^{(0)} = \text{Id}$ and $\Delta_P^{(k)} = \left(\Delta_P \otimes \text{Id}^\otimes k^{-1}\right) \Delta_P^{(k-1)}$.

- \prec_n and \succ^n denote the up-rooted and down-rooted n-leaf corolla.

- Think of $\Delta_P^{(t-1)}(\prec_{s+1})$ as an $(s-1)$-dim’l subcomplex of $P_s^\times t$.

We are interested in the product posets $\wedge_t^{\times s}$ and $\vee_t^{\times s}$ with lexicographic ordering.

$\Delta_P : C_\ast(P_n) \to C_\ast(P_n) \otimes C_\ast(P_n)$ denotes the S-U diagonal.

Define $\Delta_P^{(0)} = \text{Id}$ and $\Delta_P^{(k)} = \left(\Delta_P \otimes \text{Id}^{\otimes k-1} \right) \Delta_P^{(k-1)}$.

\wedge_n and \vee^n denote the up-rooted and down-rooted n-leaf corolla.

Think of $\Delta_P^{(t-1)}(\wedge_{s+1})$ as an $(s - 1)$-dim’l subcomplex of $P_s^{\times t}$.

Think of $\Delta_P^{(s-1)}(\vee^{t+1})$ as a $(t - 1)$-dim’l subcomplex of $P_t^{\times s}$.
We are interested in the product posets $\land_t^{\times s}$ and $\lor_t^{\times s}$ with lexicographic ordering

$\Delta_P : C_{\ast}(P_n) \to C_{\ast}(P_n) \otimes C_{\ast}(P_n)$ denotes the S-U diagonal

Define $\Delta_P^{(0)} = \text{Id}$ and $\Delta_P^{(k)} = \left(\Delta_P \otimes \text{Id}^{\otimes k-1} \right) \Delta_P^{(k-1)}$

\land_n and \lor^n denote the up-rooted and down-rooted n-leaf corolla

Think of $\Delta_P^{(t-1)}(\land_{s+1})$ as an $(s - 1)$-dim'l subcomplex of $P_s^{\times t}$

Think of $\Delta_P^{(s-1)}(\lor^{t+1})$ as a $(t - 1)$-dim'l subcomplex of $P_t^{\times s}$

$\Delta_P^{(1)}(\land) = \land \times \land = P_1^{\times 2}$ and $\Delta_P^{(1)}(\lor) = \lor \times \lor = P_1^{\times 2}$

(the index 2 is suppressed)
Iterated S-U Diagonal

\[\Delta^{(1)}_P (\bigwedge_3) \subset P^{\times 2}_2 \]

\[\Delta^{(2)}_P (\bigwedge_3) \subset P^{\times 3}_2 \]
Iterated S-U Diagonal

\[\Delta_p^{(1)} (\Delta_4) \subseteq P_3^{\times 2} \]

\[\Delta_p^{(2)} (\Delta_4) \subseteq P_3^{\times 3} \]
Key Step

Let $X_s^t = \mathcal{V}\left(\Delta_p^{(t-1)}(\land_{s+1})\right) \subseteq \land_s^\times t$
Key Step

- Let $X^t_s = \mathcal{V} \left(\Delta^{(t-1)}_P (\land s + 1) \right) \subseteq \land^t_s$

- Let $Y^s_t = \mathcal{V} \left(\Delta^{(s-1)}_P (\lor t + 1) \right) \subseteq \lor^s_t$
Key Step

- Let $X_t = \mathcal{V} \left(\Delta_P^{(t-1)} (\land_{s+1}) \right) \subseteq \land_s^t$

- Let $Y_t = \mathcal{V} \left(\Delta_P^{(s-1)} (\lor_{t+1}) \right) \subseteq \lor_t^s$

- $X_t \times Y_t$ is a subposet of $\land_s^t \times \lor_t^s$
An edge of a poset Q is a pair $(u, v) \in Q \times Q$ such that

- $u \leq v$ and
- $u \neq x \neq v$ implies $x = u$ or $x = v$.
An edge of a poset Q is a pair $(u, v) \in Q \times Q$ such that
- $u \leq v$ and
An *edge* of a poset Q is a pair $(u, v) \in Q \times Q$ such that

- $u \leq v$ and

- $u \leq x \leq v$ implies $x = u$ or $x = v$
An *edge* of a poset Q is a pair $(u, v) \in Q \times Q$ such that
- $u \leq v$ and
- $u \leq x \leq v$ implies $x = u$ or $x = v$

Edges of $X_{s}^{t+1} \times Y_{t}^{s+1}$ represent 1-dim’l elements of $(H_{\infty})_{t,s}$ generated by $\{1, \gamma, \gamma_{3}, \gamma^{3}\}$
An edge of a poset Q is a pair $(u, v) \in Q \times Q$ such that

- $u \leq v$ and
- $u \leq x \leq v$ implies $x = u$ or $x = v$

Edges of $X^{t+1}_s \times Y^{s+1}_t$ represent 1-dim’l elements of $(\mathcal{H}_\infty)_{t,s}$ generated by $\{1, \gamma, \gamma^3\}$

1-dim’l elements of $(\mathcal{H}_\infty)_{t,s}$ generated by $\{1, \gamma, \gamma^3, X\}$ are represented by edges of a poset $Z_{t,s}$ related to but disjoint from $X^{t+1}_s \times Y^{s+1}_t$
Edges of a Poset

- An edge of a poset Q is a pair $(u, v) \in Q \times Q$ such that
 - $u \leq v$ and
 - $u \leq x \leq v$ implies $x = u$ or $x = v$

- Edges of $X_{s+1}^t \times Y_{t+1}^s$ represent 1-dim'l elements of $(\mathcal{H}_\infty)_{t,s}$ generated by $\{1, \land, \lor, \land_3, \lor^3\}$

- 1-dim'l elements of $(\mathcal{H}_\infty)_{t,s}$ generated by $\{1, \land, \lor, X\}$ are represented by edges of a poset $Z_{t,s}$ related to but disjoint from $X_{s+1}^t \times Y_{t+1}^s$

- $\mathcal{P}\mathcal{P}_{t,s} = X_{s+1}^t \times Y_{t+1}^s \sqcup Z_{t,s}$
Express $x \in X^t_s$ as an $t \times 1$ column matrix of t up-rooted trees.
Vertices as Matrix Products

- Express $x \in X^t_s$ as an $t \times 1$ column matrix of t up-rooted trees

- $X^2_1 = \begin{bmatrix} \text{_} \\ \text{_} \\ \text{_} \end{bmatrix}$
Vertices as Matrix Products

- Express $x \in X_s^t$ as an $t \times 1$ column matrix of t up-rooted trees

- $X^2_1 = \begin{bmatrix} \text{_} \\ \text{_} \end{bmatrix}$

- A leveled tree factors uniquely as the composition of its levels

$$\text{_} = \begin{bmatrix} \text{_} \\ \text{_} \end{bmatrix} \begin{bmatrix} \text{_} & 1 \end{bmatrix}$$
Vertices as Matrix Products

