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The First Isomorphism Theorem
The First Isomorphism Theorem helps identify quotient groups as “known” or “familiar” groups.
T’ll begin by proving a useful lemma.
Proposition. Let ¢ : G — H be a group map. ¢ is injective if and only if ker ¢ = {1}.

Proof. (—) Suppose ¢ is injective. Since ¢(1) = 1, {1} C ker ¢. Conversely, let g € ker ¢, so ¢(g) = 1.
Then ¢(g) =1 = ¢(1), so by injectivity g = 1. Therefore, ker ¢ C {1}, so ker ¢ = {1}.

(=) Suppose ker¢ = {1}. T want to show that ¢ is injective. Suppose ¢(a) = ¢(b). I want to show that

= 6(a) = B(b)
H(a)o(0) " = BB)H(b) !
pla)p(b) =1

plab™t) =

Hence, ab~! € ker ¢ = {1}, so ab=! =1, and a = b. Therefore, ¢ is injective. [

Example. (Proving that a group map is injective) Define f : R?> — R? by

fl@,y) = Bz + 2y, 2 +y).
Prove that f is injective.

As usual, R? is a group under vector addition. I can write f in the form

z 3 2| |z
f([yD - [1 1} M
Since f has been represented as multiplication by a constant matrix, it is a linear transformation, so

it’s a group map.
To show f is injective, I'll show that the kernel of f consists of only the identity: ker f = {(0,0)}.

Suppose (z,y) € ker f. Then
3 2| |xz| |0
1 1|yl |0}
3 2

Since det [1 J =1 # 0, I know by linear algebra that the matrix equation has only the trivial

solution: (z,y) = (0,0). This proves that if (x,y) € ker f, then (z,y) = (0,0), so ker f C {(0,0)}. Since
(0,0) € ker f, it follows that ker f = {(0,0)}.
Hence, f is injective. 0O

Theorem. (The First Isomorphism Theorem) Let ¢ : G — H be a group map, and let 7 : G — G/ ker ¢
be the quotient map. There is an isomorphism ¢ : G/ ker ¢ — im ¢ such that the following diagram commutes:

G
ﬂl \(¢7
G/ker¢p — im ¢
®
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Proof. Since ¢ maps G onto im ¢ and ker ¢ C ker ¢, the universal property of the quotient yields a map
¢ : G/ker¢ — im¢ such that the diagram above commutes. Since ¢ is surjective, so is ¢; in fact, if
#(g) € im ¢, by commutativity

It remains to show that é is injective. ~ R

By the previous lemma, it suffices to show that ker¢ = {1}. Since ¢ maps out of G/ker ¢, the “1”
here is the identity element of the group G/ker ¢, which is the subgroup ker¢. So I need to show that
ker ¢ = {ker ¢}. 3

However, this follows immediately from commutativity of the diagram. For g ker ¢ € ker ¢ if and only if
d(gker ¢) = 1. This is equivalent to ¢(m(g)) =1, or ¢(g) =1, or g € ker p — i.e. kerp = {ker¢}. 0O

Example. (Using the First Isomorphism Theorem to show two groups are isomorphic) Use the
First Isomorphism Theorem to prove that
L
{17 _1} .

R* is the group of nonzero real numbers under multiplication. R™ is the group of positive real numbers
under multiplication. {1,—1} is the group consisting of 1 and —1 under multiplication (it’s isomorphic to
Zs).

I'll define a group map from R* onto R™ whose kernel is {1, —1}.

Define ¢ : R* — R by

o(z) = |z|.
¢ is a group map:

o(xy) = |yl = |z|ly| = d()d(y).

If z € R" is a positive real number, then

Therefore, ¢ is surjective: im¢ = R™.

Finally, ¢ clearly sends 1 and —1 to the identity 1 € R™, and those are the only two elements of R*
which map to 1. Therefore, ker ¢ = {1, —1}.

By the First Isomorphism Theorem,

R R
{1,-1}  ker¢

{17 _1}

Note that I didn’t construct a map — R explicitly; the First Isomorphism Theorem constructs

the isomorphism for me. 0O

Example. R? is a group under componentwise addition and R is a group under addition. Let
H:{x'(\/g,*ﬂ) ’xGR}.

RZ
P that — ~ R.
rove tha i



Define f: R?> = R by
fx,y) = mz +V5y.

1([5]) =t [y

Since f can be expressed as multiplication by a constant matrix, it’s a linear transformation, and hence
a group map.
Let x - (v/5,—m) € H. Then

Note that

fle- (V5,-m)] = f(V5z, —mz) = n(V52) + V5(~7z) = 0.

Therefore, 2 - (v/5, —7) € ker f, and hence H C ker f.
Let (z,y) € ker f. Then

f(z,y) =0
7z +vV5y =0
Vby = —mx
o ™
y**%x

Hence, ) — (x’ \7/%:0> _ %I (vV/5,—m) € H.

