The Ring of Integers

Elementary number theory is largely about the ring of integers, denoted by the symbol \(\mathbb{Z} \). The integers are an example of an algebraic structure called an integral domain. This means that \(\mathbb{Z} \) satisfies the following axioms:

(a) \(\mathbb{Z} \) has operations + (addition) and \(\cdot \) (multiplication). It is closed under these operations, in that if \(m, n \in \mathbb{Z} \), then \(m + n \in \mathbb{Z} \) and \(m \cdot n \in \mathbb{Z} \).

(b) Addition is associative: If \(m, n, p \in \mathbb{Z} \), then
\[
m + (n + p) = (m + n) + p.
\]

(c) There is an additive identity \(0 \in \mathbb{Z} \): For all \(n \in \mathbb{Z} \),
\[
n + 0 = n \quad \text{and} \quad 0 + n = n.
\]

(d) Every element has an additive inverse: If \(n \in \mathbb{Z} \), there is an element \(-n \in \mathbb{Z} \) such that
\[
n + (-n) = 0 \quad \text{and} \quad (-n) + n = 0.
\]

(e) Addition is commutative: If \(m, n \in \mathbb{Z} \), then
\[
m + n = n + m.
\]

(f) Multiplication is associative: If \(m, n, p \in \mathbb{Z} \), then
\[
m \cdot (n \cdot p) = (m \cdot n) \cdot p.
\]

(g) There is a multiplicative identity \(1 \in \mathbb{Z} \): For all \(n \in \mathbb{Z} \),
\[
n \cdot 1 = n \quad \text{and} \quad 1 \cdot n = n.
\]

(h) Multiplication is commutative: If \(m, n \in \mathbb{Z} \), then
\[
m \cdot n = n \cdot m.
\]

(i) The Distributive Laws hold: If \(m, n, p \in \mathbb{Z} \), then
\[
m \cdot (n + p) = m \cdot n + m \cdot p \quad \text{and} \quad (m + n) \cdot p = m \cdot p + n \cdot p.
\]

(j) There are no zero divisors: If \(m, n \in \mathbb{Z} \) and \(m \cdot n = 0 \), then either \(m = 0 \) or \(n = 0 \).

Remarks.

(a) As usual, I’ll often abbreviate \(m \cdot n \) to \(mn \).

(b) The last axiom is equivalent to the Cancellation Property: If \(a, b, c \in \mathbb{Z} \), \(a \neq 0 \), and \(ab = ac \), then \(b = c \).

Here’s the proof:
\[
\begin{align*}
 ab - ac &= 0 \\
 a(b - c) &= 0
\end{align*}
\]

Since there are no zero divisors, either \(a = 0 \) or \(b - c = 0 \). Since \(a \neq 0 \) by assumption, I must have \(b - c = 0 \), so \(b = c \).
Notice that I didn’t divide both sides of the equation by a — I cancelled a from both sides. This shows that division and cancellation aren’t “the same thing”.

Example. If $n \in \mathbb{Z}$, prove that $0 \cdot n = 0$.

\[
0 \cdot n = (0 + 0) \cdot n \quad \text{(Additive identity)}
\]
\[
= 0 \cdot n + 0 \cdot n \quad \text{(Distributive Law)}
\]

Adding $-(0 \cdot n)$ to both sides, I get

\[
-(0 \cdot n) + 0 \cdot n = -(0 \cdot n) + (0 \cdot n + 0 \cdot n).
\]

By associativity for addition,

\[
-(0 \cdot n) + 0 \cdot n = (-0 \cdot n) + 0 \cdot n + 0 \cdot n.
\]

Then using the fact that $-(0 \cdot n)$ and $0 \cdot n$ are additive inverses,

\[
0 = 0 + 0 \cdot n.
\]

Finally, 0 is the additive identity, so

\[
0 = 0 \cdot n. \quad \square
\]

Example. If $n \in \mathbb{Z}$, prove that $-n = (-1) \cdot n$.

In words, the equation says that the additive inverse of n (namely $-n$) is equal to $(-1) \cdot n$. What is the additive inverse of n? It is the number which gives 0 when added to n.

