The First Isomorphism Theorem

The First Isomorphism Theorem helps identify quotient groups as "known" or "familiar" groups. I'll begin by proving a useful lemma.

Proposition. Let $\phi: G \rightarrow H$ be a group map. ϕ is injective if and only if ker $\phi=\{1\}$.
Proof. (\rightarrow) Suppose ϕ is injective. Since $\phi(1)=1,\{1\} \subset \operatorname{ker} \phi$. Conversely, let $g \in \operatorname{ker} \phi$, so $\phi(g)=1$. Then $\phi(g)=1=\phi(1)$, so by injectivity $g=1$. Therefore, $\operatorname{ker} \phi \subset\{1\}$, so $\operatorname{ker} \phi=\{1\}$.
(\rightarrow) Suppose $\operatorname{ker} \phi=\{1\}$. I want to show that ϕ is injective. Suppose $\phi(a)=\phi(b)$. I want to show that $a=b$.

$$
\begin{aligned}
\phi(a) & =\phi(b) \\
\phi(a) \phi(b)^{-1} & =\phi(b) \phi(b)^{-1} \\
\phi(a) \phi\left(b^{-1}\right) & =1 \\
\phi\left(a b^{-1}\right) & =1
\end{aligned}
$$

Hence, $a b^{-1} \in \operatorname{ker} \phi=\{1\}$, so $a b^{-1}=1$, and $a=b$. Therefore, ϕ is injective. $\quad \square$

Example. (Proving that a group map is injective) Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
f(x, y)=(3 x+2 y, x+y)
$$

Prove that f is injective.
As usual, \mathbb{R}^{2} is a group under vector addition. I can write f in the form

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Since f has been represented as multiplication by a constant matrix, it is a linear transformation, so it's a group map.

To show f is injective, I'll show that the kernel of f consists of only the identity: $\operatorname{ker} f=\{(0,0)\}$. Suppose $(x, y) \in \operatorname{ker} f$. Then

$$
\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Since $\operatorname{det}\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]=1 \neq 0$, I know by linear algebra that the matrix equation has only the trivial solution: $(x, y)=(0,0)$. This proves that if $(x, y) \in \operatorname{ker} f$, then $(x, y)=(0,0)$, so $\operatorname{ker} f \subset\{(0,0)\}$. Since $(0,0) \in \operatorname{ker} f$, it follows that $\operatorname{ker} f=\{(0,0)\}$.

Hence, f is injective.

Theorem. (The First Isomorphism Theorem) Let $\phi: G \rightarrow H$ be a group map, and let $\pi: G \rightarrow G / \operatorname{ker} \phi$ be the quotient map. There is an isomorphism $\tilde{\phi}: G / \operatorname{ker} \phi \rightarrow \operatorname{im} \phi$ such that the following diagram commutes:

$\underset{\sim}{\text { Proof. Since }} \phi$ maps G onto $\operatorname{im} \phi$ and $\operatorname{ker} \phi \subset \operatorname{ker} \phi$, the universal property of the quotient yields a map $\tilde{\phi}: G / \operatorname{ker} \phi \rightarrow \operatorname{im} \phi$ such that the diagram above commutes. Since ϕ is surjective, so is $\tilde{\phi}$; in fact, if $\phi(g) \in \operatorname{im} \phi$, by commutativity

$$
\tilde{\phi}(\pi(g))=\phi(g)
$$

It remains to show that $\tilde{\phi}$ is injective.
By the previous lemma, it suffices to show that $\operatorname{ker} \tilde{\phi}=\{1\}$. Since $\tilde{\phi}$ maps out of $G / \operatorname{ker} \phi$, the " 1 " here is the identity element of the group $G / \operatorname{ker} \phi$, which is the subgroup $\operatorname{ker} \phi$. So I need to show that $\operatorname{ker} \tilde{\phi}=\{\operatorname{ker} \phi\}$.

However, this follows immediately from commutativity of the diagram. For $g \operatorname{ker} \phi \in \operatorname{ker} \tilde{\phi}$ if and only if $\tilde{\phi}(g \operatorname{ker} \phi)=1$. This is equivalent to $\tilde{\phi}(\pi(g))=1$, or $\phi(g)=1$, or $g \in \operatorname{ker} \phi-$ i.e. $\operatorname{ker} \tilde{\phi}=\{\operatorname{ker} \phi\}$.

