The First Isomorphism Theorem

The **First Isomorphism Theorem** helps identify quotient groups as "known" or "familiar" groups. I'll begin by proving a useful lemma.

Proposition. Let $\phi : G \to H$ be a group map. ϕ is injective if and only if ker $\phi = \{1\}$.

Proof. (\rightarrow) Suppose ϕ is injective. Since $\phi(1) = 1$, $\{1\} \subset \ker \phi$. Conversely, let $g \in \ker \phi$, so $\phi(g) = 1$. Then $\phi(g) = 1 = \phi(1)$, so by injectivity g = 1. Therefore, $\ker \phi \subset \{1\}$, so $\ker \phi = \{1\}$.

 (\rightarrow) Suppose ker $\phi = \{1\}$. I want to show that ϕ is injective. Suppose $\phi(a) = \phi(b)$. I want to show that a = b.

$$\phi(a) = \phi(b)$$

$$\phi(a)\phi(b)^{-1} = \phi(b)\phi(b)^{-1}$$

$$\phi(a)\phi(b^{-1}) = 1$$

$$\phi(ab^{-1}) = 1$$

Hence, $ab^{-1} \in \ker \phi = \{1\}$, so $ab^{-1} = 1$, and a = b. Therefore, ϕ is injective. \Box

Example. (Proving that a group map is injective) Define $f : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$f(x,y) = (3x + 2y, x + y).$$

Prove that f is injective.

As usual, \mathbb{R}^2 is a group under vector addition. I can write f in the form

$$f\left(\begin{bmatrix} x\\ y\end{bmatrix}\right) = \begin{bmatrix} 3 & 2\\ 1 & 1\end{bmatrix} \begin{bmatrix} x\\ y\end{bmatrix}$$

Since f has been represented as multiplication by a constant matrix, it is a linear transformation, so it's a group map.

To show f is injective, I'll show that the kernel of f consists of only the identity: ker $f = \{(0,0)\}$. Suppose $(x,y) \in \ker f$. Then

$$\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Since det $\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} = 1 \neq 0$, I know by linear algebra that the matrix equation has only the trivial solution: (x, y) = (0, 0). This proves that if $(x, y) \in \ker f$, then (x, y) = (0, 0), so ker $f \subset \{(0, 0)\}$. Since $(0, 0) \in \ker f$, it follows that ker $f = \{(0, 0)\}$.

Hence, f is injective. \Box

Theorem. (The First Isomorphism Theorem) Let $\phi : G \to H$ be a group map, and let $\pi : G \to G/\ker \phi$ be the quotient map. There is an isomorphism $\tilde{\phi} : G/\ker \phi \to \operatorname{im} \phi$ such that the following diagram commutes:

$$\begin{array}{ccc} G \\ \pi & & \searrow \phi \\ G/\ker \phi & \xrightarrow[]{\tilde{\phi}} & \operatorname{im} \phi \end{array}$$

Proof. Since ϕ maps G onto $\operatorname{im} \phi$ and $\operatorname{ker} \phi \subset \operatorname{ker} \phi$, the universal property of the quotient yields a map $\tilde{\phi} : G/\operatorname{ker} \phi \to \operatorname{im} \phi$ such that the diagram above commutes. Since ϕ is surjective, so is $\tilde{\phi}$; in fact, if $\phi(g) \in \operatorname{im} \phi$, by commutativity

$$\phi(\pi(g)) = \phi(g).$$

It remains to show that $\tilde{\phi}$ is injective.

By the previous lemma, it suffices to show that ker $\tilde{\phi} = \{1\}$. Since $\tilde{\phi}$ maps out of $G/\ker\phi$, the "1" here is the identity element of the group $G/\ker\phi$, which is the subgroup ker ϕ . So I need to show that ker $\tilde{\phi} = \{\ker\phi\}$.