- Express $x \in X_s^t$ as an $t \times 1$ column matrix of t up-rooted trees

- $X_1^2 = \begin{bmatrix} \text{tree} \\ \text{tree} \end{bmatrix}$

- A leveled tree factors uniquely as the composition of its levels

$$\begin{bmatrix} \text{tree} \\ \text{tree} \end{bmatrix} = \begin{bmatrix} \text{tree} \\ \text{tree} \end{bmatrix} \begin{bmatrix} \text{tree} & 1 \end{bmatrix}$$

- Express $x \in X_s^t$ as a formal product $x_1 \cdots x_s$ of s matrices, each with t rows

$$\begin{bmatrix} \text{tree} \\ \text{tree} \\ \text{tree} \end{bmatrix} = \begin{bmatrix} \text{tree} \\ \text{tree} \\ \text{tree} \end{bmatrix} \begin{bmatrix} \text{tree} & 1 \\ \text{tree} \end{bmatrix} \in X_2^2$$
The t rows of x_i are the i^{th} levels of the t trees in x.

\[
\begin{bmatrix}
\end{bmatrix} = \begin{bmatrix}
\end{bmatrix} \begin{bmatrix}
\end{bmatrix}
\]
Vertices as Matrix Products

- The t rows of x_i are the i^{th} levels of the t trees in x

$$\begin{bmatrix}
\text{Tree A} \\
\text{Tree B} \\
\end{bmatrix} = \begin{bmatrix}
\text{Tree A} \\
\end{bmatrix} \begin{bmatrix}
\text{Tree A} \\
\text{Tree B} \\
\end{bmatrix}$$

- Each row of x_i contains \exists exactly once
Vertices as Matrix Products

- The t rows of x_i are the i^{th} levels of the t trees in x
 \[
 \begin{bmatrix}
 \text{\rotatebox{90}{\ddots}} \\
 \end{bmatrix} = \begin{bmatrix}
 \text{\rotatebox{90}{\ddots}} \\
 \text{\rotatebox{90}{\ddots}} \\
 \end{bmatrix} \begin{bmatrix}
 \text{\rotatebox{90}{\ddots}} \\
 \end{bmatrix}
 \]

- Each row of x_i contains $\text{\rotatebox{90}{$\ddots$}}$ exactly once

- $X_i^t = \begin{bmatrix}
 \text{\rotatebox{90}{\ddots}} \\
 \text{\rotatebox{90}{\ddots}} \\
 \text{\rotatebox{90}{\ddots}} \\
 \end{bmatrix}$ (t rows)
Vertices as Matrix Products

- The t rows of x_i are the i^{th} levels of the t trees in x

\[
\begin{bmatrix}
\uparrow \downarrow \\
\downarrow \uparrow \\
\end{bmatrix} = \begin{bmatrix}
\uparrow \\
\downarrow \\
\end{bmatrix} \begin{bmatrix}
\downarrow \\
\uparrow \\
\end{bmatrix}
\]

- Each row of x_i contains $\uparrow \downarrow$ exactly once

\[
X_1^t = \begin{bmatrix}
\uparrow \\
\vdots \\
\uparrow \\
\end{bmatrix} \quad (t \text{ rows})
\]

- $X_2^2 = \mathcal{V} \left(\Delta^{(1)}_{P} (\uparrow_3) \right) = \left\{ \begin{bmatrix}
\uparrow \\
\uparrow \\
\end{bmatrix} [\begin{bmatrix}
\uparrow \\
1 \\
\end{bmatrix}] < \begin{bmatrix}
\uparrow \\
\uparrow \\
\end{bmatrix} [\begin{bmatrix}
\uparrow \\
1 \\
\end{bmatrix}] < \begin{bmatrix}
\uparrow \\
\uparrow \\
\end{bmatrix} [\begin{bmatrix}
1 \\
\uparrow \\
\end{bmatrix}] \right\}$
Express $y \in Y_t^s$ as a $1 \times s$ row matrix of down-rooted trees.
Vertices as Matrix Products

- Express \(y \in Y_t^s \) as a \(1 \times s \) row matrix of down-rooted trees
- Express \(y \) as a formal product \(y_t \cdots y_1 \) of \(t \) matrices, each with \(s \) columns
Vertices as Matrix Products

- Express \(y \in Y_t^s \) as a \(1 \times s \) row matrix of down-rooted trees
- Express \(y \) as a formal product \(y_t \cdots y_1 \) of \(t \) matrices, each with \(s \) columns
- The \(s \) columns of \(y_j \) are the \(j^{th} \) levels of the \(s \) trees in \(y \)
Vertices as Matrix Products

- Express $y \in Y_t^s$ as a $1 \times s$ row matrix of down-rooted trees
- Express y as a formal product $y_t \cdots y_1$ of t matrices, each with s columns
- The s columns of y_j are the j^{th} levels of the s trees in y
- Each column of y_j contains γ exactly once
Vertices as Matrix Products

- Express \(y \in Y_t^s \) as a \(1 \times s \) row matrix of down-rooted trees
- Express \(y \) as a formal product \(y_t \cdots y_1 \) of \(t \) matrices, each with \(s \) columns
- The \(s \) columns of \(y_j \) are the \(j^{th} \) levels of the \(s \) trees in \(y \)
- Each column of \(y_j \) contains \(\gamma \) exactly once

\[Y_1^s = [\gamma \cdots \gamma] \quad (s \text{ columns}) \]
Vertices as Matrix Products

- Express $y \in Y_t^s$ as a $1 \times s$ row matrix of down-rooted trees.
- Express y as a formal product $y_t \cdots y_1$ of t matrices, each with s columns.
- The s columns of y_j are the j^{th} levels of the s trees in y.
- Each column of y_j contains γ exactly once.
- $Y_1^s = [\gamma \cdots \gamma]$ (s columns)
- $Y_2^2 = \mathcal{V} \left(\Delta_p^{(1)}(\gamma^3) \right) = \{ \begin{bmatrix} \gamma & \gamma \\ 1 & 1 \end{bmatrix} [\gamma \gamma] < \begin{bmatrix} \gamma & 1 \\ 1 & \gamma \end{bmatrix} [\gamma \gamma] < \begin{bmatrix} 1 & 1 \\ \gamma & \gamma \end{bmatrix} [\gamma \gamma] \}$
\(X^2_1 \times Y^2_1 = \left[\begin{array}{c} 1 \\ 1 \end{array} \right] [\gamma \gamma] = \wedge^2_1 \times \vee^2_1 \)
Vertices as Matrix Products

- $X_1^2 \times Y_1^2 = \left[\begin{array}{c} \gamma \\ \gamma \end{array} \right] \left[\begin{array}{c} \gamma \\ \gamma \end{array} \right] = \wedge_1^2 \times \vee_1^2$