Example. (Using the First Isomorphism Theorem to show two groups are isomorphic) Use the First Isomorphism Theorem to prove that

$$
\frac{\mathbb{R}^{*}}{\{1,-1\}} \approx \mathbb{R}^{+}
$$

\mathbb{R}^{*} is the group of nonzero real numbers under multiplication. \mathbb{R}^{+}is the group of positive real numbers under multiplication. $\{1,-1\}$ is the group consisting of 1 and -1 under multiplication (it's isomorphic to $\left.\mathbb{Z}_{2}\right)$.

I'll define a group map from \mathbb{R}^{*} onto \mathbb{R}^{+}whose kernel is $\{1,-1\}$.
Define $\phi: \mathbb{R}^{*} \rightarrow \mathbb{R}^{+}$by

$$
\phi(x)=|x| .
$$

ϕ is a group map:

$$
\phi(x y)=|x y|=|x||y|=\phi(x) \phi(y) .
$$

If $z \in \mathbb{R}^{+}$is a positive real number, then

$$
\phi(z)=|z|=z
$$

Therefore, ϕ is surjective: $\operatorname{im} \phi=\mathbb{R}^{+}$.
Finally, ϕ clearly sends 1 and -1 to the identity $1 \in \mathbb{R}^{+}$, and those are the only two elements of \mathbb{R}^{*} which map to 1 . Therefore, $\operatorname{ker} \phi=\{1,-1\}$.

By the First Isomorphism Theorem,

$$
\frac{\mathbb{R}^{*}}{\{1,-1\}}=\frac{\mathbb{R}^{*}}{\operatorname{ker} \phi} \approx \operatorname{im} \phi=\mathbb{R}^{+}
$$

Note that I didn't construct a map $\frac{\mathbb{R}^{*}}{\{1,-1\}} \rightarrow \mathbb{R}^{+}$explicitly; the First Isomorphism Theorem constructs the isomorphism for me. $\quad \square$

Example. \mathbb{R}^{2} is a group under componentwise addition and \mathbb{R} is a group under addition. Let

$$
H=\{x \cdot(\sqrt{5},-\pi) \mid x \in \mathbb{R}\} .
$$

Prove that $\frac{\mathbb{R}^{2}}{H} \approx \mathbb{R}$.

Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)=\pi x+\sqrt{5} y
$$

Note that

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{ll}
\pi & \sqrt{5}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Since f can be expressed as multiplication by a constant matrix, it's a linear transformation, and hence a group map.

Let $x \cdot(\sqrt{5},-\pi) \in H$. Then

$$
f[x \cdot(\sqrt{5},-\pi)]=f(\sqrt{5} x,-\pi x)=\pi(\sqrt{5} x)+\sqrt{5}(-\pi x)=0 .
$$

Therefore, $x \cdot(\sqrt{5},-\pi) \in \operatorname{ker} f$, and hence $H \subset \operatorname{ker} f$.
Let $(x, y) \in \operatorname{ker} f$. Then

$$
\begin{aligned}
f(x, y) & =0 \\
\pi x+\sqrt{5} y & =0 \\
\sqrt{5} y & =-\pi x \\
y & =-\frac{\pi}{\sqrt{5}} x
\end{aligned}
$$

Hence,

$$
(x, y)=\left(x,-\frac{\pi}{\sqrt{5}} x\right)=\frac{1}{\sqrt{5}} x \cdot(\sqrt{5},-\pi) \in H
$$

Therefore, $\operatorname{ker} f \subset H$. Hence, ker $f=H$.
Let $z \in \mathbb{R}$. Note that

$$
f\left(\frac{1}{\pi} z, 0\right)=\pi \cdot \frac{1}{\pi} z+\sqrt{5} \cdot 0=z
$$

Hence, $\operatorname{im} f=\mathbb{R}$.
Thus,

$$
\frac{\mathbb{R}^{2}}{H}=\frac{\mathbb{R}^{2}}{\operatorname{ker} f} \approx \operatorname{im} f=\mathbb{R}
$$