However, this follows immediately from commutativity of the diagram. For $g \ker \phi \in \ker \tilde{\phi}$ if and only if $\tilde{\phi}(g \ker \phi) = 1$. This is equivalent to $\tilde{\phi}(\pi(g)) = 1$, or $\phi(g) = 1$, or $g \in \ker \phi$ — i.e. $\ker \tilde{\phi} = \{\ker \phi\}$. \Box

Example. (Using the First Isomorphism Theorem to show two groups are isomorphic) Use the First Isomorphism Theorem to prove that

$$\frac{\mathbb{R}^*}{\{1,-1\}} \approx \mathbb{R}^+.$$

 \mathbb{R}^* is the group of nonzero real numbers under multiplication. \mathbb{R}^+ is the group of positive real numbers under multiplication. $\{1, -1\}$ is the group consisting of 1 and -1 under multiplication (it's isomorphic to \mathbb{Z}_2).

I'll define a group map from \mathbb{R}^* onto \mathbb{R}^+ whose kernel is $\{1, -1\}$. Define $\phi : \mathbb{R}^* \to \mathbb{R}^+$ by

$$\phi(x) = |x|$$

 ϕ is a group map:

$$\phi(xy) = |xy| = |x||y| = \phi(x)\phi(y).$$

If $z \in \mathbb{R}^+$ is a positive real number, then

$$\phi(z) = |z| = z.$$

Therefore, ϕ is surjective: im $\phi = \mathbb{R}^+$.

Finally, ϕ clearly sends 1 and -1 to the identity $1 \in \mathbb{R}^+$, and those are the only two elements of \mathbb{R}^* which map to 1. Therefore, ker $\phi = \{1, -1\}$.

By the First Isomorphism Theorem,

$$\frac{\mathbb{R}^*}{\{1,-1\}} = \frac{\mathbb{R}^*}{\ker \phi} \approx \operatorname{im} \phi = \mathbb{R}^+.$$

Note that I didn't construct a map $\frac{\mathbb{R}^*}{\{1,-1\}} \to \mathbb{R}^+$ explicitly; the First Isomorphism Theorem constructs the isomorphism for me. \Box

Example. \mathbb{R}^2 is a group under componentwise addition and \mathbb{R} is a group under addition. Let

$$H = \left\{ x \cdot (\sqrt{5}, -\pi) \mid x \in \mathbb{R} \right\}$$

Prove that $\frac{\mathbb{R}^2}{H} \approx \mathbb{R}$.

Define $f : \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \pi x + \sqrt{5}y.$$

Note that

$$f\left(\begin{bmatrix} x\\ y\end{bmatrix}\right) = \begin{bmatrix} \pi & \sqrt{5} \end{bmatrix} \begin{bmatrix} x\\ y\end{bmatrix}.$$

Since f can be expressed as multiplication by a constant matrix, it's a linear transformation, and hence a group map.

Let $x \cdot (\sqrt{5}, -\pi) \in H$. Then

$$f[x \cdot (\sqrt{5}, -\pi)] = f(\sqrt{5}x, -\pi x) = \pi(\sqrt{5}x) + \sqrt{5}(-\pi x) = 0.$$

Therefore, $x \cdot (\sqrt{5}, -\pi) \in \ker f$, and hence $H \subset \ker f$. Let $(x, y) \in \ker f$. Then

$$f(x, y) = 0$$

$$\pi x + \sqrt{5}y = 0$$

$$\sqrt{5}y = -\pi x$$

$$y = -\frac{\pi}{\sqrt{5}}x$$

Hence,

$$(x,y) = \left(x, -\frac{\pi}{\sqrt{5}}x\right) = \frac{1}{\sqrt{5}}x \cdot (\sqrt{5}, -\pi) \in H.$$

Therefore, ker $f \subset H$. Hence, ker f = H. Let $z \in \mathbb{R}$. Note that

$$f\left(\frac{1}{\pi}z,0\right) = \pi \cdot \frac{1}{\pi}z + \sqrt{5} \cdot 0 = z.$$

Hence, im $f = \mathbb{R}$. Thus,

$$\frac{\mathbb{R}^2}{H} = \frac{\mathbb{R}^2}{\ker f} \approx \operatorname{im} f = \mathbb{R}. \quad \Box$$