- $X_2^2 \times Y_1^3 = \left\{ u_1 = \left[\begin{array}{c} \gamma \\ \gamma \\ \gamma \end{array} \right] \left[\begin{array}{c} \gamma \\ \gamma \\ 1 \end{array} \right] \left[\begin{array}{c} \gamma \\ \gamma \\ \gamma \end{array} \right] < u_2 = \left[\begin{array}{c} \gamma \\ \gamma \\ \gamma \end{array} \right] \left[\begin{array}{c} \gamma \\ \gamma \\ 1 \end{array} \right] \left[\begin{array}{c} \gamma \\ \gamma \\ \gamma \end{array} \right] < u_3 = \left[\begin{array}{c} \gamma \\ \gamma \\ \gamma \end{array} \right] \left[\begin{array}{c} 1 \\ \gamma \\ \gamma \end{array} \right] \left[\begin{array}{c} \gamma \\ \gamma \\ \gamma \end{array} \right] \right\} \subset \wedge_2^2 \times \vee_1^3$
Consider a bigraded module $M = \{ M_{q,p} \}_{q,p \geq 1}$.
Consider a bigraded module $M = \{ M_{q,p} \}_{q,p \geq 1}$

Main Example:

Let H be a free module of finite type and let

$$ M = \text{End} (TH) = \{ M_{q,p} = \text{Hom} (H^\otimes p, H^\otimes q) \} $$
Some Algebra – Submodules of TTM

- Consider a bigraded module $M = \{ M_{q,p} \}_{q,p \geq 1}$

- **Main Example:**

 Let H be a free module of finite type and let

 $$M = \text{End} (TH) = \{ M_{q,p} = \text{Hom} (H^\otimes p, H^\otimes q) \}$$

- Think of $\alpha^q_p \in M_{q,p}$ as a multilinear operation $H^\otimes p \to H^\otimes q$
Consider a bigraded module $M = \{M_{q,p}\}_{q,p \geq 1}$

Main Example:

Let H be a free module of finite type and let

$$M = \text{End} \left(TH \right) = \left\{ M_{q,p} = \text{Hom} \left(H^{\otimes p}, H^{\otimes q} \right) \right\}$$

Think of $\alpha^q_p \in M_{q,p}$ as a multilinear operation $H^{\otimes p} \rightarrow H^{\otimes q}$

Pictured as a non-planar upward-directed graph

\[\in M_{2,3} \]
The Matrix Submodule of TTM

- The *matrix* submodule of TTM is

\[
\overline{M} = \bigoplus_{p,q \geq 1} (M^\otimes p)^\otimes q
\]
The Matrix Submodule of TTM

- The *matrix* submodule of TTM is

$$\overline{M} = \bigoplus_{p,q \geq 1} (M^\otimes p)^\otimes q$$

- A pair of matrices $X = (x_{ij})$, $Y = (y_{ij}) \in \mathbb{N}^{q \times p}$ uniquely determines a submodule

$$\overline{M}_X^Y = \begin{pmatrix}
(M_{y_{11}}, x_{11}) \otimes \cdots \otimes (M_{y_{1p}}, x_{1p}) \\
(M_{y_{21}}, x_{21}) \otimes \cdots \otimes (M_{y_{2p}}, x_{2p}) \\
\vdots \\
(M_{y_{q1}}, x_{q1}) \otimes \cdots \otimes (M_{y_{qp}}, x_{qp})
\end{pmatrix} \subset \overline{M}$$
The Matrix Submodule of TTM

- The *matrix* submodule of TTM is

$$\mathcal{M} = \bigoplus_{p, q \geq 1} (M^\otimes p)^\otimes q$$

- A pair of matrices $X = (x_{ij}), \ Y = (y_{ij}) \in \mathbb{N}^{q \times p}$ uniquely determines a submodule

$$\mathcal{M}_Y^X = (M_{y_{11}, x_{11}} \otimes \cdots \otimes M_{y_{1p}, x_{1p}}) \otimes (M_{y_{21}, x_{21}} \otimes \cdots \otimes M_{y_{2p}, x_{2p}}) \otimes \cdots \otimes (M_{y_{q1}, x_{q1}} \otimes \cdots \otimes M_{y_{qp}, x_{qp}}) \subset \mathcal{M}$$

- Each of the q rows is a submodule of $M^\otimes p$
Matrix Monomials in TTM

- $G \subset M$ is a fixed set of bihomogeneous module generators
Matrix Monomials in TTM

- $G \subset M$ is a fixed set of bihomogeneous module generators
- A monomial in TM is an element $A \in G^\otimes p$
\begin{itemize}
 \item $G \subset M$ is a fixed set of bihomogeneous module generators
 \item A monomial in TM is an element $A \in G^{\otimes p}$
 \item A monomial in TTM is an element $B \in (G^{\otimes p})^{\otimes q}$
\end{itemize}
- $G \subseteq M$ is a fixed set of bihomogeneous module generators

- A *monomial in TM* is an element $A \in G^{\otimes p}$

- A *monomial in TTM* is an element $B \in (G^{\otimes p})^{\otimes q}$

- B is represented by the $q \times p$ matrix

$$[B] = \begin{bmatrix}
g^{y_{1,1}}_{x_{1,1}} & \cdots & g^{y_{1,p}}_{x_{1,p}} \\
g^{y_{q,1}}_{x_{q,1}} & \cdots & g^{y_{q,p}}_{x_{q,p}}
\end{bmatrix}$$

with entries in G and rows identified with elements of $G^{\otimes p}$
The component

\[(M \otimes p) \otimes q = \bigoplus_{X, Y \in \mathbb{N}^{q \times p}} \overline{M}^Y_X\]
The component

\[(\mathcal{M} \otimes \rho) \otimes g = \bigoplus_{X,Y \in \mathbb{N}^{q \times p}} \overline{\mathcal{M}}_X^Y\]

Thus

\[\overline{\mathcal{M}} = \bigoplus_{X,Y \in \mathbb{N}^{q \times p}, \rho, q \geq 1} \overline{\mathcal{M}}_X^Y\]
The Bisequence Submodule of TTM

- $X \in \mathbb{N}^{q \times p}$ be a matrix with constant columns; let $\mathbf{x} \in \mathbb{N}^{1 \times p}$ denote any row of X
The Bisequence Submodule of TTM

- $X \in \mathbb{N}^{q \times p}$ be a matrix with constant columns; let $\mathbf{x} \in \mathbb{N}^{1 \times p}$ denote any row of X

- $Y \in \mathbb{N}^{q \times p}$ be a matrix with constant rows; let $\mathbf{y} \in \mathbb{N}^{q \times 1}$ denote any column of Y
The Bisequence Submodule of TTM

- $X \in \mathbb{N}^{q \times p}$ be a matrix with constant columns; let $x \in \mathbb{N}^{1 \times p}$ denote any row of X

- $Y \in \mathbb{N}^{q \times p}$ be a matrix with constant rows; let $y \in \mathbb{N}^{q \times 1}$ denote any column of Y