Therefore, ker f C H. Hence, ker f = H.
Let z € R. Note that

1 1
f(z,())ﬂ~z+\/5~()z.
™ 7T

Hence, im f = R.
Thus,

R
H kerf im f

Example. Z x Z is a group under componentwise addition and Z is a group under addition. Prove that

7. X7

sy S L

Define f : Z x Z — Z by
flz,y) =172 — 12y.

f can be represented by matrix multiplication:

Y Y
Hence, it’s a group map.

Let n(12,17) = (12n,17n) € ((12,17)). Then
F((12n,17n) = 17(12n) — 12(17n) = 0.

Thus, ((12,17)) C ker f.



Let (z,y) € ker f. Then

flz,y)=0
172 — 12y =0
172 =12y

Now 17 | 12y but (12,17) = 1. By Euclid’s lemma, 17 | y. Say y = 17n. Then
172 = 12(17n), so z = 12n.

Therefore,
(z,y) = (12n,17n) = n(12,17) € ((12,17)).

Thus, ker f C ((12,17)).
Hence, ((12,17)) = ker f.
Let z € Z. Note that
1=(17,-12) =517+ 7- (-12).

Multiplying by z, I get
z =17(52) — 12(7z).

Then
f(bz,72) =17(52) — 12(7z2) = z.

This proves that im f = Z.
Hence,
ZxXZ  ZXZ

((12,17)) ~ ker f

~imf=7%. O

Example. R x R x R is a group under componentwise addition. Consider the subgroup
H= {x-(1,2,3) ‘xeR}.

Prove that w ~R x R.

(R x R is a group under componentwise addition.)

Define f: R xR xR — R xR by

f(:c,y,z) = (yf 21’72 *317)

f Y -2 1 01"
)= 1-3 0 1]
z z
Since f is defined by matrix multiplication, it is a linear transformation. Hence, it’s a group map.
Let z - (1,2,3) = (x,2z,3z) € H. Then

Note that

f(z,2z,3z) = (2o — 22,3z — 3z) = (0,0).

Hence, (z,2z,3z) € ker f, and H C ker f.
Let (z,y,2) € ker f. Then

f(z,y,z) = (070)
(y — 2z,2z — 3z) = (0,0)
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Equating the first components, I have y — 2z = 0, so y = 2z. Equating the second components, I have
z—3x =0, s0 z=3x. Thus,
(z,y,2) = (x,22,3x) € H.

Therefore, ker f C H, and so H = ker f.
Let (a,b) € R x R. Then

f(0,a,b) =(a—2-0,b—3-0) = (a,b).
Hence, im f = R x R.

Thus,
RxRxR RxRxR

H ~ kerf
The first equality follows from H = ker f. The isomorphism follows from the First Isomorphism Theo-
rem. The second equality follows from im f =R x R. 0O

~imf=RxR.

Proposition. If ¢ : G — H is a surjective group map and K <G, then ¢(K) < H.

Proof. 1 € K,s01=¢(1) € ¢(K), and ¢(K) # 0.
Let a,b € K, so ¢(a), p(b) € ¢(K). Then

#(a)p(d) ™t = ¢(a)p(b™h) = ¢p(ab™ ) € ¢(K), since ab™ ' € K.

Therefore, ¢(K) is a subgroup.

(Notice that this does not use the fact that K is normal. Hence, I've actually proved that the image of
a subgroup is a subgroup.)

Now let h € H, a € K, so ¢(a) € ¢(K). I want to show that hé(a)h~! € ¢(K). Since ¢ is surjective,
h = ¢(g) for some g € G. Then

ho(a)h ™' = ¢(g9)p(a)p(g) ™" = ¢ (9ag™") .

But gag™! € K because K is normal. Hence, ¢ (gag™') € ¢(K). It follows that ¢(K) is a normal
subgroup of H. 0O

Theorem. (The Second Isomorphism Theorem) Let K, H <G, K < H. Then

=) @

Q

=== Q

G G
Proof. TI'll use the First Isomorphism Theorem. To do this, I need to define a group map Ve — T
To define this group map, I’ll use the Universal Property of the Quotient.
G

The quotient map 7 : G — T is a group map. By the lemma preceding the Universal Property of the
Quotient, H = ker . Since K C H, it follows that K C ker .
G
Since 7 : G — T is a group map and K C ker 7, the Universal Property of the Quotient implies that

there is a group map 7 : Ve — Vi given by

T(gK) = gH.

G
If gH € i then 7(gK) = gH. Therefore, 7 is surjective.



I claim that ker 7 =

LA
K

=| =

First, if hK €

hK € kerT.
Conversely, suppose gK € ker 7, so

o

G
h € H), then #(hK) = hH = H. Since H is the identity in I’ it follows that

7(9K)=H, or gH=H.

H
The last equation implies that g € H, so gK € e

H
Thus, kerm = —.

By the First Isomorphism Theorem,

=== Q
3
S
= Q

There is also a Third Isomorphism Theorem (sometimes called the Modular Isomorphism, or
the Noether Isomorphism). It asserts that if H < G and K <G, then

H _HK
HNnK K-

You can prove it using the First Isomorphism Theorem, in a manner similar to that used in the proof
of the Second Isomorphism Theorem.
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