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The First Isomorphism Theorem

The First Isomorphism Theorem helps identify quotient groups as “known” or “familiar” groups.
I’ll begin by proving a useful lemma.

Proposition. Let φ : G → H be a group map. φ is injective if and only if kerφ = {1}.

Proof. (→) Suppose φ is injective. Since φ(1) = 1, {1} ⊂ kerφ. Conversely, let g ∈ kerφ, so φ(g) = 1.
Then φ(g) = 1 = φ(1), so by injectivity g = 1. Therefore, kerφ ⊂ {1}, so kerφ = {1}.

(→) Suppose kerφ = {1}. I want to show that φ is injective. Suppose φ(a) = φ(b). I want to show that
a = b.

φ(a) = φ(b)

φ(a)φ(b)−1 = φ(b)φ(b)−1

φ(a)φ(b−1) = 1

φ(ab−1) = 1

Hence, ab−1 ∈ kerφ = {1}, so ab−1 = 1, and a = b. Therefore, φ is injective.

Example. (Proving that a group map is injective) Define f : R2 → R
2 by

f(x, y) = (3x+ 2y, x+ y).

Prove that f is injective.

As usual, R2 is a group under vector addition. I can write f in the form

f

([

x
y

])

=

[

3 2
1 1

] [

x
y

]

.

Since f has been represented as multiplication by a constant matrix, it is a linear transformation, so
it’s a group map.

To show f is injective, I’ll show that the kernel of f consists of only the identity: ker f = {(0, 0)}.
Suppose (x, y) ∈ ker f . Then

[

3 2
1 1

] [

x
y

]

=

[

0
0

]

.

Since det

[

3 2
1 1

]

= 1 6= 0, I know by linear algebra that the matrix equation has only the trivial

solution: (x, y) = (0, 0). This proves that if (x, y) ∈ ker f , then (x, y) = (0, 0), so ker f ⊂ {(0, 0)}. Since
(0, 0) ∈ ker f , it follows that ker f = {(0, 0)}.

Hence, f is injective.

Theorem. (The First Isomorphism Theorem) Let φ : G → H be a group map, and let π : G → G/ kerφ
be the quotient map. There is an isomorphism φ̃ : G/ kerφ → imφ such that the following diagram commutes:

G

π





y ց φ

G/ kerφ −→̃
φ

im φ
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Proof. Since φ maps G onto imφ and kerφ ⊂ kerφ, the universal property of the quotient yields a map
φ̃ : G/ kerφ → imφ such that the diagram above commutes. Since φ is surjective, so is φ̃; in fact, if
φ(g) ∈ imφ, by commutativity

φ̃(π(g)) = φ(g).

It remains to show that φ̃ is injective.
By the previous lemma, it suffices to show that ker φ̃ = {1}. Since φ̃ maps out of G/ kerφ, the “1”

here is the identity element of the group G/ kerφ, which is the subgroup kerφ. So I need to show that
ker φ̃ = {kerφ}.

However, this follows immediately from commutativity of the diagram. For g kerφ ∈ ker φ̃ if and only if
φ̃(g kerφ) = 1. This is equivalent to φ̃(π(g)) = 1, or φ(g) = 1, or g ∈ kerφ — i.e. ker φ̃ = {kerφ}.

Example. (Using the First Isomorphism Theorem to show two groups are isomorphic) Use the
First Isomorphism Theorem to prove that

R
∗

{1,−1} ≈ R
+.

R
∗ is the group of nonzero real numbers under multiplication. R+ is the group of positive real numbers

under multiplication. {1,−1} is the group consisting of 1 and −1 under multiplication (it’s isomorphic to
Z2).

I’ll define a group map from R
∗ onto R

+ whose kernel is {1,−1}.
Define φ : R∗ → R

+ by
φ(x) = |x|.

φ is a group map:
φ(xy) = |xy| = |x||y| = φ(x)φ(y).