- Let $M_x^y = \overline{M}_x^y$
The Bisequence Submodule of TTM

- $X \in \mathbb{N}^{q \times p}$ be a matrix with constant columns; let $x \in \mathbb{N}^{1 \times p}$ denote any row of X

- $Y \in \mathbb{N}^{q \times p}$ be a matrix with constant rows; let $y \in \mathbb{N}^{q \times 1}$ denote any column of Y

- Let $M^y_x = \overline{M}^y_X$

- The bisequence submodule of TTM is

$$M = \bigoplus_{x,y \in \mathbb{N}^{q \times p} \atop p, q \geq 1} M^y_x$$
The Bisequence Submodule of TTM

- $X \in \mathbb{N}^{q \times p}$ be a matrix with constant columns; let $\mathbf{x} \in \mathbb{N}^{1 \times p}$ denote any row of X

- $Y \in \mathbb{N}^{q \times p}$ be a matrix with constant rows; let $\mathbf{y} \in \mathbb{N}^{q \times 1}$ denote any column of Y

- Let $M^Y_X = \overline{M}_X$

- The bisequence submodule of TTM is

\[
M = \bigoplus_{\mathbf{x}, \mathbf{y} \in \mathbb{N}^{q \times p}} M^Y_X
\]

\[
\text{subject to } p, q \geq 1
\]

- A monomial $A \in M$ is represented by a bisequence matrix

\[
A = \begin{bmatrix}
\alpha_{x1}^y & \cdots & \alpha_{xp}^y \\
\vdots & \ddots & \vdots \\
\alpha_{x1}^q & \cdots & \alpha_{xp}^q
\end{bmatrix}
\]
We refer to A as a $q \times p$ monomial
Bisequence Matrices

- We refer to A as a $q \times p$ monomial

\[
\begin{align*}
A & \in \mathbf{M}_{23} \\
\frac{2}{4} & \\
\end{align*}
\]

- A **Transverse Pair** (TP) of bisequence matrices has form

\[
\begin{bmatrix}
\alpha_p^{y_1} \\
\vdots \\
\alpha_p^{y_q}
\end{bmatrix} \otimes \begin{bmatrix}
\beta_{x_1}^q \\
\cdots \\
\beta_{x_p}^q
\end{bmatrix} \in \mathbf{M}_p^y \otimes \mathbf{M}_x^q
\]
$A \otimes B \in \overline{\mathbb{M}} \otimes \overline{\mathbb{M}}$ is a **Block Transverse Pair** (BTP) if there exist block decompositions $A = [A_{ij}]$ and $B = [B_{ij}]$ such that $A_{ij} \otimes B_{ij}$ is a TP for each (i, j).
- $A \otimes B \in \mathcal{M} \otimes \mathcal{M}$ is a **Block Transverse Pair** (BTP) if there exist block decompositions $A = [A_{ij}]$ and $B = [B_{ij}]$ such that $A_{ij} \otimes B_{ij}$ is a TP for each (i, j).

- An element $A \otimes B \in \mathcal{M}_{21} \otimes \mathcal{M}_{123}$ is a BTP via

$$A = \begin{bmatrix}
\alpha_1^1 \\
\alpha_2^1 \\
\alpha_2^2 \\
\alpha_2^3 \\
\alpha_2^4 \\
\alpha_2^5 \\
\alpha_1^1 \\
\alpha_1^4 \\
\alpha_1^3 \\
\alpha_1^2
\end{bmatrix} \quad B = \begin{bmatrix}
\beta_1^3 & \beta_2^3 & \beta_3^3 \\
\beta_1^1 & \beta_2^1 & \beta_3^1 \\
\beta_1^1 & \beta_2^2 & \beta_3^2 \\
\beta_1^2 & \beta_2^1 & \beta_3^1
\end{bmatrix}$$
A \otimes B \in \mathbf{M} \otimes \mathbf{M} is a **Block Transverse Pair** (BTP) if there exist block decompositions \(A = [A_{ij}] \) and \(B = [B_{ij}] \) such that \(A_{ij} \otimes B_{ij} \) is a TP for each \((i,j)\)

An element \(A \otimes B \in \mathbf{M}_{21} \otimes \mathbf{M}_{123} \) is a BTP via

\[
A = \begin{bmatrix}
\alpha_{12} \alpha_{11} \\
\alpha_{22} \alpha_{21} \\
\alpha_{32} \alpha_{31}
\end{bmatrix}, \quad B = \begin{bmatrix}
\beta_{13} \beta_{12} \beta_{11} \\
\beta_{23} \beta_{22} \beta_{21}
\end{bmatrix}
\]

BTP decomposition is unique when it exists
Given a map on TPs

\[\gamma = \left\{ \gamma_x^y : M_p^y \otimes M_q^x \rightarrow M_{\left| y \right| x} \right\}, \]

extend to a global product \(\Upsilon : \overline{M} \otimes \overline{M} \rightarrow \overline{M} \) by setting \(\Upsilon (A \otimes B) = 0 \) unless \(A \otimes B \) is a BTP, in which case define

\[\Upsilon (A \otimes B)_{ij} = \gamma (A_{ij} \otimes B_{ij}) \]
Given a map on TPs

$$\gamma = \left\{ \gamma^y_x : \mathbb{M}^y_p \otimes \mathbb{M}^q_x \to \mathbb{M} \right\},$$

extend to a global product $\Upsilon : \overline{\mathbb{M}} \otimes \overline{\mathbb{M}} \to \overline{\mathbb{M}}$ by setting $\Upsilon (A \otimes B) = 0$ unless $A \otimes B$ is a BTP, in which case define

$$\Upsilon (A \otimes B)_{ij} = \gamma (A_{ij} \otimes B_{ij})$$

$x_1 \cdot \cdot \cdot x_s \in X^t_s$ and $y_t \cdot \cdot \cdot y_1 \in Y^s_t$ are Υ-products
Given a map on TPs

\[\gamma = \left\{ \gamma_x^y : \mathbf{M}_p^y \otimes \mathbf{M}_x^q \to \mathbf{M}_{x^y} \right\}, \]

extend to a global product \(\Upsilon : \overline{\mathbf{M}} \otimes \overline{\mathbf{M}} \to \overline{\mathbf{M}} \) by setting

\[\Upsilon(A \otimes B) = 0 \] unless \(A \otimes B \) is a BTP, in which case define

\[\Upsilon(A \otimes B)_{ij} = \gamma(A_{ij} \otimes B_{ij}) \]

\(x_1 \cdots x_s \in X_s^t \) and \(y_t \cdots y_1 \in Y_t^s \) are \(\Upsilon \)-products