Example. $\mathbb{Z} \times \mathbb{Z}$ is a group under componentwise addition and \mathbb{Z} is a group under addition. Prove that

$$
\frac{\mathbb{Z} \times \mathbb{Z}}{\langle(12,17)\rangle} \approx \mathbb{Z}
$$

Define $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ by

$$
f(x, y)=17 x-12 y
$$

f can be represented by matrix multiplication:

$$
\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{ll}
17 & -12
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Hence, it's a group map.
Let $n(12,17)=(12 n, 17 n) \in\langle(12,17)\rangle$. Then

$$
f((12 n, 17 n)=17(12 n)-12(17 n)=0
$$

Thus, $\langle(12,17)\rangle \subset \operatorname{ker} f$.

Let $(x, y) \in \operatorname{ker} f$. Then

$$
\begin{aligned}
f(x, y) & =0 \\
17 x-12 y & =0 \\
17 x & =12 y
\end{aligned}
$$

Now $17 \mid 12 y$ but $(12,17)=1$. By Euclid's lemma, $17 \mid y$. Say $y=17 n$. Then

$$
17 x=12(17 n), \quad \text { so } \quad x=12 n
$$

Therefore,

$$
(x, y)=(12 n, 17 n)=n(12,17) \in\langle(12,17)\rangle
$$

Thus, ker $f \subset\langle(12,17)\rangle$.
Hence, $\langle(12,17)\rangle=\operatorname{ker} f$.
Let $z \in \mathbb{Z}$. Note that

$$
1=(17,-12)=5 \cdot 17+7 \cdot(-12)
$$

Multiplying by z, I get

$$
z=17(5 z)-12(7 z)
$$

Then

$$
f(5 z, 7 z)=17(5 z)-12(7 z)=z
$$

This proves that $\operatorname{im} f=\mathbb{Z}$.
Hence,

$$
\frac{\mathbb{Z} \times \mathbb{Z}}{\langle(12,17)\rangle}=\frac{\mathbb{Z} \times \mathbb{Z}}{\operatorname{ker} f} \approx \operatorname{im} f=\mathbb{Z}
$$

Example. $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ is a group under componentwise addition. Consider the subgroup

$$
H=\{x \cdot(1,2,3) \mid x \in \mathbb{R}\}
$$

Prove that $\frac{\mathbb{R} \times \mathbb{R} \times \mathbb{R}}{H} \approx \mathbb{R} \times \mathbb{R}$.
($\mathbb{R} \times \mathbb{R}$ is a group under componentwise addition.)
Define $f: \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ by

$$
f(x, y, z)=(y-2 x, z-3 x)
$$

Note that

$$
f\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{lll}
-2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Since f is defined by matrix multiplication, it is a linear transformation. Hence, it's a group map. Let $x \cdot(1,2,3)=(x, 2 x, 3 x) \in H$. Then

$$
f(x, 2 x, 3 x)=(2 x-2 x, 3 x-3 x)=(0,0)
$$

Hence, $(x, 2 x, 3 x) \in \operatorname{ker} f$, and $H \subset \operatorname{ker} f$.
Let $(x, y, z) \in \operatorname{ker} f$. Then

$$
\begin{aligned}
f(x, y, z) & =(0,0) \\
(y-2 x, z-3 x) & =(0,0)
\end{aligned}
$$

Equating the first components, I have $y-2 x=0$, so $y=2 x$. Equating the second components, I have $z-3 x=0$, so $z=3 x$. Thus,

$$
(x, y, z)=(x, 2 x, 3 x) \in H
$$

Therefore, $\operatorname{ker} f \subset H$, and so $H=\operatorname{ker} f$.
Let $(a, b) \in \mathbb{R} \times \mathbb{R}$. Then

$$
f(0, a, b)=(a-2 \cdot 0, b-3 \cdot 0)=(a, b)
$$

Hence, $\operatorname{im} f=\mathbb{R} \times \mathbb{R}$.
Thus,

$$
\frac{\mathbb{R} \times \mathbb{R} \times \mathbb{R}}{H}=\frac{\mathbb{R} \times \mathbb{R} \times \mathbb{R}}{\operatorname{ker} f} \approx \operatorname{im} f=\mathbb{R} \times \mathbb{R}
$$

