6-20-2013. The conditional and related statements; arguments with quantifiers

- A **conditional statement** is a compound statement using the connective ________________

 o **Example:** If you build it, he will come.

 o If p and q are statements, the compound statement “If p, then q” is denoted ________________

 o Statement p is called the __________________________

 o Statement q is called the __________________________

 o Common English translations of $p \rightarrow q$

 •

 •

 •

 •

 •

 - **Truth table** for $p \rightarrow q$

 o **Example:** Given that p, q, r are false, find the truth value of $(p \rightarrow \sim q) \rightarrow (\sim r \rightarrow q)$
Example: Determine the truth value of each statement:
(a) $T \rightarrow (7 = 3)$

(b) $(8 < 2) \rightarrow F$

(c) $(4 \neq 3 + 1) \rightarrow T$

Example: Construct the truth table for $(p \rightarrow q) \rightarrow (\sim p \lor q)$

- A tautology is __
 - If p and q are equivalent, then $p \rightarrow q$ is a tautology.
 - If $p \rightarrow q$ is a tautology, then p and q are equivalent.

- The biconditional statement $p \leftrightarrow q$ (read “p if and only if q”) is equivalent to __________
 - $p \rightarrow q$ is a tautology if and only if ________________.
 - $p \leftrightarrow q$ is true if p and q have ___________; otherwise it’s ___________

- Truth table for $p \leftrightarrow q$

- Determine the truth value of each biconditional.
 (a) $(6 + 8 = 14) \leftrightarrow (11 + 5 = 16)$
(b) \((6 = 5) \leftrightarrow (12 \neq 12)\)

(c) \((5 + 2 = 10) \leftrightarrow (17 + 19 = 36)\)

- **Negating conditional statements**

 Rule: __

 o **Examples**: Negate each conditional.

 (a) If you build it, he will come.

 (b) All dogs have fleas.

 Negation as a universally quantified statement: ______________________

 Equivalently, there is _______________________________

 \(p\): It’s a dog. \(q\): It has fleas. \(p \to q\): ____________________________

- **Statements related to a conditional**

 o The **converse** of \(p \to q\) is ________________________________
• Truth tables for $p \rightarrow q$ and its converse

• A statement and its converse are ________________________________
 o The contrapositive of $p \rightarrow q$ is ________________________________

• Truth tables for $p \rightarrow q$ and its contrapositive

• A statement and its contrapositive are ________________________________
 o The inverse of $p \rightarrow q$ is ________________________________

• Truth tables for $p \rightarrow q$ and its inverse

• The converse and the inverse of a given conditional are ________________________________
• Arguments with quantifiers

 o A premise is __

 o An argument consists of __

 o An argument is valid if ___

 o A fallacy is __

 o Analyzing arguments with quantifiers using Euler diagrams

 ▪ Example 1.
 All dogs are animals.
 Dottie is a dog.
 Dotty is an animal.

 ▪ Example 2.
 All rainy days are cloudy.
 Today is not cloudy.
 Today is not a rainy day.
Example 3.
All magnolia trees have green leaves.
That plant has green leaves.
That plant is a magnolia tree.

Example 4.
All expensive things are desirable.
All desirable things make you feel good.
All things that make you feel good make you live longer.
All expensive things make you live longer.

Example 5.
Some students go to the beach for spring break.
I am a student.
I go to the beach for spring break.