There is unique \(\Upsilon \)-factorization in \(\overline{\mathbf{M}} \)
Upsilon Products

\[\Upsilon : \mathbf{M}_{21}^3 \otimes \mathbf{M}_{123}^1 \rightarrow \mathbf{M}_{33}^3\]

\[
\begin{bmatrix}
\alpha_2^1 & \alpha_1^1 \\
\alpha_2^5 & \alpha_1^5 \\
\alpha_2^4 & \alpha_1^4 \\
\alpha_2^3 & \alpha_1^3 \\
\end{bmatrix} \quad \begin{bmatrix}
\beta_1^3 & \beta_2^3 & \beta_3^3 \\
\beta_1^1 & \beta_2^1 & \beta_3^1 \\
\end{bmatrix} =
\begin{bmatrix}
\alpha_1^1 \\
\alpha_1^5 \\
\alpha_1^4 \\
\alpha_1^3 \\
\end{bmatrix} \quad \begin{bmatrix}
\beta_1^3 & \beta_2^3 & \beta_3^3 \\
\beta_1^1 & \beta_2^1 & \beta_3^1 \\
\end{bmatrix} \quad \begin{bmatrix}
\alpha_1^1 \\
\alpha_1^5 \\
\alpha_1^4 \\
\alpha_1^3 \\
\end{bmatrix}
\]
When α^j_i is thought of as an element of $\text{Hom}(H^\otimes i, H^\otimes j)$ we can picture Υ-products graphically.
When α_j^i is thought of as an element of $\text{Hom}(H^\otimes i, H^\otimes j)$ we can picture Υ-products graphically.

\[
\begin{array}{c}
\begin{bmatrix}
1 \\
1
\end{bmatrix}
\begin{bmatrix}
\gamma \\
\gamma
\end{bmatrix} =
\begin{array}{c}
\begin{bmatrix}
1 \\
1
\end{bmatrix}
\begin{bmatrix}
\gamma \\
\gamma
\end{bmatrix} =
\end{array}
\end{array}
\]
When α^j_i is thought of as an element of $\text{Hom}(H^\otimes i, H^\otimes j)$ we can picture Υ-products graphically:

$$\left[\begin{array}{c} \uparrow \\ \uparrow \end{array} \right] \left[\begin{array}{c} \uparrow 1 \\ \downarrow \end{array} \right] [\Upsilon \Upsilon \Upsilon] = \frac{\ \ \ \ }{\ \ \ \ } = \frac{\ \ \ \ }{\ \ \ \ }$$

The picture in the center is M. Markl’s *fraction product*.
A pair or matrices \((A, B)\) is an \((i, j)\)-edge pair if

- \(A = [a_{ij}]\) is a matrix over \(\{1, \wedge\}\) whose rows contain \(\wedge\) exactly once
- \(B = [b_{ij}]\) is a matrix over \(\{1, \vee\}\) whose col’s contain \(\vee\) exactly once
- \[
\begin{bmatrix}
 a_{ij} \\
 a_{i+1,j}
\end{bmatrix}
\begin{bmatrix}
 b_{ij} & b_{i,j+1}
\end{bmatrix} =
\begin{bmatrix}
 \wedge \\
 \wedge
\end{bmatrix}
\begin{bmatrix}
 \vee & \vee
\end{bmatrix}
\]
A pair or matrices \((A, B)\) is an \((i, j)\)-edge pair if

- \(A = [a_{ij}]\) is a matrix over \(\{1, \wedge\}\) whose rows contain \(\wedge\) exactly once
- \(B = [b_{ij}]\) is a matrix over \(\{1, \gamma\}\) whose col’s contain \(\gamma\) exactly once

\[
\begin{bmatrix}
a_{ij} \\
a_{i+1,j}
\end{bmatrix}
\begin{bmatrix}
b_{ij} & b_{i,j+1}
\end{bmatrix}
=
\begin{bmatrix}
\wedge \\
\wedge
\end{bmatrix}
\begin{bmatrix}
\gamma & \gamma
\end{bmatrix}
\]

\((A_s, B_t)\) is the only possible edge pair of adjacent matrices in

\[
A_1 \cdots A_s B_t \cdots B_1 \in X_{s}^{t+1} \times Y_{t}^{s+1}
\]
(\(x_2, y_2\)) is a \((1, 1)\)-edge pair in

\[
x_1x_2y_2y_1 = \begin{bmatrix}
\otimes \\
\otimes \\
\otimes
\end{bmatrix} \begin{bmatrix}
\otimes \\
\otimes \\
\otimes
\end{bmatrix} \begin{bmatrix}
\otimes \\
\otimes \\
\otimes
\end{bmatrix} \begin{bmatrix}
\otimes \\
\otimes \\
\otimes
\end{bmatrix}
\]

There are no adjacent edge pairs in

\[
\begin{bmatrix}
\otimes \\
\otimes \\
\otimes
\end{bmatrix} \begin{bmatrix}
\otimes \\
\otimes \\
\otimes
\end{bmatrix} \begin{bmatrix}
\otimes \\
\otimes \\
\otimes
\end{bmatrix}
\]
(x_2, y_2) is a (1,1)-edge pair in

\[x_1 x_2 y_2 y_1 = \begin{bmatrix} 1 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & \gamma & 1 \\ \end{bmatrix} [\gamma \gamma \gamma] \]

There are no adjacent edge pairs in

\[\begin{bmatrix} 1 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & \gamma & \gamma \\ \end{bmatrix} [\gamma \gamma \gamma] \]
Matrix Transpositions

- A^{i*} denotes the matrix obtained by deleting the i^{th} row of A
Matrix Transpositions

- A^i denotes the matrix obtained by deleting the i^{th} row of A
- B^j denotes the matrices obtained by deleting the j^{th} column of B
Matrix Transpositions

- A^i* denotes the matrix obtained by deleting the i^{th} row of A
- B^j denotes the matrices obtained by deleting the j^{th} column of B
- If (A, B) is an (i, j)-edge pair, the (i, j)-transposition of AB is $B^j A^i*$
Matrix Transpositions

- A^{i*} denotes the matrix obtained by deleting the i^{th} row of A
- B^{*j} denotes the matrices obtained by deleting the j^{th} column of B
- If (A, B) is an (i, j)-edge pair, the (i, j)-transposition of AB is $B^{*j}A^{i*}$
- The $(1, 1)$-transposition of $\begin{pmatrix} \& 1 \\ \& 1 \end{pmatrix} [\gamma \gamma \gamma]$ is $[\gamma \gamma] \begin{pmatrix} \& 1 \\ \& 1 \end{pmatrix}$
Matrix Transpositions