Example. $\mathbb{Z} \times \mathbb{Z}$ is a group under componentwise addition and \mathbb{Z} is a group under addition. Prove that

$$\frac{\mathbb{Z} \times \mathbb{Z}}{\langle (12, 17) \rangle} \approx \mathbb{Z}.$$

Define $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ by

$$f(x,y) = 17x - 12y.$$

f can be represented by matrix multiplication:

$$\left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 17 & -12 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

Hence, it's a group map. Let $n(12, 17) = (12n, 17n) \in \langle (12, 17) \rangle$. Then

$$f((12n, 17n) = 17(12n) - 12(17n) = 0.$$

Thus, $\langle (12, 17) \rangle \subset \ker f$.

Let $(x, y) \in \ker f$. Then

$$f(x, y) = 0$$

$$17x - 12y = 0$$

$$17x = 12y$$

Now $17 \mid 12y$ but (12, 17) = 1. By Euclid's lemma, $17 \mid y$. Say y = 17n. Then

$$17x = 12(17n)$$
, so $x = 12n$.

Therefore,

$$(x,y) = (12n, 17n) = n(12, 17) \in \langle (12, 17) \rangle.$$

Thus, ker $f \subset \langle (12, 17) \rangle$. Hence, $\langle (12, 17) \rangle = \ker f$. Let $z \in \mathbb{Z}$. Note that

 $1 = (17, -12) = 5 \cdot 17 + 7 \cdot (-12).$

Multiplying by z, I get

$$z = 17(5z) - 12(7z)$$

Then

$$f(5z,7z) = 17(5z) - 12(7z) = z.$$

This proves that im $f = \mathbb{Z}$. Hence,

$$\frac{\mathbb{Z} \times \mathbb{Z}}{\langle (12, 17) \rangle} = \frac{\mathbb{Z} \times \mathbb{Z}}{\ker f} \approx \operatorname{im} f = \mathbb{Z}. \quad \Box$$

Example. $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ is a group under componentwise addition. Consider the subgroup

$$H = \left\{ x \cdot (1, 2, 3) \mid x \in \mathbb{R} \right\}.$$

Prove that $\frac{\mathbb{R} \times \mathbb{R} \times \mathbb{R}}{H} \approx \mathbb{R} \times \mathbb{R}$.

 $(\mathbb{R} \times \mathbb{R} \text{ is a group under componentwise addition.})$

Define $f : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ by

$$f(x, y, z) = (y - 2x, z - 3x).$$

Note that

$$f\left(\begin{bmatrix} x\\ y\\ z\end{bmatrix}\right) = \begin{bmatrix} -2 & 1 & 0\\ -3 & 0 & 1\end{bmatrix} \begin{bmatrix} x\\ y\\ z\end{bmatrix}.$$

Since f is defined by matrix multiplication, it is a linear transformation. Hence, it's a group map. Let $x \cdot (1,2,3) = (x,2x,3x) \in H$. Then

$$f(x, 2x, 3x) = (2x - 2x, 3x - 3x) = (0, 0)$$

Hence, $(x, 2x, 3x) \in \ker f$, and $H \subset \ker f$. Let $(x, y, z) \in \ker f$. Then

$$f(x, y, z) = (0, 0)$$
$$(y - 2x, z - 3x) = (0, 0)$$

Equating the first components, I have y - 2x = 0, so y = 2x. Equating the second components, I have z - 3x = 0, so z = 3x. Thus,

$$(x, y, z) = (x, 2x, 3x) \in H.$$

Therefore, ker $f \subset H$, and so $H = \ker f$. Let $(a, b) \in \mathbb{R} \times \mathbb{R}$. Then

$$f(0, a, b) = (a - 2 \cdot 0, b - 3 \cdot 0) = (a, b).$$

Hence, im $f = \mathbb{R} \times \mathbb{R}$. Thus,

$$\frac{\mathbb{R} \times \mathbb{R} \times \mathbb{R}}{H} = \frac{\mathbb{R} \times \mathbb{R} \times \mathbb{R}}{\ker f} \approx \operatorname{im} f = \mathbb{R} \times \mathbb{R}.$$

The first equality follows from $H = \ker f$. The isomorphism follows from the First Isomorphism Theorem. The second equality follows from im $f = \mathbb{R} \times \mathbb{R}$. \Box

Proposition. If $\phi : G \to H$ is a surjective group map and $K \triangleleft G$, then $\phi(K) \triangleleft H$.

