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Finitely Generated Abelian Groups

There is no (known) formula which gives the number of groups of order n for any n > 0. However,
it’s possible to classify the finite abelian groups of order n. This classification follows from the structure

theorem for finitely generated abelian groups.

Definition. Let G be an abelian group. The torsion subgroup of G is

T = {g ∈ G | ng = 0 for some n ∈ Z
+}.

I’d better check that the definition makes sense!

Proposition. Let G be an abelian group. The torsion subgroup of G is a subgroup of G.

Proof. Let T be the torsion subgroup of G. 0 ∈ T , so T is nonempty. Let a, b ∈ T . I must show a− b ∈ T .
Find positive integers m, n, such that ma = 0 and nb = 0. Then

mn(a− b) = mna−mnb = 0− 0 = 0.

Therefore, a− b ∈ T , and T < G.

Definition. A group G is torsion free if the only element of finite order is the identity.

Definition. An abelian group G is finitely generated if there are elements x1, . . . , xn ∈ G such that every
element x ∈ G can be written as

x = a1x1 + · · ·+ anxn, ai ∈ Z.

Note that this expression need not be unique.

Definition. A free abelian group is a direct sum of copies of Z (possibly infinitely many copies).

The number of copies (in the sense of cardinality) is the rank of the free abelian group. It’s possible to
prove that the rank of a free abelian group is well-defined.

Theorem. Let G be a finitely generated abelian group.

(a) G = T × F , where T is the torsion subgroup and F is a free abelian group.

(b) The rank of F is uniquely determined by G.

(c) The torsion part T can be written as a direct sum of cyclic groups in the following ways. Each
decomposition is unique (in the first case, up to the order of the factors):

T ≈ Zp1
r1 × Zp2

r2 × · · · × Zpn

rn .

T ≈ Zd1
× Zd2

× · · · × Zdm
, 1 ≤ d1 | d2 | · · · | dm.

In the first case, the p’s are primes (not necessarily distinct), and ri > 0 for all i. The first case is called
a primary decomposition while the second case is called an invariant factor decomposition.

The proof of this result is outside the scope of this course. But I should mention that it is related to
the Jordan canonical form and rational canonical form that you may have seen in linear algebra. The
structure theorem for finitely generated abelian groups and the results on canonical forms are special cases
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of a more general structure theorem: The structure theorem for finitely generated modules over a principal

ideal domain.
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Let’s concentrate for now on the case of a finite abelian group. Since any factor of Z would make the
group infinite, there can’t be any Z’s in the decomposition. The result then says that every finite abelian
can be written as

Zp1
r1 × Zp2

r2 × · · · × Zpn

rn .

Here the p’s are primes and the r’s are positive integers (primary decomposition).
Alternatively, you can write the same group as

Zd1
× Zd2

× · · · × Zdm
.

In this case, the d’s are positive integers and d1 | · · · | dm (invariant factor decomposition).

Example. (Listing all the primary and invariant factor decompositions) Find the primary decom-
positions and corresponding invariant factor decompositions for all abelian groups of order 360.

First, factor 360 into a product of primes: 360 = 23 · 32 · 5.
Next, write each prime power in all possible ways:

23 : 23, 2 · 22, 2 · 2 · 2

32 : 32, 3 · 3

5 : 5

You get the primary decompositions by using one of the 24 factorizations, one of the 32 factorizations, and
the lone 5. I’ll list the possibilities below, together with the corresponding invariant factor decompositions.

Primary decomposition Invariant factor decomposition

Z2 × Z2 × Z2 × Z3 × Z3 × Z5 Z2 × Z6 × Z30

Z2 × Z2 × Z2 × Z9 × Z5 Z2 × Z2 × Z90

Z2 × Z4 × Z3 × Z3 × Z5 Z6 × Z60

Z2 × Z4 × Z9 × Z5 Z2 × Z180

Z8 × Z3 × Z3 × Z5 Z3 × Z120

Z8 × Z9 × Z5 Z360

The two groups in each row are isomorphic — they’re “the same” as groups.
Here’s an example which shows how I got the invariant factor decompositions. Consider Z2×Z2×Z2×

Z3 × Z3 × Z5. Write the numbers for each prime in a row, right-justified:

2 2 2
3 3

5
2 6 30
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Multiply the numbers in each column. These give the numbers for the invariant factor decomposition.
Note that 2 divides 6 and 6 divides 30.

Example. (Finding the primary and invariant factor decompositions for a specific group) Find
the primary decomposition and invariant factor decomposition for Z4 × Z12 × Z18.

First, I take each of the factors apart into direct products of groups of prime power order.

Z4 × Z12 × Z18 ≈ Z4 × (Z4 × Z3)× (Z2 × Z9).

I’m using the fact that Zm×Zn ≈ Zmn if and only if m and n are relatively prime. Thus, Z12 ≈ Z4×Z3

because 3 and 4 are relatively prime.
I can’t replace Z4 with Z2 × Z2 because 2 is not relatively prime to 2 (2 and 2 have the common factor

2!).
Thus, the primary decomposition is

Z2 × Z4 × Z4 × Z3 × Z9.

Next, I find the invariant factor decomposition:

2 4 4
3 9

2 12 36

So the invariant factor decomposition is

Z2 × Z12 × Z36.

Note that 2 divides 12 and 12 divides 36.

Example. (Finding primary decompositions satisfying a condition on orders of elements) Sup-
pose G is an abelian group of order 24, and no element has order greater than 12. What are the possible
primary decompositions for G?

Since 24 = 23 · 3, the primary decompositions for abelian groups of order 24 are

Z8 × Z3, Z2 × Z4 × Z3, Z2 × Z2 × Z2 × Z3.

Let (a, b, c) ∈ Z2 × Z4 × Z3. Then

12(a, b, c) = (12a, 12b, 12c) = (0, 0, 0).

Therefore, no element of Z2 × Z4 × Z3 has order greater than 12.
Let (a, b, c, d) ∈ Z2 × Z2 × Z2 × Z3. Then

12(a, b, c, d) = (12a, 12b, 12c, 12d) = (0, 0, 0, 0).

Therefore, no element of Z2 × Z2 × Z2 × Z3 has order greater than 12.
However, for (1, 1) ∈ Z8 × Z3, I have

12(1, 1) = (4, 0) 6= (0, 0).

So (1, 1) does not have order less than 12 — in fact, it has order 24.
Therefore, the possible primary decompositions for G are Z2 × Z4 × Z3 and Z2 × Z2 × Z2 × Z3.
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