- \(A^{i*} \) denotes the matrix obtained by deleting the \(i^{th} \) row of \(A \)
- \(B^{*j} \) denotes the matrices obtained by deleting the \(j^{th} \) column of \(B \)
- If \((A, B)\) is an \((i, j)\)-edge pair, the \((i, j)\)-transposition of \(AB\) is \(B^{*j}A^{i*}\)
- The \((1, 1)\)-transposition of \[
\begin{bmatrix}
_ & 1 \\
_ & 1
\end{bmatrix}
\begin{bmatrix}
_ & _ & _ \\
_ & _ & _ \\
_ & _ & _
\end{bmatrix}
\begin{bmatrix}
_ & _ & _ \\
_ & _ & _ \\
_ & _ & _
\end{bmatrix}
\]
is \[
\begin{bmatrix}
_ & _ & _ \\
_ & _ & _
\end{bmatrix}
\begin{bmatrix}
_ & _ & _
\end{bmatrix}
\]
- If \(c = C_1 \cdots C_n\) and \((C_k, C_{k+1})\) is an \((i, j)\)-edge pair,
\[
T^{k}_{ij}(c) = C_1 \cdots C_{k+1}C_{k}^{*j}C_{k}^{i*} \cdots C_n
\]
denotes the \((i, j)\)-transposition of \(c\) in position \(k\)
The Poset Structure of PP

\[Z_{t,s} = \left\{ T_{i_1 r_1}^{k_1} \cdots T_{i_r j_r}^{k_r} (u) \mid u \in X_{s}^{t+1} \times Y_{t}^{s+1} \right\} \]
\[Z_{t,s} = \left\{ T_{i_rj_r}^{k_r} \cdots T_{i_1j_1}^{k_1}(u) \mid u \in X_s^{t+1} \times Y_t^{s+1} \right\} \]

\[\mathcal{P}_{t,s} = X_s^{t+1} \times Y_t^{s+1} \sqcup Z_{t,s} \]
\[Z_{t,s} = \left\{ \mathcal{I}_{i_jr}^{k_r} \cdots \mathcal{I}_{i_1j_1}^{k_1} (u) \mid u \in X_{s+1}^t \times Y_{t+1}^s \right\} \]

\[\mathcal{PP}_{t,s} = X_{s+1}^t \times Y_{t+1}^s \sqcup Z_{t,s} \]

- For \(c \in \mathcal{PP}_{t,s} \) define \(c < \mathcal{I}_{i_j}^k (c) \)
The action of $T_{i_r j_r}^{k_r} \ldots T_{i_1 j_1}^{k_1}$ on $u \in X_{s+1}^t \times Y_{t+1}^s$ uniquely determines an (s, t)-shuffle σ; thus we denote

$$T_\sigma (u) = T_{i_r j_r}^{k_r} \ldots T_{i_1 j_1}^{k_1} (u)$$
The action of $T_{i_rj_r}^{k_r} \cdots T_{i_1j_1}^{k_1}$ on $u \in X_{s+1}^t \times Y_{s+1}^t$ uniquely determines an (s, t)-shuffle σ; thus we denote

$$T_\sigma(u) = T_{i_rj_r}^{k_r} \cdots T_{i_1j_1}^{k_1}(u)$$

- Define $T_{Id} = Id$
The action of $T_{irjr}^{k_r} \cdots T_{i1j1}^{k_1}$ on $u \in X_{s+1}^{t+1} \times Y_{t+1}^{s+1}$ uniquely determines an (s, t)-shuffle σ; thus we denote

$$T_{\sigma}(u) = T_{irjr}^{k_r} \cdots T_{i1j1}^{k_1}(u)$$

Define $T_{Id} = Id$

$T_{\sigma}(u)$ is undefined if σ fails to represent a composition of (i, j)-transpositions on u
The Poset Structure of PP

- The action of $\mathcal{T}_{i_rj_r} \cdots \mathcal{T}_{i_1j_1}$ on $u \in X_{s+1}^t \times Y_{t+1}^s$ uniquely determines an (s, t)-shuffle σ; thus we denote

\[\mathcal{T}_\sigma(u) = \mathcal{T}_{i_rj_r} \cdots \mathcal{T}_{i_1j_1}(u) \]

- Define $\mathcal{T}_{\text{Id}} = \text{Id}$

- $\mathcal{T}_\sigma(u)$ is undefined if σ fails to represent a composition of (i, j)-transpositions on u

- For $u_1 \leq u_2 \in X_{s+1}^t \times Y_{t+1}^s$, define $\mathcal{T}_\sigma(u_1) \leq \mathcal{T}_\sigma(u_2)$ if either
The Poset Structure of PP

- The action of $T_{i_r} T_{i_1} \cdots T_{i_r} T_{i_1}$ on $u \in X^{t+1}_s \times Y^{s+1}_t$ uniquely determines an (s, t)-shuffle σ; thus we denote
 \[T_\sigma(u) = T_{i_r} T_{i_1} \cdots T_{i_r} T_{i_1}(u) \]

- Define $T_{Id} = Id$

- $T_\sigma(u)$ is undefined if σ fails to represent a composition of (i, j)-transpositions on u

- For $u_1 \leq u_2 \in X^{t+1}_s \times Y^{s+1}_t$, define $T_\sigma(u_1) \leq T_\sigma(u_2)$ if either
 - (u_1, u_2) is an edge of $X^{t+1}_s \times Y^{s+1}_t$ or
The Poset Structure of PP

- The action of $T_{i_r j_r}^{k_r} \cdots T_{i_1 j_1}^{k_1}$ on $u \in X_s^{t+1} \times Y_t^{s+1}$ uniquely determines an (s, t)-shuffle σ; thus we denote

$$T_\sigma(u) = T_{i_r j_r}^{k_r} \cdots T_{i_1 j_1}^{k_1}(u)$$

- Define $T_{\text{Id}} = \text{Id}$

- $T_\sigma(u)$ is undefined if σ fails to represent a composition of (i, j)-transpositions on u

- For $u_1 \leq u_2 \in X_s^{t+1} \times Y_t^{s+1}$, define $T_\sigma(u_1) \leq T_\sigma(u_2)$ if either
 - (u_1, u_2) is an edge of $X_s^{t+1} \times Y_t^{s+1}$ or
 - u_2 is “σ-compatible” with u_1
The Poset PP(1,2)

- There is no action of T on $u_2 = \left[\begin{array}{c} \top \top \\ \top \top \end{array} \right] \left[\begin{array}{c} \top \top \\ \top \top \\top \top \end{array} \right] [\gamma \gamma \gamma]$
The Poset PP(1,2)

- There is no action of \mathcal{T} on $u_2 = \left[\begin{array}{c} \gamma \\ \gamma \\ 1 \end{array} \right] \left[\begin{array}{c} \gamma \\ \gamma \\ \gamma \end{array} \right]$.