Proof. $1 \in K$, so $1 = \phi(1) \in \phi(K)$, and $\phi(K) \neq \emptyset$. Let $a, b \in K$, so $\phi(a), \phi(b) \in \phi(K)$. Then

$$\phi(a)\phi(b)^{-1} = \phi(a)\phi(b^{-1}) = \phi(ab^{-1}) \in \phi(K)$$
, since $ab^{-1} \in K$.

Therefore, $\phi(K)$ is a subgroup.

(Notice that this does not use the fact that K is normal. Hence, I've actually proved that the image of a subgroup is a subgroup.)

Now let $h \in H$, $a \in K$, so $\phi(a) \in \phi(K)$. I want to show that $h\phi(a)h^{-1} \in \phi(K)$. Since ϕ is surjective, $h = \phi(g)$ for some $g \in G$. Then

$$h\phi(a)h^{-1} = \phi(g)\phi(a)\phi(g)^{-1} = \phi(gag^{-1}).$$

But $gag^{-1} \in K$ because K is normal. Hence, $\phi(gag^{-1}) \in \phi(K)$. It follows that $\phi(K)$ is a normal subgroup of H. \Box

Theorem. (The Second Isomorphism Theorem) Let $K, H \triangleleft G, K < H$. Then

$$\frac{\frac{G}{K}}{\frac{H}{K}} \approx \frac{G}{H}$$

Proof. I'll use the First Isomorphism Theorem. To do this, I need to define a group map $\frac{G}{K} \to \frac{G}{H}$. To define this group map, I'll use the Universal Property of the Quotient.

The quotient map $\pi: G \to \frac{G}{H}$ is a group map. By the lemma preceding the Universal Property of the Quotient, $H = \ker \pi$. Since $K \subset H$, it follows that $K \subset \ker \pi$. Since $\pi: G \to \frac{G}{H}$ is a group map and $K \subset \ker \pi$, the Universal Property of the Quotient implies that

Since $\pi: G \to \frac{G}{H}$ is a group map and $K \subset \ker \pi$, the Universal Property of the Quotient implies that there is a group map $\tilde{\pi}: \frac{G}{K} \to \frac{G}{H}$ given by

$$\tilde{\pi}(gK) = gH.$$

If
$$gH \in \frac{G}{H}$$
, then $\tilde{\pi}(gK) = gH$. Therefore, $\tilde{\pi}$ is surjective.

I claim that $\ker \tilde{\pi} = \frac{H}{K}$.

First, if $hK \in \frac{H}{K}$ (so $h \in H$), then $\tilde{\pi}(hK) = hH = H$. Since H is the identity in $\frac{G}{H}$, it follows that $hK \in \ker \tilde{\pi}.$

Conversely, suppose $gK \in \ker \tilde{\pi}$, so

$$\tilde{\pi}(gK) = H$$
, or $gH = H$.

The last equation implies that $g \in H$, so $gK \in \frac{H}{K}$. Thus, $\ker \tilde{\pi} = \frac{H}{K}.$ By the First Isomorphism Theorem,

$$\frac{\frac{G}{K}}{\frac{H}{K}} = \frac{\frac{G}{K}}{\ker \tilde{\pi}} \approx \operatorname{im} \tilde{\pi} = \frac{G}{H}. \quad \Box$$

There is also a Third Isomorphism Theorem (sometimes called the Modular Isomorphism, or the **Noether Isomorphism**). It asserts that if H < G and $K \triangleleft G$, then

$$\frac{H}{H \cap K} \approx \frac{HK}{K}.$$

You can prove it using the First Isomorphism Theorem, in a manner similar to that used in the proof of the Second Isomorphism Theorem.