Therefore, I should add $(-1) \cdot n$ and see if I get 0:

\[
(-1) \cdot n + n = (-1) \cdot n + 1 \cdot n \quad \text{(Multiplicative identity)}
\]
\[
= (-1 + 1) \cdot n \quad \text{(Distributive Law)}
\]
\[
= 0 \cdot n \quad \text{(Additive inverse)}
\]
\[
= 0 \quad \text{(Preceding result)}
\]

By the discussion above, this proves that $-n = (-1) \cdot n. \quad \square$

Example. Give an example of a set of objects with a “multiplication” which is not commutative.

If you have had linear algebra, you know that matrix multiplication is not commutative in general. For instance, considering 2×2 real matrices,

\[
\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad \text{but} \quad \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}. \quad \square
\]

The integers are **ordered** — there is a notion of greater than (or less than). Specifically, for $m, n \in \mathbb{Z}$, $m > n$ is defined to mean that $m - n$ is a **positive integer**: an element of the set \{1, 2, 3, \ldots\}.

Of course, $m < n$ is defined to mean $n > m$. $m \geq n$ and $m \leq n$ have the obvious meanings.

There are several order axioms:

2
The positive integers are closed under addition and multiplication.

(1) (Trichotomy) If \(n \in \mathbb{Z} \), either \(n > 0 \), \(n < 0 \), or \(n = 0 \).

Example. Prove that if \(m > 0 \) and \(n < 0 \), then \(mn < 0 \).

\(n < 0 \), so \(0 - n = -n \) is a positive integer. \(m > 0 \) means \(m = m - 0 \) is a positive integer, so by closure \(m \cdot (-n) \) is a positive integer.

By a property of integers (which you should try proving from the axioms), \(m \cdot (-n) = -(mn) \). Thus, \(-(mn) \) is a positive integer. So \(0 - mn = -(mn) \) is a positive integer, which means that \(0 > mn \).

Well-Ordering Axiom. Every nonempty subset of the positive integers has a smallest element.

Your long experience with the integers makes this principle sound obvious. In fact, it is one of the deeper axioms for \(\mathbb{Z} \). Some consequences include the **Division Algorithm** and the principle of **mathematical induction**.

Example. Prove that \(3\sqrt{2} \) is not a rational number.

The proof will use the Well-Ordering Property.

I’ll give a proof by contradiction. Suppose that \(3\sqrt{2} \) is a rational number. In that case, I can write \(3\sqrt{2} = \frac{a}{b} \), where \(a \) and \(b \) are positive integers.

Now \(\sqrt{2} = \frac{a}{b} \), so \(b\sqrt{2} = a \), and \(2b^3 = a^3 \).

(To complete the proof, I’m going to use some divisibility properties of the integers that I haven’t proven yet. They’re easy to understand and pretty plausible, so this shouldn’t be a problem.)

The last equation shows that 2 divides \(a^3 \). This is only possible if 2 divides \(a \), so \(a = 2c \), for some positive integer \(c \). Plugging this into \(2b^3 = a^3 \), I get

\[
2b^3 = 8c^3, \quad \text{or} \quad b^3 = 4c^3.
\]

Since 2 divides \(4c^3 \), it follows that 2 divides \(b^3 \). As before, this is only possible if 2 divides \(b \), so \(b = 2d \) for some positive integer \(d \). Plugging this into \(b^3 = 4c^3 \), I get

\[
8d^3 = 4c^3, \quad \text{or} \quad 2d^3 = c^3.
\]

This equation has the same form as the equation \(2b^3 = a^3 \), so it’s clear that I can continue this procedure indefinitely to get \(e \) such that \(c = 2e, f \) such that \(d = 2f \), and so on.

However, since \(a = 2c \), it follows that \(a > c \); since \(c = 2e \), I have \(c > e \), so \(a > c > e \). Thus, the numbers \(a, c, e, \ldots \) comprise a set of positive integers with no smallest element, since a given number in the list is always smaller than the one before it. This contradicts Well-Ordering.

Therefore, my assumption that \(3\sqrt{2} \) is a rational number is wrong, and hence \(3\sqrt{2} \) is not rational.

©2017 by Bruce Ikenaga