- The action of \mathcal{T} on $u_1 = \left[\begin{array}{c} \gamma \\ \gamma \\ 1 \end{array} \right] \left[\begin{array}{c} \gamma \\ \gamma \\ \gamma \end{array} \right]$ and $u_3 = \left[\begin{array}{c} \gamma \\ \gamma \\ 1 \end{array} \right] \left[\begin{array}{c} 1 \\ \gamma \\ \gamma \end{array} \right]$ produces four elements of $Z_{1,2}$:

 $u_1 \xrightarrow{\mathcal{T}_{\sigma_1}} \left[\begin{array}{c} \gamma \\ \gamma \\ 1 \end{array} \right] \left[\begin{array}{c} \gamma \\ \gamma \\ \gamma \end{array} \right]$ and $u_3 \xrightarrow{\mathcal{T}_{\sigma_1}} \left[\begin{array}{c} \gamma \\ \gamma \\ 1 \end{array} \right] \left[\begin{array}{c} 1 \\ \gamma \\ \gamma \end{array} \right]$
The Digraph of PP(1,2)

One checks that

- only u_1 is σ_1-compatible with u_1
The Digraph of PP(1,2)

One checks that

- only u_1 is σ_1-compatible with u_1
- u_2 and u_3 are σ_2-compatible with u_1
One checks that

- only u_1 is σ_1-compatible with u_1
- u_2 and u_3 are σ_2-compatible with u_1
- Thus $u_1 < u_3$ implies $T_{\sigma_2}(u_1) < T_{\sigma_2}(u_3)$
Vertices in Associahedra

\[\mathcal{V}(K_2) = [\varepsilon] \leftrightarrow [\gamma] \]
Vertices in Associahedra

- \(V(K_2) = [\nearrow] \leftrightarrow [\Uparrow] \)

- \(V(K_3) = \{[\nearrow] [\nearrow \ 1], [\nearrow] [1 \ \nearrow]\} \leftrightarrow \left\{ \left[\begin{array}{c} \nearrow \\ 1 \end{array} \right] [\Uparrow], \left[\begin{array}{c} 1 \\ \Uparrow \end{array} \right] [\Uparrow] \right\} \)
Vertices in Associahedra

- $\mathcal{V}(K_2) = [\ast] \leftrightarrow [\gamma]$

- $\mathcal{V}(K_3) = \{[\ast] [\ast 1], [\ast] [1 \ast]\} \leftrightarrow \begin{Bmatrix} [\gamma] \quad [\gamma], \quad [1] \quad [\gamma] \end{Bmatrix}$

- But in $\mathcal{V}(K_4)$:

$$\begin{align*}
[\ast] [1 \ast] [\ast 11] &= [\ast] [\ast 1] [1 1 \ast] \leftrightarrow \\
\begin{bmatrix} \gamma \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ \gamma \\ 1 \end{bmatrix} [\gamma] &= \begin{bmatrix} 1 \\ 1 \\ \gamma \end{bmatrix} \begin{bmatrix} \gamma \\ 1 \end{bmatrix} [\gamma] \leftrightarrow \\
\begin{array}{c}
\text{Diagram 1} \\
\text{Diagram 2}
\end{array}
\end{align*}$$
Equivalence in the Poset X

For $A_1 \cdots A_s$, $A'_1 \cdots A'_s \in X^t$
For $A_1 \cdots A_s$, $A'_1 \cdots A'_s \in X^t$

Compose i^{th} rows $A_{i,1} \cdots A_{i,s}$ and $A'_{i,1} \cdots A'_{i,s}$
For $A_1 \cdots A_s, A'_1 \cdots A'_s \in X_s^t$

Compose i^{th} rows $A_{i,1} \cdots A_{i,s}$ and $A'_{i,1} \cdots A'_{i,s}$

Obtain up-rooted binary trees $a_i, a'_i \in \wedge_s$
Equivalence in the Poset X

- For $A_1 \cdots A_s$, $A'_1 \cdots A'_s \in X_s^t$

- Compose i^{th} rows $A_{i,1} \cdots A_{i,s}$ and $A'_{i,1} \cdots A'_{i,s}$

- Obtain up-rooted binary trees $a_i, a'_i \in \wedge_s$

- Define $a' \sim a$ if $a_i \cong a'_i$ (as planar trees) for all i
Dually, for $B_t \cdots B_1$, $B'_t \cdots B'_1 \in Y_t^s$
Dually, for $B_t \cdots B_1, B'_t \cdots B'_1 \in Y_t^s$

Compose j^{th} columns $B_{t,j} \cdots B_{1,j}$ and $B'_{t,j} \cdots B'_{1,j}$
Equivalence in the Poset Y

- Dually, for $B_t \cdots B_1$, $B'_t \cdots B'_1 \in Y^s_t$
- Compose j^{th} columns $B_{t,j} \cdots B_{1,j}$ and $B'_{t,j} \cdots B'_{1,j}$
- Obtain down-rooted binary trees $b_j, b'_j \in \vee_t$
Dually, for $B_t \cdots B_1$, $B'_t \cdots B'_1 \in Y_t^s$

Compose j^{th} columns $B_{t,j} \cdots B_{1,j}$ and $B'_{t,j} \cdots B'_{1,j}$

Obtain down-rooted binary trees b_j, $b'_j \in \vee_t$

Define $b' \sim b$ if $b'_j \cong b_j$ (as planar trees) for all j
Equivalence in the Poset PP

For \(a \times b, \ c \times d \in X_{s+1}^t \times Y_{s+1}^t \)
For $a \times b, c \times d \in X_{s}^{t+1} \times Y_{t}^{s+1}$

Define $a \times b \sim c \times d$ if $a \sim c$ and $b \sim d$
Equivalence in the Poset PP

- For $a \times b, c \times d \in X_s^{t+1} \times Y_t^{s+1}$

- Define $a \times b \sim c \times d$ if $a \sim c$ and $b \sim d$

- If $u_1 \sim u_2$ and either (u_1, u_2) is an edge or u_2 is σ-compatible with u_1 define
 \[\mathcal{T}_\sigma(u_1) \sim \mathcal{T}_\sigma(u_2) \]
For $a \times b, c \times d \in X_{s}^{t+1} \times Y_{t}^{s+1}$

Define $a \times b \sim c \times d$ if $a \sim c$ and $b \sim d$

If $u_1 \sim u_2$ and either (u_1, u_2) is an edge or u_2 is σ-compatible with u_1 define

$$\mathcal{I}_\sigma(u_1) \sim \mathcal{I}_\sigma(u_2)$$

Then $\mathcal{K}\mathcal{K}_{t+1,s+1} = \mathcal{P}\mathcal{P}_{t,s} / \sim$
For $a \times b, c \times d \in X_s^{t+1} \times Y_t^{s+1}$

- Define $a \times b \sim c \times d$ if $a \sim c$ and $b \sim d$

- If $u_1 \sim u_2$ and either (u_1, u_2) is an edge or u_2 is σ-compatible with u_1

 - define

 $$\mathcal{I}_\sigma(u_1) \sim \mathcal{I}_\sigma(u_2)$$

- Then $\mathcal{KK}_{t+1,s+1} = \mathcal{PP}_{t,s}/\sim$

- $\vartheta : \mathcal{PP}_{t,s} \rightarrow \mathcal{KK}_{t+1,s+1}$ denotes the projection
1. Construct $PP_{t,s}$ as a subdivision of P_{s+t} in two steps
Constructing Matrahedra