The first equality follows from $H=\operatorname{ker} f$. The isomorphism follows from the First Isomorphism Theorem. The second equality follows from $\operatorname{im} f=\mathbb{R} \times \mathbb{R}$. $\quad \square$

Proposition. If $\phi: G \rightarrow H$ is a surjective group map and $K \triangleleft G$, then $\phi(K) \triangleleft H$.
Proof. $1 \in K$, so $1=\phi(1) \in \phi(K)$, and $\phi(K) \neq \emptyset$.
Let $a, b \in K$, so $\phi(a), \phi(b) \in \phi(K)$. Then

$$
\phi(a) \phi(b)^{-1}=\phi(a) \phi\left(b^{-1}\right)=\phi\left(a b^{-1}\right) \in \phi(K), \text { since } a b^{-1} \in K
$$

Therefore, $\phi(K)$ is a subgroup.
(Notice that this does not use the fact that K is normal. Hence, I've actually proved that the image of a subgroup is a subgroup.)

Now let $h \in H, a \in K$, so $\phi(a) \in \phi(K)$. I want to show that $h \phi(a) h^{-1} \in \phi(K)$. Since ϕ is surjective, $h=\phi(g)$ for some $g \in G$. Then

$$
h \phi(a) h^{-1}=\phi(g) \phi(a) \phi(g)^{-1}=\phi\left(g a g^{-1}\right) .
$$

But $\operatorname{gag}^{-1} \in K$ because K is normal. Hence, $\phi\left(g a g^{-1}\right) \in \phi(K)$. It follows that $\phi(K)$ is a normal subgroup of H. \quad

Theorem. (The Second Isomorphism Theorem) Let $K, H \triangleleft G, K<H$. Then

$$
\frac{\frac{G}{K}}{\frac{H}{K}} \approx \frac{G}{H}
$$

Proof. I'll use the First Isomorphism Theorem. To do this, I need to define a group map $\frac{G}{K} \rightarrow \frac{G}{H}$.
To define this group map, I'll use the Universal Property of the Quotient.
The quotient map $\pi: G \rightarrow \frac{G}{H}$ is a group map. By the lemma preceding the Universal Property of the Quotient, $H=\operatorname{ker} \pi$. Since $K \subset H$, it follows that $K \subset \operatorname{ker} \pi$.

Since $\pi: G \rightarrow \frac{G}{H}$ is a group map and $K \subset \operatorname{ker} \pi$, the Universal Property of the Quotient implies that there is a group map $\tilde{\pi}: \frac{G}{K} \rightarrow \frac{G}{H}$ given by

$$
\tilde{\pi}(g K)=g H
$$

If $g H \in \frac{G}{H}$, then $\tilde{\pi}(g K)=g H$. Therefore, $\tilde{\pi}$ is surjective.

I claim that $\operatorname{ker} \tilde{\pi}=\frac{H}{K}$.
First, if $h K \in \frac{H}{K}$ (so $\left.h \in H\right)$, then $\tilde{\pi}(h K)=h H=H$. Since H is the identity in $\frac{G}{H}$, it follows that $h K \in \operatorname{ker} \tilde{\pi}$.

Conversely, suppose $g K \in \operatorname{ker} \tilde{\pi}$, so

$$
\tilde{\pi}(g K)=H, \quad \text { or } \quad g H=H
$$

The last equation implies that $g \in H$, so $g K \in \frac{H}{K}$.
Thus, $\operatorname{ker} \tilde{\pi}=\frac{H}{K}$.
By the First Isomorphism Theorem,

$$
\frac{\frac{G}{K}}{\frac{H}{K}}=\frac{\frac{G}{K}}{\operatorname{ker} \tilde{\pi}} \approx \operatorname{im} \tilde{\pi}=\frac{G}{H} .
$$

There is also a Third Isomorphism Theorem (sometimes called the Modular Isomorphism, or the Noether Isomorphism). It asserts that if $H<G$ and $K \triangleleft G$, then

$$
\frac{H}{H \cap K} \approx \frac{H K}{K}
$$

You can prove it using the First Isomorphism Theorem, in a manner similar to that used in the proof of the Second Isomorphism Theorem.

