7-8-2012. Probability involving NOT and OR, conditional probability and independence

- The probability that an event E will not occur is ____________________________

__

- Example 2. A single card is drawn from a standard deck of 52 cards. What is the probability it is not a king?

- Example 3. Five fair coins are tossed. What is the probability that at least two turn up heads?

- Addition Rule for Probability: If A and B are events, then

__

- Example 4b. One number is randomly selected from \{1,2,3,...,10\}. What is the probability it is odd or a multiple of 3?

- Example 5. A single card is drawn from a standard deck of 52 cards. What is the probability it is a spade or a red card?
Example 8. Emily must choose one of 20 elective courses, of which 8 are recreational, 9 are interesting, and 3 are both recreational and interesting. If she selects a course at random, what is the probability it will have at least one of these attributes?

- Two events that cannot occur simultaneously are _________________________________

Example 6. Each evening, Amy spends 1 to 6 hours on her homework. The probability \(P(x) \) that Amy will work on homework \(x \) hours on a particular evening is shown in the table below.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
</tr>
<tr>
<td>4</td>
<td>0.40</td>
</tr>
<tr>
<td>5</td>
<td>0.10</td>
</tr>
<tr>
<td>6</td>
<td>0.15</td>
</tr>
</tbody>
</table>

(a) \(P(x < 3) = \)

(b) \(P(x > 2) = \)

(c) \(P(1 < x \leq 5) = \)

(d) \(P(x < 5) = \)
• The probability that event B will occur, given that event A has already occurred, denoted by \(p(B|A) \), is called the ____________________________

 o Example 1. A number is randomly selected from the set \(S = \{1,2,3,...,10\} \).
 Event O: The number is odd. Event M: The number is a multiple of 2.

 (a) \(P(O) = \)

 (b) \(P(M) = \)

 (c) \(P(O \cap M) = \)

 (d) \(P(M|O) = \)

• Conditional probability formula:__

 o Example 2. A family has two children.
 (a) What is the probability that both are girls, given that one is a girl.
 Strategy A: Restrict the sample space.

 Strategy B: Apply the conditional probability formula.
(b) What is the probability that both are girls, given that the first born is a girl.

Strategy A: Restrict the sample space.

Strategy B: Apply the conditional probability formula.

- Two events A and B are **independent** if

 \[P(A \cap B) = P(A)P(B)\]

- **Example 3.** A single card is drawn from a standard deck of 52 cards.
 Event A: The selected card is a face card. Event B: The selected card is black.

 (a) \(P(B) = \)

 (b) \(P(B \mid A) = \)

 (c) Are A and B independent?

- **Multiplication rules for probability:** Let A and B be events.

 \[P(A \cap B) = \]
Example 4. Jacqui has categorized the 20 books in her library as follows:

<table>
<thead>
<tr>
<th></th>
<th>Fiction (F)</th>
<th>Nonfiction (N)</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardcover (H)</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Paperback (P)</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Totals</td>
<td>11</td>
<td>9</td>
<td>20</td>
</tr>
</tbody>
</table>

She selects a book at random.

(a) \(P(H) = \)

(b) \(P(H \cap F) = \)

(c) \(P(F|H) = \)

Example 8. An urn contains 4 red, 2 blue, and 5 yellow balls. Three balls are drawn without replacement. Find the probability that the first ball is red (R), the second is yellow (Y), and the third is blue (B).