1. Construct $PP_{t,s}$ as a subdivision of P_{s+t} in two steps

- **Step 1**: Replace codim 1 cell $s| (t+s) \subset P_{s+t}$ with $\Delta_P^{(t)} (\cup s_{s+1}) \times \Delta_P^{(s)} (\gamma^{t+1})$

$$P_{2+1} \supset 12|3 \leftarrow \Delta_P^{(1)} (\cup 3) \times \Delta_P^{(2)} (\gamma)$$
$P_{2+2} \supset 12|34 \leftarrow \Delta_P^{(2)}(\Lambda_3) \times \Delta_P^{(2)}(\Gamma^3)$
Constructing Matrahedra

\[\Delta_P^3 (\Uparrow) \times \Delta_P^1 (\gamma^4) \rightarrow 1|234 \subset P_{1+3} \]
Step 2: Use T_{σ} to propagate the subdivision of $s \mid (t + s)$ to remaining cells.
Step 2: Use T_σ to propagate the subdivision of $s| (t + s)$ to remaining cells

$PP_{3,1}$
Constructing Matrahedra

2. \(KK_{t+1,s+1} = PP_{t,s}/\sim \)
2. $KK_{t+1,s+1} = PP_{t,s}/\sim$

- Graphs associated with equivalent vertices are isomorphic (forgetting levels)
Constructing Matrahedra

2. $KK_{t+1,s+1} = PP_{t,s} / \sim$

- Graphs associated with equivalent vertices are isomorphic (forgetting levels)

- If all vertices of a face $e \subset PP_{t,s}$ are equivalent, then

 $$\vartheta \vartheta (e) = \vartheta \vartheta (\mathcal{V}(e)) \in \mathcal{V}(KK_{t+1,s+1})$$
Constructing Matrahedra

2. \(KK_{t+1,s+1} = PP_{t,s} / \sim \)

- Graphs associated with equivalent vertices are isomorphic (forgetting levels)

- If all vertices of a face \(e \subset PP_{t,s} \) are equivalent, then
 \[
 \vartheta \vartheta (e) = \vartheta \vartheta (\mathcal{V}(e)) \in \mathcal{V}(KK_{t+1,s+1})
 \]

- Strings of matrices associated with the boundary components of a single cell \(e \subset KK \) determine a string of matrices associated with \(e \)
The Matrehedron KK(2,2)
The Projection from PP(3,1) to KK(4,2)
A Degenerate Square in PP(3,1)
The Matrahedron KK(4,2) as a Subdivision of the Cube
The 2-Faces of KK(4,2)
The **free matrad** \mathcal{H}_∞ is the bigraded module generated by all classes of formal matrix products associated with cells of KK.
The Free Matrad

- The *free matrad* \mathcal{H}_∞ is the bigraded module generated by all classes of formal matrix products associated with cells of KK

- $(\mathcal{H}_\infty)_{1,1} = \langle 1 \rangle$; $(\mathcal{H}_\infty)_{1,2} = \langle \eta \rangle$; $(\mathcal{H}_\infty)_{2,1} = \langle \gamma \rangle$
The free matrad \mathcal{H}_∞ is the bigraded module generated by all classes of formal matrix products associated with cells of KK

$(\mathcal{H}_\infty)_{1,1} = \langle 1 \rangle; (\mathcal{H}_\infty)_{1,2} = \langle \wedge \rangle; (\mathcal{H}_\infty)_{2,1} = \langle \gamma \rangle$

$\theta^t_s = \in (\mathcal{H}_\infty)_{t,s}$
The Free Matrad

- The *free matrad* \mathcal{H}_∞ is the bigraded module generated by all classes of formal matrix products associated with cells of KK

- $(\mathcal{H}_\infty)_{1,1} = \langle 1 \rangle$; $(\mathcal{H}_\infty)_{1,2} = \langle \wedge \rangle$; $(\mathcal{H}_\infty)_{2,1} = \langle \gamma \rangle$

- $\theta_t^s = \in (\mathcal{H}_\infty)_{t,s}$

- θ_t^s is associated with the top dim’l cell $e_{t,s}$ of $KK_{t,s}$
The free matrad \mathcal{H}_∞ is the bigraded module generated by all classes of formal matrix products associated with cells of KK

$$(\mathcal{H}_\infty)_{1,1} = \langle 1 \rangle; \quad (\mathcal{H}_\infty)_{1,2} = \langle \forall \rangle; \quad (\mathcal{H}_\infty)_{2,1} = \langle \forall \rangle$$

$\theta_s^t \in (\mathcal{H}_\infty)_{t,s}$

θ_s^t is associated with the top dim’l cell $e_{t,s}$ of $KK_{t,s}$

The relations in \mathcal{H}_∞ are encoded by the cellular boundary in KK
An A_∞-bialgebra is a module H together with a family of operations
$\{\theta^t_s \in \text{Hom} \left(H^\otimes s, H^\otimes t \right) \}_{s, t \geq 1}$ and a chain map

$$\varphi : \mathcal{H}_\infty \to \left\{ \text{Hom} \left(H^\otimes s, H^\otimes t \right) \right\}_{s, t \geq 1}$$

such that $\varphi \left(e_{t,s} \right) = \theta^t_s$
An A_∞-bialgebra is a module H together with a family of operations \(\{ \theta^t_s \in Hom(H^\otimes s, H^\otimes t) \}_{s,t\geq 1} \) and a chain map
\[
\varphi : \mathcal{H}_\infty \rightarrow \left\{ Hom\left(H^\otimes s, H^\otimes t \right) \right\}_{s,t\geq 1}
\]
such that $\varphi (e_{t,s}) = \theta^t_s$

Naturally occurring examples have been considered in joint work with A. Berciano and M. Vejdemo-Johansson
An A_∞-bialgebra is a module H together with a family of operations $\{\theta^t_s \in \text{Hom}(H^\otimes s, H^\otimes t)\}_{s,t \geq 1}$ and a chain map

$$\varphi : \mathcal{H}_\infty \rightarrow \left\{ \text{Hom}(H^\otimes s, H^\otimes t) \right\}_{s,t \geq 1}$$

such that $\varphi(e_{t,s}) = \theta^t_s$

Naturally occurring examples have been considered in joint work with A. Berciano and M. Vejdemo-Johansson

Submodules $E \otimes \Gamma \subset H_* (\mathbb{Z}, n; \mathbb{Z}_p)$ are A_∞-bialgebras with operations $\{\mu, \Delta, \Delta_p\}$
An A_{∞}-bialgebra is a module H together with a family of operations
\[\{ \theta^t_s \in \text{Hom} \left(H^{\otimes s}, H^{\otimes t} \right) \}_{s,t \geq 1} \]
and a chain map
\[\varphi : \mathcal{H}_\infty \rightarrow \left\{ \text{Hom} \left(H^{\otimes s}, H^{\otimes t} \right) \right\}_{s,t \geq 1} \]

such that $\varphi (e_{t,s}) = \theta^t_s$

Naturally occurring examples have been considered in joint work with A. Berciano and M. Vejdemo-Johansson

Submodules $E \otimes \Gamma \subset H_\ast \left(\mathbb{Z}, n; \mathbb{Z}_p \right)$ are A_{∞}-bialgebras with operations $\{ \mu, \Delta, \Delta_p \}$

$H^\ast \left(C_n; F \right)$ is an A_{∞}-bialgebra with operations $\{ \mu, \mu_n, \Delta \}$
Thank you!