If z ∈ R
+ is a positive real number, then

φ(z) = |z| = z.

Therefore, φ is surjective: imφ = R
+.

Finally, φ clearly sends 1 and −1 to the identity 1 ∈ R
+, and those are the only two elements of R∗

which map to 1. Therefore, kerφ = {1,−1}.
By the First Isomorphism Theorem,

R
∗

{1,−1} =
R

∗

kerφ
≈ imφ = R

+.

Note that I didn’t construct a map
R

∗

{1,−1} → R
+ explicitly; the First Isomorphism Theorem constructs

the isomorphism for me.

Example. R
2 is a group under componentwise addition and R is a group under addition. Let

H =
{

x · (
√
5,−π)

∣

∣

∣ x ∈ R

}

.

Prove that
R

2

H
≈ R.
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Define f : R2 → R by
f(x, y) = πx+

√
5y.

Note that

f

([

x
y

])

= [π
√
5 ]

[

x
y

]

.

Since f can be expressed as multiplication by a constant matrix, it’s a linear transformation, and hence
a group map.

Let x · (
√
5,−π) ∈ H. Then

f [x · (
√
5,−π)] = f(

√
5x,−πx) = π(

√
5x) +

√
5(−πx) = 0.

Therefore, x · (
√
5,−π) ∈ ker f , and hence H ⊂ ker f .

Let (x, y) ∈ ker f . Then
f(x, y) = 0

πx+
√
5y = 0

√
5y = −πx

y = − π√
5
x

Hence,

(x, y) =

(

x,− π√
5
x

)

=
1√
5
x · (

√
5,−π) ∈ H.

Therefore, ker f ⊂ H. Hence, ker f = H.
Let z ∈ R. Note that

f

(

1

π
z, 0

)

= π · 1
π
z +

√
5 · 0 = z.

Hence, im f = R.
Thus,

R
2

H
=

R
2

ker f
≈ im f = R.

Example. Z× Z is a group under componentwise addition and Z is a group under addition. Prove that

Z× Z

〈(12, 17)〉 ≈ Z.

Define f : Z× Z → Z by
f(x, y) = 17x− 12y.

f can be represented by matrix multiplication:

([

x
y

])

= [ 17 −12 ]

[

x
y

]

.

Hence, it’s a group map.
Let n(12, 17) = (12n, 17n) ∈ 〈(12, 17)〉. Then

f((12n, 17n) = 17(12n)− 12(17n) = 0.

Thus, 〈(12, 17)〉 ⊂ ker f .
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Let (x, y) ∈ ker f . Then
f(x, y) = 0

17x− 12y = 0

17x = 12y

Now 17 | 12y but (12, 17) = 1. By Euclid’s lemma, 17 | y. Say y = 17n. Then

17x = 12(17n), so x = 12n.

Therefore,
(x, y) = (12n, 17n) = n(12, 17) ∈ 〈(12, 17)〉.

Thus, ker f ⊂ 〈(12, 17)〉.
Hence, 〈(12, 17)〉 = ker f .
Let z ∈ Z. Note that

1 = (17,−12) = 5 · 17 + 7 · (−12).

Multiplying by z, I get
z = 17(5z)− 12(7z).

Then
f(5z, 7z) = 17(5z)− 12(7z) = z.

This proves that im f = Z.
Hence,

Z× Z

〈(12, 17)〉 =
Z× Z

ker f
≈ im f = Z.

Example. R× R× R is a group under componentwise addition. Consider the subgroup

H =
{

x · (1, 2, 3)
∣

∣

∣
x ∈ R

}

.

Prove that
R× R× R

H
≈ R× R.

(R× R is a group under componentwise addition.)

Define f : R× R× R → R× R by

f(x, y, z) = (y − 2x, z − 3x).

Note that

f









x
y
z







 =

[

−2 1 0
−3 0 1

]





x
y
z



 .

