Group Maps Between Finite Cyclic Groups

Group maps $\mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n}$ are determined by the image of $1 \in \mathbb{Z}_{m}$: The image is an element whose order divides (m, n), and all such elements are the image of such a group map.

Theorem.
(a) If $f: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n}$ is a group map, then ord $f(1) \mid(m, n)$.
(b) If $p \in \mathbb{Z}_{n}$ satisfies ord $p \mid(m, n)$, then there is a group map $f: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n}$ such that $f(1)=p$.

Proof. (a) Suppose $f: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n}$ is a group map. Now $m \cdot 1=0$ in \mathbb{Z}_{m}, so

$$
m \cdot f(1)=f(m \cdot 1)=f(0)=0
$$

This shows that ord $f(1) \mid m$.
Since $f(1) \in \mathbb{Z}_{n}$, I have ord $f(1) \mid n$.
Hence, ord $f(1) \mid(m, n)$.
(b) Let $p \in \mathbb{Z}_{n}$, and suppose $d=\operatorname{ord} p \mid(m, n)$. Define $g: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ by

$$
g(x)=p x
$$

Since $d \mid m$, I have $m=j d$ for some $j \in \mathbb{Z}$.
Now

$$
\begin{array}{rlc}
g(k m) & =\quad p k m & \\
& =p k(j d) & (\text { Since } m=j d) \\
& =0 & (\text { Since ord } p=d)
\end{array}
$$

Since g sends $m \mathbb{Z}$ to 0 , the Universal Property of the Quotient produces a (unique) group map $\tilde{g}: \mathbb{Z}_{m} \rightarrow$ \mathbb{Z}_{n} defined by

$$
\tilde{g}(x)=p x
$$

Then $\tilde{g}(1)=p$, and \tilde{g} is the desired group map.
Corollary. The number of group maps $\mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n}$ is (m, n).
Proof. The number of elements of order d in a cyclic group is $\phi(d)$ (where ϕ denotes the Euler ϕ-function). The divisor sum of the Euler ϕ-function is the identity:

$$
\sum_{d \mid k} \phi(d)=k
$$

So the number of elements whose orders divide (m, n) is (m, n), and the theorem shows that each such element gives rise to a group map $\mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n}$.

Example. (a) Enumerate the group maps $\mathbb{Z}_{18} \rightarrow \mathbb{Z}_{30}$.
(b) Show by direct computation that $f: \mathbb{Z}_{18} \rightarrow \mathbb{Z}_{30}$ given by $f(x)=14 x$ is not a group map.
(a) Since $(18,30)=6$, there are 6 such maps by the Corollary. They are determined by sending $1 \in \mathbb{Z}_{18}$ to an element whose order divides 6 .

order	elements in \mathbb{Z}_{30} of that order
1	0
2	15
3	10,20
6	5,25

Thus, the possible group maps $f: \mathbb{Z}_{18} \rightarrow \mathbb{Z}_{30}$ have

$$
f(1)=0, \quad f(1)=15, \quad f(1)=10, \quad f(1)=20, \quad f(1)=5, \quad f(1)=25
$$

For example, the group map

$$
f(x)=20 x \quad \text { has } \quad f(1)=20
$$

It is easy to determine the kernel and the image. The image is the unique subgroup of \mathbb{Z}_{30} of order 3 , so

$$
\operatorname{im} f=\{0,10,20\}
$$

By the First Isomorphism Theorem, the kernel must have order $\frac{18}{3}=6$. The unique subgroup of \mathbb{Z}_{18} of order 6 is

$$
\operatorname{ker} f=\{0,3,6,9,12,15\}
$$

(b) Consider the function $f: \mathbb{Z}_{18} \rightarrow \mathbb{Z}_{30}$ given by $f(x)=14 x$. Then

$$
f(3+15)=f(0)=0, \quad \text { but } \quad f(3)+f(15)=12+0=12
$$

Therefore, $f(3+15) \neq f(3)+f(15)$, so f is not a group map. $\quad \square$