Since f is defined by matrix multiplication, it is a linear transformation. Hence, it’s a group map.
Let x · (1, 2, 3) = (x, 2x, 3x) ∈ H. Then

f(x, 2x, 3x) = (2x− 2x, 3x− 3x) = (0, 0).

Hence, (x, 2x, 3x) ∈ ker f , and H ⊂ ker f .
Let (x, y, z) ∈ ker f . Then

f(x, y, z) = (0, 0)

(y − 2x, z − 3x) = (0, 0)
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Equating the first components, I have y − 2x = 0, so y = 2x. Equating the second components, I have
z − 3x = 0, so z = 3x. Thus,

(x, y, z) = (x, 2x, 3x) ∈ H.

Therefore, ker f ⊂ H, and so H = ker f .
Let (a, b) ∈ R× R. Then

f(0, a, b) = (a− 2 · 0, b− 3 · 0) = (a, b).

Hence, im f = R× R.
Thus,

R× R× R

H
=

R× R× R

ker f
≈ im f = R× R.

The first equality follows from H = ker f . The isomorphism follows from the First Isomorphism Theo-
rem. The second equality follows from im f = R× R.

Proposition. If φ : G → H is a surjective group map and K ⊳ G, then φ(K) ⊳ H.

Proof. 1 ∈ K, so 1 = φ(1) ∈ φ(K), and φ(K) 6= ∅.
Let a, b ∈ K, so φ(a), φ(b) ∈ φ(K). Then

φ(a)φ(b)−1 = φ(a)φ(b−1) = φ(ab−1) ∈ φ(K), since ab−1 ∈ K.

Therefore, φ(K) is a subgroup.
(Notice that this does not use the fact that K is normal. Hence, I’ve actually proved that the image of

a subgroup is a subgroup.)
Now let h ∈ H, a ∈ K, so φ(a) ∈ φ(K). I want to show that hφ(a)h−1 ∈ φ(K). Since φ is surjective,

h = φ(g) for some g ∈ G. Then

hφ(a)h−1 = φ(g)φ(a)φ(g)−1 = φ
(

gag−1
)

.

But gag−1 ∈ K because K is normal. Hence, φ
(

gag−1
)

∈ φ(K). It follows that φ(K) is a normal
subgroup of H.

Theorem. (The Second Isomorphism Theorem) Let K,H ⊳ G, K < H. Then

G

K
H

K

≈ G

H
.

Proof. I’ll use the First Isomorphism Theorem. To do this, I need to define a group map
G

K
→ G

H
.

To define this group map, I’ll use the Universal Property of the Quotient.

The quotient map π : G → G

H
is a group map. By the lemma preceding the Universal Property of the

Quotient, H = kerπ. Since K ⊂ H, it follows that K ⊂ kerπ.

Since π : G → G

H
is a group map and K ⊂ kerπ, the Universal Property of the Quotient implies that

there is a group map π̃ :
G

K
→ G

H
given by

π̃(gK) = gH.

If gH ∈ G

H
, then π̃(gK) = gH. Therefore, π̃ is surjective.
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I claim that ker π̃ =
H

K
.

First, if hK ∈ H

K
(so h ∈ H), then π̃(hK) = hH = H. Since H is the identity in

G

H
, it follows that

hK ∈ ker π̃.
Conversely, suppose gK ∈ ker π̃, so

π̃(gK) = H, or gH = H.

The last equation implies that g ∈ H, so gK ∈ H

K
.

Thus, ker π̃ =
H

K
.

By the First Isomorphism Theorem,

G

K
H

K

=

G

K
ker π̃

≈ im π̃ =
G

H
.

There is also a Third Isomorphism Theorem (sometimes called the Modular Isomorphism, or
the Noether Isomorphism). It asserts that if H < G and K ⊳ G, then

H

H ∩K
≈ HK

K
.

You can prove it using the First Isomorphism Theorem, in a manner similar to that used in the proof
of the Second Isomorphism Theorem.
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